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 In a note that was inserted in Comptes rendus on 9 March 1893, I indicated a class of problems 

in dynamics whose differential equations can be solved by quadratures. One will arrive at those 

problems by the following consideration, which admits a remarkable generalization: 

 If one is given a Hamilton differential equation: 
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then one must determine a complete solution: 

 

W = V (q1, …, qn ; 1, …, n) . 

 

 In order to find equations (H) for which one can perform the integration, make that hypothesis 

that the quantities: 

  

2

k

W

q

 
 
 

  (k = 1, 2, …, n) 

 

are linear functions of the arbitrary constants 1, …, n : 
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 In order for the integrability conditions to be fulfilled, it is necessary and sufficient that the 

functions: 

k0 , k1 , …, kn 

 

should depend upon only the variable qk . 

 Let k be the determinant that is adjoint to k with respect to the system of 2n  quantities: 
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The equation: 
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admits the complete solution: 
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 The problem in dynamics that corresponds to equation ( )H   is characterized by the vis viva 

equation: 
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 Upon calculating the constants 2, …, n and appealing to the equations: 
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one will again get the other n – 1 integrals, which are quadratic in 1q , 2q , …, nq : 
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  ( = 2, 3, …, n). 

 

 It was by reflecting on such things that I was led to generalize my theorem of 9 March 1893. I 

introduced the n systems of variables: 
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in place of the n variables q1, …, qn whose total number is: 
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r = h1 + h2 + … + hn . 

 

I then suppose that one can integrate the n equations: 
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in which all of the quantities whose first index is k depend upon only the variables whose first 

index is k. 

 Let: 

V (qk1, …, 
kkhq ; 1, …, n ; k1, …, 

, 1kk h −
) 

 

be the complete solution to equation (Gk). If the integrability conditions have been fulfilled then 

the expression: 

W = V1 + V2 + … + Vn 

 

will be a complete solution to the equation: 
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 The problem in dynamics that corresponds to equation ( )G
 is characterized by the vis viva 

equation: 
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The system of 2

kh  quantities 
k kkB   = 

k kkB   (k, k = 1, 2, …, hk) is reciprocal to the system of 2

kh  

quantities 
k kkA   = 

k kkA   . Upon calculating the constants 1, …, n and appealing to the 

equations: 
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one will again get n – 1 other quadratic integrals: 
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 That is the true generalization of the known theorem of Liouville, which is a generalization 

that will permit one to utilize all of the progress in the integration of Hamilton’s equation in order 
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to find some new types of integrable equations, or in other words, to form some new linear 

elements whose geodesic lines one can determine. 
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