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On the integration of Hamilton’s differential equation
Note by PAUL STAECKEL, presented by Darboux.

Translated by D. H. Delphenich

In a note that was inserted in Comptes rendus on 9 March 1893, I indicated a class of problems
in dynamics whose differential equations can be solved by quadratures. One will arrive at those
problems by the following consideration, which admits a remarkable generalization:

If one is given a Hamilton differential equation:
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then one must determine a complete solution:
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In order to find equations (H) for which one can perform the integration, make that hypothesis

that the quantities:
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are linear functions of the arbitrary constants a, ..., an :
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In order for the integrability conditions to be fulfilled, it is necessary and sufficient that the
functions:
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should depend upon only the variable gk .
Let Dk, be the determinant that is adjoint to ¢ with respect to the system of n® quantities:
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The equation:
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admits the complete solution:
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The problem in dynamics that corresponds to equation (H") is characterized by the vis viva
equation:

Upon calculating the constants o, ..., an and appealing to the equations:
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one will again get the other n — 1 integrals, which are quadratic in q,, q,, ..., Q; :
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It was by reflecting on such things that | was led to generalize my theorem of 9 March 1893. |
introduced the n systems of variables:
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in place of the n variables qg, ..., g whose total number is:
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r=hi+hs+...+hy.

| then suppose that one can integrate the n equations:
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in which all of the quantities whose first index is k depend upon only the variables whose first
index is k.
Let:
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be the complete solution to equation (Gx). If the integrability conditions have been fulfilled then

the expression:
W=Vi+Vo+..+V,

will be a complete solution to the equation:
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The problem in dynamics that corresponds to equation (G*) is characterized by the vis viva
equation:
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The system of h’ quantities B o, = Beo . (P ok =1,2, ..., hi) is reciprocal to the system of h?
quantities A, _ = A , . Upon calculating the constants ci, ..., an and appealing to the
equations:
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one will again get n — 1 other quadratic integrals:
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That is the true generalization of the known theorem of Liouville, which is a generalization
that will permit one to utilize all of the progress in the integration of Hamilton’s equation in order
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to find some new types of integrable equations, or in other words, to form some new linear
elements whose geodesic lines one can determine.



