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 All of the manifolds envisioned here are assumed to be compact and differentiable of 
class C∞; any submanifold is assumed to be differentiably embedded of class C∞. 
 
 1. Definitions.  A space Mn+1 of dimension n + 1 is a manifold with boundary Vn if: 
 
 1. The complement Mn+1 – Vn is a (paracompact) open subset of dimension n+1. 
 2. The boundary Vn is a manifold of dimension n. 
 3. At any point x of Vn, there exists a local chart (that is compatible with the given 
differential structures on Mn+1 – Vn and on Vn) in which the image of Mn+1 is a half space 

of Rn+1 that is bounded by an Rn that is the image of Vn. 

 
 If Mn+1 is orientable then the boundary Vn of Mn+1 is likewise orientable, and any 
orientation of Mn+1 canonically induces an orientation on Vn.  One may define that 
induced orientation thanks to the boundary operator in homology: 
 

∂: Hn+1(M
n+1, Vn) → H n(V

n). 
 

 Let Vn be a – not necessarily connected, but orientable and oriented – manifold.  If 
there exists a compact, orientable manifold with boundary Mn+1, with boundary Vn, and if 
Mn+1 may be endowed with an orientation such that ∂Mn+1 = Vn then one says that Vn is a 
bounding manifold.  If one repeats this definition with no condition of orientability for Vn 
or Mn+1 then one says that Vn is a bounding manifold mod 2. 
 For a long time now, it has been known that there exist manifolds that do not bound, 
notably, the ones whose Euler-Poincaré characteristic is odd.  Steenrod, in [2], posed the 
question of giving the necessary and sufficient conditions for such a manifold to be a 
bounding manifold.  We begin this problem by generalizing it as follows: Two orientable 
manifolds Vn, V′ n of the same dimension n are called cobordant if the manifold V′ n − Vn, 
which is the union of V′ n and Vn, when it is endowed with the opposite orientation to the 
given one, is a bounding manifold.  Two manifolds that are cobordant to a third are 
cobordant to each other.  The set of equivalence classes thus defined between oriented 
manifolds of dimension n will be denoted by Ωn .  The union of two manifolds represents 
two classes that define a law of addition on the elements of Ωn that makes it an Abelian 
group (viz., the cobordism group of dimension n).  The null class is the class of bounding 
manifolds.  One verifies that V + (−V) = 0, because V ∪ (−V) is the boundary of the 
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product V × I, where I is the segment [0, 1].  If Vn is cobordant to V′ n, and if Wr is 
another manifold then it is easy to see that the product manifolds Vn × Wr and V′ n × Wr 
are cobordant.  The topological product thus defines a multiplication on the direct sum of 
the Ωn that is anti-commutative and distributive with respect to addition.  One will denote 
the graded ring thus defined by Ω. 
 Likewise, with no condition of orientability, one defines two manifolds to be 
cobordant mod 2, the cobordism group mod 2 Nk, and the ring N that is the direct sum of 

the Nk .  Any element of N is order 2. 

 
 Invariants of cobordism classes. – From a theorem of Pontrjagin [3], all of the 
characteristic numbers of a bounding manifold are null.  (Recall that a characteristic 
number of an oriented manifold is the value that is taken by a characteristic class of 
maximum dimension on the fundamental cycle of the manifold.)  As a result, if two 
manifolds are cobordant then their characteristic numbers are equal.  These numbers are 
as good as the “characters” of the group Ωn (or Nk).  They amount to the characteristic 

Pontrjagin numbers <π(P4r), V4m> that are defined for the oriented manifold of dimension 
≡ 0 mod 4.  In cobordism mod 2, they are the characteristic Stiefel-Whitney numbers 
<π(Wi), V>, which are integers mod 2, the fundamental class <Wn, Vn> giving precisely 
the Euler-Poincaré characteristic reduced mod 2.  Finally, we note that for an oriented 
manifold of dimension 4k the excess τ of the number of positive squares over the 
negative squares of the quadratic form that is defined by the intersection matrix of 2k-
cycles (in real coefficients) is an invariant of the cobordism class.  This results with no 
difficulty from duality theorems for manifolds with boundaries, where the duality at issue 
is Poincaré-Lefschetz. 
 
 
 2.  Classification of submanifolds.  Let 0

kW , 1
kW  be two oriented submanifolds of an 

oriented manifold Vn.  Form the product Vn × I, where I is the segment [0, −1].  If there 
exists a submanifold with boundary Xk+1 that is embedded in Vn × I, and whose boundary, 
which is entirely contained within boundary (Vn, 0) ∪ (Vn, 1) of Vn × I, is composed of 

0
kW , which is embedded in (Vn, 0) and 1

kW , which is embedded in (Vn, 1), then one says 

that 0
kW and 1

kW are L-equivalent.  If W0 and W1 are L-equivalent to the same submanifold 

Y then they are L-equivalent to each other.  This results from the fact that one may 
assume, with no restriction on generality, that the submanifold with boundary Xk+1 meets 
the boundary (Vn, 0) ∪ (Vn, 1) of Vn × I orthogonally (for a Riemannian metric that is 
given in advance).  One will denote the set of L-equivalence classes for oriented 
submanifolds of dimension k by Lk(V) and the set of L-equivalence classes mod 2 for 

oriented submanifolds of dimension k, with no orientability conditions, by Lk(V
n; Z2).  If 

k < n/2 then the representatives of two classes may be assumed to be disjoint, and their 
union defines a law of addition on Lk(V

n) that makes it an Abelian group. (Indeed, here 
again, Wk + (−Wk) is the boundary of Wk × I, which is embedded as a neighborhood of 
Wk.)  Two L-equivalent submanifolds are both cobordant and homologous.  If two 
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submanifolds W, W′ form the boundary in Vn of a submanifold with boundary X that is 
embedded in Vn; they are obviously L-equivalent. 
 It is easy to verify that the characteristic numbers of submanifolds that are defined by 
either starting with characteristic classes of the fiber bundle of normal vectors (normal 
characteristic numbers) or starting with classes of the tangent bundle (tangent 
characteristic numbers) give essentially numerical invariants of the L-equivalence classes. 
 
 Map associated to a submanifold.  One denotes the orthogonal group in k variables 
by O(k) and the subgroup of O(k) that is formed from transformations that preserve the 
orientation (the rotation group) by SO(k).  Gk will denote the Grassmannian of unoriented 

k-planes, and ̂ kG  will denote the Grassmanian of oriented k-planes, which is a covering 

with two sheets.  ASO(k) will denote the universal bundle of k-balls with base ̂ kG  that is 

obtained by associating any k-plane with the unit ball that is contained in it.  ASO(k) is a 
manifold with boundary whose boundary ESO(k) is the universal fiber bundle that is 
fibered into (k−1)-spheres.  Let Φ be the map that is defined by identifying the boundary 
ESO(k) of ASO(k) to a point.  The image space Φ(ASO(k)) will be denoted M(SO(k)).  One has 
analogous definitions for ESO(k), ASO(k), and M(O(k)). 
 Let Wn−k be a submanifold of the manifold Vn, and endow Vn with a Riemannian 
metric.  The set of points that are situated at a geodesic distance from Wn−k that is less 
than E is, for a sufficiently small E > 0, a fiber bundle on Wn−k that is fibered into 

geodesic normal k-balls.  This set N – which is a normal tubular neighborhood of Wn−k in 
Vn − is a manifold with boundary whose boundary T is fibered over Wn−k into spheres 

Sk−1.  Suppose that the manifold Vn is embedded in Euclidian space Rn+m.  At any point x 

of Wn−k, let Hx be the k-plane that is tangent to Vn and normal to Wn−k, and endowed with 
an orientation that is compatible with the given orientations of Vn and Wn−k.  Choose a k-

plane that is parallel to Hx at the origin O of Rn+m.  This defines a map: 

 

g: Wn−k → ˆ
kG . 

 
 Upon associating any normal geodesic at x with its tangent vector at x and the unit 
vector that issues from O and is parallel to it, one defines a map: 
 

G: N → ASO(k) , 
 

where g is the projection of the fibration into k-balls of N and ASO(k) . 
 We form the composed map: 
 

N G→ ASO(k) 
Φ→  M(SO(k)). 

 
 Its restriction to the boundary T of N maps T onto Φ(ESO(k)) = a, a singular point of 
M(SO(k)).  As a result, there exists an obvious prolongation of Φ �  G to any Vn.  It 
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suffices to map any point of the complement Vn – N onto the point a.  The map thus 
obtained: 

f : Vn → M(SO(k)) 
 
is, by definition, the map associated with the submanifold Wn−k.  One remarks that if one 

considers ˆkG  to be embedded in M(SO(k)) (as the image by Φ of the central section of 

ASO(k)) then the reciprocal image f of ˆ
kG  is nothing but the submanifold Wn−k, and the 

map f, when prolonged to tangent vectors, induces an isomorphism of the fiber bundle of 

vectors transverse to Wn−k with the bundle of vectors transverse to ˆ
kG  in M(SO(k)).  One 

may easily show that the homotopy class of the map f depends upon neither the choice of 

Riemannian metric on Vn nor the immersion of Vn in Rn+m.  Conversely, being given a 

map f: Vn → M(SO(k)), there exists an approximation f′ to f such that 1 ˆ( )kf G−′  is a 

submanifold Wn−k of Vn, the prolonged map f′ inducing an isomorphism of the spaces of 
transverse vectors.  Moreover, one may show that if f and g verify these conditions and 

they are two homotopic maps of Vn into M(SO(k)) then the submanifolds Wn−k = 1 ˆ( )kf G− , 

W′ n−k = 1 ˆ( )kg G−  are L-equivalent. (It suffices to conveniently regularize the map of Vn × 

I that defines the homotopy.)  Finally, in any class of maps f : Vn → M(SO(k)) there exists 
an f that may be obtained by the construction that was described above.  Let Ck(V

n) the 
set of maps of Vn into M(SO(k)).  One then proceeds to show that there is a bijective 
correspondence between elements of Ln−k(V

n) and elements of Ck(V
n); the class of 

submanifolds that are L-equivalent to O corresponds to the class of inessential maps.  On 
the other hand, if k > n/2 then Ck(V

n) may be endowed with an Abelian group structure as 
the cohomotopy group.  Indeed, one easily shows that M(SO(k)) is aspherical for 
dimensions < k, in such a way that the classes of maps of a space of dimension < 2k – 1 
into M(SO(k)) may be endowed with an Abelian group structure. 
 One finally obtains: 
 
 Theorem 1.  The set Ln−k(V

n) of L-classes of dimension n−k may be identified with the 
set Ck(V

n) of classes of maps f: Vn → M(SO(k)).  For k > n/2, this identification is an 

isomorphism of Abelian groups Ln−k(V
n) and Ck(V

n).  Likewise, Ln−k(V
n; Z2) is identified 

with the set of classes of maps f: Vn → M(SO(k)). 
 
 
 3.  Maps.  There exists a canonical map J of the set Lk(V

n) into the homology group 
Hk(V

n); for any k > n/2, it is an isomorphism.  The image of J in Hk(V
n) is comprised of 

only those homology classes that are realizable by a submanifold; Theorem 1 allows us to 
resolve that question to a certain degree.  One recovers the essence of these results in (1). 
Here, we shall occupy ourselves with only the kernel of the map J; this kernel is non-
zero, in general.  We meanwhile point out the following special case: The kernel of J is 

zero on Ln−1(V
n), Ln−2(V

n), and Li(V
n), i ≤ 3, and similarly on Ln−1(V

n; Z2).  One deduces, 

for example: 
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 Any oriented submanifold of dimension n−2 that is homologous to 0 in Vn is L-
equivalent to 0.  In particular, it is a manifold with boundary.  We now place ourselves in 
the case where Vn is the sphere Sn.  One obtains: 
 

 Lemma.  If n > 2k + 2 then the groups Lk(S
n) and Lk(S

n; Z2) are identified with the 

cobordism groups Ωk and Nk, respectively. 

 

 This results from the facts that any manifold Vk may be embedded in Rn and that two 

cobordant manifolds in it are L-equivalent. 
 Moreover, as is known, the cohomotopy groups Ck(S

n) are identified with the 
homotopy groups πn(M(SO(k)).  Theorem 1 thus gives:  
 
 Theorem 2.  – The cobordism groups Ωk and Nk are isomorphic to the homotopy 

groups πn+k(M(SO(n)) and πn+k(M(O(n)). 
 
 It then results from this that the homotopy groups πn+k(M(SO(r)) are independent of r 
for k < 2r – 2.  One may, moreover, show directly that these complexes M(SO(k)) and 
M(O(k)), like the sphere and the Eilenberg-MacLane complexes πn+k(M(SO(n)), verify a 
“suspension” theorem. 
 Theorem 2 thus reduces the calculation of the groups Ωk and Nk to that of homotopy 

groups of a space.  This latter problem may be approached by a method that was pointed 
out by H. Cartan and J. P. Serre: Construct a complex that is homotopically equivalent to 
the space that is given by successive fibrations of Eilenberg-MacLane complexes.  The 
method arrives at the complexes M(O(r)); it then collides with some algebraic difficulties 
that I cannot surmount, for the moment, at least, not in the case of complexes M(SO(r)).  
Here are the results: 
 
 
 4.  The ring N.  Up to a dimension 2r, the complex that is homotopically equivalent 

to M(O(r)) is a product Y of Eilenberg-MacLane complexes K(Z2, i) of the form: 

 

Y = K(Z2, i) × (K(Z2, r+2))2 × … × ( )
2( ( , ))d h

xK r h+Z ,  h ≤ r, 

 
where d(h) denotes the number of partitions of the integer h into integers that do not have 
the form 2m – 1. 

 One may show that the generators of the Eilenberg-MacLane space K(Z2, r+h) that 

are factors of Y correspond to certain characteristic classes of the universal fibration AO(k) 
→ Gk′ that is defined as follows: Let the “Stiefel-Whitney polynomial” be defined: 
 

1 + W1 t + W2 t
2 + … + Wr t

r, 
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in which t1, t2, …, ti, … denote the symbolic roots of that polynomial.  The d(h) 
generators in dimension r + h correspond to d(h) characteristic classes that are defined as 
symmetric functions of ti : 

Xω = 1 2
1 2( ) ( ) ( ) maa a

mt t t∑ ⋯ , 

 
where the integers a1, a2, …, am, none of which have the form 2λ – 1, define the d(h) 
possible partitions ω of the integer h. 
 This permits us to show that if f is a map of Sn+h into M(O(n)), when it is regularized 
on Gk in such a fashion that the reciprocal image Wh = f−1(Gk) is a subspace, and that if f 
is not inessential then at least one of the normal characteristic numbers Xω of the 
manifold Wh is non-zero.  This gives: 
 
 Theorem 3. – If the d(h) normal characteristic Stiefel-Whitney numbers that are 
associated with the classes Xω of a manifold Wh are zero then all of the characteristic 
Stiefel-Whitney numbers (both normal and tangent) of Wh are zero, and Wh is a bounding 
manifold mod 2. 
 
 This contains the converse of the theorem of Pontrjagin that was cited above.  From 
that, one may deduce the structure of the ring N. 

 
 Theorem 4. – The ring N of cobordism classes mod 2 is isomorphic to an algebra of 

polynomials over the field Z2 that admits a generator Uk for any dimension k that is not 

of the form 2k – 1. 
 
 For example, the first generators are: 
 

 U2 : the class of the real projective plane RP2, 

 U4 : the class of the real projective space RP4, 

U5 : the class of the manifold of Wu Wen-Tsün, which is a fiber bundle over S1 

whose fiber is the complex projective plane CP2 (Cf. [4]). 

U6 : the class of RP6. 

 
 The groups Ni are: 

 

 N2 = Z2 ,  which is generated by U2 , 

 N2 = 0, 

 N4 = Z2 ⊕ Z2 , with generators U4 and (U2)
2, 

 N5 = Z2 ,  which is generated by U5, 
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 N4 = Z2 ⊕ Z2 ⊕ Z2, with generators U6 , U4 , U2 , and (U2)
3. 

 
 One may take the generator U2 of even dimension to be the class of the real projective 
space U2 .  By contrast, I do not know of the general construction of Ui for odd i. (The 
first unknown one is U11 .) 
 
 
 5.  The ring Ω.  One may determine the complex that is equivalent to M(SO(r)) for 
dimensions r + k, k ≤ 7.  One thus obtains: 
 
 Theorem 5. – The cobordism groups Ωk are, for k ≤ 7: 
 

Ω1 = Ω2 = Ω3 = 0, Ω4 = Z, Ω5 = Z2,  Ω6 = Ω7 = 0. 

 
 Any class of Ω4 is characterized, on the one hand, by the value of the characteristic 
Pontrjagin number P4(V), and on the other hand, by the index τ that was defined in 

paragraph 1.  For the complex projective plane CP2, one has P4(V) = 3 and τ = 1.  

Therefore, the generator Ω4 is the class of CP2 and: 

 
 Theorem 6. – The characteristic Pontrjagin number P4(V) of an oriented manifold of 
dimension 4 is equal to 3τ, where τ is the excess of the number of positive squares over 
that of the negative squares of the quadratic form that is defined by the cup product on 

H2(V4; R) (Cf., [5]). 

 
 It is therefore a topological invariant, just like the class of Ω4, if the same topological 
manifold V4 can be endowed with two non-isomorphic differential structures, while that 
manifold remains cobordant to itself. 
 

 The algebra Ω in rational coefficients. – Let Q be the field of rational numbers.  

Upon applying the C-theory of J. P. Serre [6] to the complex M(SO(r)) (C being a family 
of finite groups) one obtains: 
 

 Theorem 7. – Any of the groups Ωi are finite for i ≡/  0 mod 4.  The algebra Ω ⊕ Q is 

an algebra of polynomials that admits a generator Y4m for any dimension that is divisible 
by 4. 
 

 One may take Y4m to be the class of complex projective space CP2m.  One then 

obtains: 
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 Corollary 8. – For any oriented manifold Vn there exists a non-zero integer N such 
that the multiple manifold is cobordant to a linear combination with integer coefficients 
mi of products of complex projective spaces of even complex dimension.  The integers mi 
are homogeneous linear functions of the characteristic Pontrjagin numbers of the 
manifold N ⋅⋅⋅⋅ Vn. 
 
 In particular, if all of these numbers are zero then there exists an N ≠ 0 such that N ⋅⋅⋅⋅ V 
is a bounding manifold. 
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