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 If one uses Jacobi’s prescription for eliminating time from the principle of least action: 
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T dt   = 0      (1) 

 

by using the energy principle before performing the variation then one will find that for the 

simplest case in which a material point of mass 1 moves in a conservative force field with a 

potential energy of V that: 
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,  T + V = const. = E,  dt = 
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E V−
,  (2) 

so 
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E V ds − = 0,    (3) 

which implies that: 
1

0

P

P
ds  = 0      (4) 

 

for a vanishing force field.  The symbolic integration limits in that integral mean the initial (final, 

resp.) point of the motion, which are not varied. 

 (3) [(4), resp.] is a mathematical consequence of (1) and (2) and the prescription that Jacobi 

explained.  Therefore, one can consider (3) to be the expression for the law of motion for an 

arbitrary conservative system when one takes care that the relation (2.1) should also remain 

justified with a suitable definition of ds.  Let such a system with n degrees of freedom be 

established by the n Lagrange coordinates (1): 

 

q1, q2, …, qn , 

and let its energy be established by (2): 

 
 (1) We therefore assume that it is holonomic! 

 (2) General indices that appear twice are summed over (using Einstein’s procedure)!  
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2T = gik (q1, …, qn) i kq q , V = V (q1, …, qn),     (5) 

so one has to set (1): 

ds2 = 2T dt2 = gik dqi dqk .     (6) 

 

 That is, one introduces a general Riemannian metric into coordinate space by convention: Line 

elements that run through the system points with equal kinetic energy in equal time are regarded 

as equal.  The time required to make T = 1/2 will serve as the unit of mass. (Naturally, that unit of 

mass is independent of the choice of time unit and coordinate system.) 

 The geometry of motion is then determined by (3) quite generally.  The curves of paths are the 

extremals of the action integral in the non-Euclidian Rn under consideration.  In that way, it is not 

the metric, but probably the action integral, that is independent of the parameter E = total energy.  

Thus, there are 1 paths from an arbitrary point P0 to an arbitrary point P1 then, so there will be 

1+2n−2 = 2n−1 in all, as it must be. – The elapsed time between given endpoints can be regarded 

as a function of E alone, and (2) implies that it is given by the integral: 

 

t = 
1

0 2( )

P

P

ds

E V−
 ,      (7) 

 

which extends along the path, and which I would like to call the “chronometric integral.” 

 In the time differential dt, which is regarded as invariant under the choice of coordinates, the 

velocities kq  appear as the contravariant components of a vector whose covariant components are 

the quantities that are ordinarily referred to as impulses: 

 

pi = 
i

T

q




 = ik kg q       (8) 

 

Its invariant 2T takes the three known forms: 

 

2T = ik i kg q q  = k kp q = gik pi pk ,     (9) 

 

in which the contravariant components of the fundamental metric tensor are constructed from the 

minors of that metric, divided by    gik , in the well-known way. 

 For purely geometric arguments in which the time is left out of consideration, in order to 

characterize the direction of the line element ds with the components dqi , it is preferable to 

introduce the direction vector R, whose contravariant components are: 

 

 
 (1) See, however, H. von Helmholtz, “Zur Geschichte des Princips der kleinsten Action,” Sitzber. d. Berl. Akad. 

d. Wiss. (1887), pp. 236. 
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Ri = idq

ds
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and whose covariant ones are: 

Ri = k
ik

dq
g

ds
 

2

ip
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.     (11) 

 

In those equations, the expressions on the left are meaningful in all situations, while the ones that 

are enclosed in brackets assume that the line element actually moves with some velocity, which 

can, of course, be supposed for any line element (in holonomic systems!). 

 From (6), the invariant of the direction vector is equal to 1: 

 

gik R
i Rk = gik Ri Rk = Ri Ri = 1,    (12) 

 

which corresponds to the known relationships between the direction coefficients in Euclidian R3 . 

 One regards the bilinear invariant of two direction vectors R and S that relate to the same point 

P in q-space as the cosine of the angle between any line elements that include that point and agree 

with the directions in question.  More briefly: the angle between those two directions or any vectors 

that relate to that point and have the relevant directions: 

 

cos (R, S) = gik R
i Sk = Ri Si = Ri S i = gik Ri Sk .   (13) 

 

 Now, one must keep in mind that it is absurd to speak of the angle between directions that 

relate to different points in q-space.  Thanks to the fact that our fundamental metric form is positive 

definite (which is geometrized by the essentially positive character of kinetic energy), the 

definition (13) always proves to be  1, provided that R and S are actual direction vectors, and as 

such (12) must have the invariant 1.  The angle that was defined will then admit a real 

determination   .  Moreover, it has the all of the proposed elementary geometric meaning, and 

it is constructible in the Euclidian plane.  One draws two line elements from P with the directions 

in question (with arbitrary, but infinitely small lengths), denotes their lengths by  s and  s 

according to (6), and constructs a planar triangle from them, along with the length of the line 

element that connects their endpoints  s that was found before.  The desired angle is opposite 

to  s.  In fact, from (6), one has: 

 s2 = gik  qi  qk, 

(14) 

 s2 = gik  qi  qk, 

 

and up to higher-order infinitesimals, one has: 

 

 s2 = gik ( qi −  qi) ( qk −  qk) =  s2 +  s2 – 2 s  s  gik 
i kq q

s s

 

 

 

 
,  (15) 
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which represents the cosine law in the Euclidian plane for the triangle that we speak of. 

 For the time being, let us call the contravariant direction components Ri themselves (or even 

the covariant ones Ri) of the system of cosines that the direction R defines the “coordinate n-

hedron” at each point, which is distinguished by the choice of coordinates, and along whose edges 

one of the coordinates qi experiences an increase, or also in the other one, namely, the “impulse n-

hedron,” along whose edges the system impulse increases under motion when one assigns a non-

zero mass to one of the impulses pi .  None of these apply. (?)  However, let K be the direction of 

the first edge of the coordinate n-hedron then, so only K1 is non-zero (while all other Ki = 0), and 

(12) [(13), resp.] will then imply that: 

 

g11 (K
1)2 = 1, cos (R, K) = R1 K

1 = 1

11

R

g
,    (16) 

 

while similar things are true for the remaining n – 1 edges. – Things are different when J is the 

direction vector of the first edge of the impulse n-edge, so only J1 will be non-zero (and all other 

Ji = 0).  One will then have: 

g11 (J1)
2 = 1, cos (R, J) = R1 J1 = 1

11

R

g
,    (17) 

 

as well as similar statements for the remaining edges of this n-hedron (1). 

 If cos (R, S) vanishes then the two directions will be mutually perpendicular, in the entirely 

elementary geometric sense, and the auxiliary triangle that was described above will be a right 

triangle.  By the way, that relationship always exists between an arbitrary edge direction of one of 

the two aforementioned n-hedrons and each edge of the other n-hedron (with the single exception 

of the corresponding one). – In order to have perpendicularity, it obviously suffices that one of the 

expressions (13) should vanish for a system of quantities that are proportional to the system of 

components considered.  In particular, we can always replace the contravariant components in it 

with the components dqi of a line element in the direction considered. 

 We now consider just one hypersurface in our q-space that is given by setting a function of the 

n coordinates, which is thought of as an invariant, equal to a constant: 

 

f (q1, …, qn) = const.      (18) 

 

That is: We consider the totality of all system locations whose coordinates satisfy that condition, 

whereby in the case of a change of coordinates, the condition should be replaced with another one, 

in such a way that once more the same physical system positions will be selected (naturally, that 

will happen simply by “recalculating” f in the new coordinates).  Select a point P (= a system 

location) on that surface and consider all line elements (i.e., infinitely-small displacements) that 

 
 (1) On the other hand, this representation should not mislead one to believe that one should not distinguish between 

the “covariant” and “contravariant” direction of a line element!  K and J are totally different directions and are 

distinguished only by a fortuitous choice of coordinates, moreover! 
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start from it and lie in the surface (i.e., lead to system locations on the same distinguished set).  

The components dqi of each of them will then satisfy the relation: 

 

i

i

f
dq

q




= 0,      (19) 

 

so they will be perpendicular to a direction whose covariant components are proportional to f / 

qi .  Conversely, it is known that the ratios of the f / qi are determined uniquely by the totality 

of these relations.  One will refer to the direction thus-defined as the direction of the surface normal 

at P.  The associated direction vector itself (viz., its covariant components) is obtained from the 

partial derivatives by multiplying them by a suitable factor: 

 

Ni =
i

kl

k l

f

q

f f
g

q q





 

 

,          (20) 

so that (12) will be satisfied: 

gik Ni Nk = 1. 

 

 The f / qi themselves define the covariant components of a vector at P, namely, the gradient 

of f .  It is not hard to show that the square root (as its invariant, by which we must divide, in order 

to obtain the direction components) yields the magnitude at P of the steepest ascent of f per unit 

of length of the line element that was found before, which admits its steepest increase in the 

direction N [more precisely, in that one of the two opposite directions that fulfill (20) for a positive 

sign on the square root]. 

 One now arrives at the Hamilton-Jacobi picture from the simple concept of the gradient in the 

most natural way (but in general only as it applies to conservative, holonomic systems) by the 

following convention: 

 If I regard the constant in (18) as a variable parameter then the equation will represent a family 

of surfaces: 

f (q1, …, qn) = C ,     (18) 

 

so the direction of steepest ascent in f at each point of q-space will then be given by an orthogonal 

trajectory of that family.  Its magnitude will be a certain positive function – say  (q1, …, qn) : 

 

ik

i k

f f
g

q q

 

 
= 2 (q1, …, qn) .     (21) 

 

The increase in f along the element ds of such a trajectory is  ds.  That product has the same 

value for all trajectory elements between the neighboring surfaces: 
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f = C ,      f = C + dC , 

 

namely, dC, and that value is smaller than the product  ds, when ds is any line element that 

connects the aforementioned surface non-orthogonally, and thus obliquely.  One simply has that 

ds is greater than the perpendicular surface distance ds at the same zero (that follows from the 

construction of the elementary triangle that was given above).  Therefore, the spatial integral: 

 
1

0

( )

( )

C

C
ds = C1 – C0      (22) 

 

will have the same value on all trajectory arcs that connect the surfaces C0 and C1 , and a smaller 

value than it would have on any other arc that extends between the two surfaces.  In particular, it 

will have a smaller value on the trajectory arc P0 P1 than it has on any other arc that extends 

between those two points. 

 However, that means that the orthogonal trajectories define an extremal field of the spatial 

integral that we speak of.  From (3), there will then be mechanical paths when one says, in 

particular, that: 

 = 2( )E V− ; 

 

i.e., from (21), when one demands of the function f that: 

 

ik

i k

f f
g

q q

 

 
= 2 (E – V) .    (24 [sic])  

 

 As one sees from (9), that is nothing but Hamilton’s partial differential equation [multiplied 

by (2)] in the form that one cares to give it for conservative systems; i.e., when V does not depend 

upon time explicitly. 

 One fulfills the differential equations of the paths that are found – qua trajectories – by setting 

their direction vectors equal to the altitudes, but in covariant form: 

 

ik kdq
g

ds
= i

lm

l m

f

q

f f
g

q q





 

 

, 

or from (24): 

2( ) ik kdq
E V g

ds
−  = 

i

f

q




.     (25) 

 

That is the first law of Jacobi’s relations.  In fact, from (2.3) and (8), one will fulfill it simply with: 
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pi = 
i

f

q




,    (26) 

 

which is valid for motion along these trajectories.  The second law of Jacobi’s relations differs 

from the one that was obtained above only insofar as it represents the equations of the same 

trajectories in integrated form when (25) are the differential equations. 

 If we can do that then we would like to direct our attention to the geometrically intuitive way 

of generating surfaces of the type discussed.  Any arbitrarily-given hypersurface: 

 

 = 0       (27) 

 

can be extended to such a family; at the same time, this implies that every mechanically possible 

path can be regarded as an intermediate term in such a field of trajectories (and indeed in an 

infinitude of ways). 

 Analytically that is not immediately clear, since an arbitrary function f will not satisfy the 

partial differential equation at all, but it is geometrically obvious. 

 It is next clear that when the problem of “extension” is soluble at all, it will be geometrically 

unique.  That is, when the given surface f = 0 can be regarded as an intermediate term in a family: 

 

f = C        (28) 

 

(where f should satisfy the partial differential equation), that family can be geometrically 

established uniquely by the given surface and can be constructed in the following way: 

 The equation indeed requires that the gradient of f should be a given function of position, 

namely, 2( )E V− .  If we then proceed along all surface normals to f = 0 by the infinitely-small 

increment: 

s = 
2( )E V



−
            (29) 

 

(where  is an infinitely-small constant) then the set of all points to which we will arrive will again 

define a surface of the family (28), namely, the surface: 

 

 f = C0 +   

in which: 

 f = C0 

represents the given surface f = 0 . 

 If one performs that process of constructing altitudes and connecting the endpoints to a new 

surface sufficiently often (and indeed on the two “edges” of the f-surface) then one can now derive 

a completely-determined family of surfaces from it in any case that must be represented in the 

form: 

f * = C*     (30) 
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and which must represent the unique solution when our problem admits a solution at all. 

 However, one easily sees that this is the case.  One needs only to put (30) into a form such that 

the value of the parameter C* will be most characteristic of the system of “layers of an onion” that 

was constructed.  On one of the orthogonal trajectories of (30), let: 

 

2( )E V−  s = g (C*) C*. 

 

The same function g (C*) will then once more give the correct connection between the 

perpendicular distance s to the neighboring surface and the parameter variation C*, and on all 

other trajectories, as well.  By construction [cf., (29)], the function that is given by the product on 

the left-hand side is, in fact, constant on each surface.  Now, if the undetermined integral is: 

 

( )
C

g C dC


 

 = h (C*) 

then: 

h (f *) = h (C*) 

 

will represent the same family of surfaces that we defined in (30), etc., in the desired form, since 

now, by proceeding in the direction of the family of surfaces in all of space, one will have: 

 

( )h C

s







 = 2( )E V− , 

and thus: 

( )h f

s







 = 2( )E V− , 

 

and that is all that equation (24) requires. 

 

 We shall now turn to the intuitive proof of the second part of Jacobi’s theorem. 

 Suppose that f = C is a family of surfaces whose geometric character and manner of 

representation satisfy the conditions.  Furthermore, let: 

 

  (q1, …, qn) = const. =       (25) 

 

be a family of surfaces, each of which consists of nothing but orthogonal trajectories of the first 

family.  For sufficiently small  : 

f +   = const.     (26) 

 

will then be a family with the same character as the former one, namely, that f +   satisfies the 

partial differential equation up to quantities of order  , inclusive.  In fact, when it is substituted in 

the equation (we now confine ourselves to a first glance), the terms that are linear in  will, in fact, 

differ as a result of the orthogonality of the two families f and  .  However, the opposite will also 
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take place then.  Had one found a family (26) that likewise satisfied the equation for sufficiently 

small , then at each of their points each of the surfaces (25) would include the altitude to the f-

surface through that point, which would then consist of enough orthogonal trajectories of the f-

family. 

 

___________ 

 


