"Variétés différentiables cobordant," Colloque Int. du C. N. R. S., v. LII, *Géométrie différentielle*, Strasbourg (1953), pp. 143-149.

Cobordant differentiable manifolds

By R. THOM (Strasbourg)

Translated by D. H. Delphenich

All of the manifolds envisioned here are assumed to be compact and differentiable of class C^{∞} ; any submanifold is assumed to be differentiably embedded of class C^{∞} .

1. Definitions. A space M^{n+1} of dimension n + 1 is a manifold with boundary V^n if:

1. The complement $M^{n+1} - V^n$ is a (paracompact) open subset of dimension n+1.

2. The boundary V^n is a manifold of dimension *n*.

3. At any point x of Vⁿ, there exists a local chart (that is compatible with the given differential structures on $M^{n+1} - V^n$ and on V^n) in which the image of M^{n+1} is a half space of \mathbb{R}^{n+1} that is bounded by an \mathbb{R}^n that is the image of V^n .

If M^{n+1} is orientable then the boundary V^n of M^{n+1} is likewise orientable, and any orientation of M^{n+1} canonically induces an orientation on V^n . One may define that induced orientation thanks to the boundary operator in homology:

$$\partial: H_{n+1}(M^{n+1}, V^n) \to H_n(V^n).$$

Let V^n be a – not necessarily connected, but orientable and *oriented* – manifold. If there exists a compact, orientable manifold with boundary M^{n+1} , with boundary V^n , and if M^{n+1} may be endowed with an orientation such that $\partial M^{n+1} = V^n$ then one says that V^n is a *bounding manifold*. If one repeats this definition with no condition of orientability for V^n or M^{n+1} then one says that V^n is a *bounding manifold mod* 2.

For a long time now, it has been known that there exist manifolds that do not bound, notably, the ones whose Euler-Poincaré characteristic is odd. Steenrod, in [2], posed the question of giving the necessary and sufficient conditions for such a manifold to be a bounding manifold. We begin this problem by generalizing it as follows: Two *orientable* manifolds V^n , V'^n of the same dimension *n* are called *cobordant* if the manifold $V'^n - V^n$, which is the union of V'^n and V^n , when it is endowed with the opposite orientation to the given one, is a *bounding manifold*. Two manifolds that are cobordant to a third are cobordant to each other. The set of equivalence classes thus defined between oriented manifolds of dimension *n* will be denoted by Ω_n . The union of two manifolds represents two classes that define a law of addition on the elements of Ω_n that makes it an Abelian group (viz., the *cobordism group of dimension n*). The null class is the class of bounding manifolds. One verifies that V + (-V) = 0, because $V \cup (-V)$ is the boundary of the product $V \times I$, where *I* is the segment [0, 1]. If V^n is cobordant to V'^n , and if W^r is another manifold then it is easy to see that the product manifolds $V^n \times W^r$ and $V'^n \times W^r$ are *cobordant*. The topological product thus defines a multiplication on the direct sum of the Ω_n that is anti-commutative and distributive with respect to addition. One will denote the graded ring thus defined by Ω .

Likewise, with no condition of orientability, one defines two manifolds to be cobordant mod 2, the cobordism group mod 2 \mathfrak{N}_k , and the ring \mathfrak{N} that is the direct sum of the \mathfrak{N}_k . Any element of \mathfrak{N} is order 2.

Invariants of cobordism classes. – From a theorem of Pontrjagin [3], all of the characteristic numbers of a bounding manifold are null. (Recall that a characteristic number of an oriented manifold is the value that is taken by a characteristic class of maximum dimension on the fundamental cycle of the manifold.) As a result, if two manifolds are cobordant then their characteristic numbers are equal. These numbers are as good as the "characters" of the group Ω_n (or \mathfrak{N}_k). They amount to the *characteristic Pontrjagin numbers* $\langle \pi(P^{4r}), V^{4m} \rangle$ that are defined for the oriented manifold of dimension $\equiv 0 \mod 4$. In cobordism mod 2, they are the characteristic Stiefel-Whitney numbers $\langle \pi(W^i), V \rangle$, which are integers mod 2, the fundamental class $\langle W^n, V^n \rangle$ giving precisely the Euler-Poincaré characteristic reduced mod 2. Finally, we note that for an oriented manifold of dimension 4k the excess τ of the number of positive squares over the negative squares of the quadratic form that is defined by the intersection matrix of 2k-cycles (in real coefficients) *is an invariant of the cobordism class*. This results with no difficulty from duality theorems for manifolds with boundaries, where the duality at issue is Poincaré-Lefschetz.

2. Classification of submanifolds. Let W_0^k , W_1^k be two oriented submanifolds of an oriented manifold V^n . Form the product $V^n \times I$, where I is the segment [0, -1]. If there exists a submanifold with boundary X^{k+1} that is embedded in $V^n \times I$, and whose boundary, which is entirely contained within boundary $(V^n, 0) \cup (V^n, 1)$ of $V^n \times I$, is composed of W_0^k , which is embedded in $(V^n, 0)$ and W_1^k , which is embedded in $(V^n, 1)$, then one says that W_0^k and W_1^k are *L*-equivalent. If W_0 and W_1 are *L*-equivalent to the same submanifold *Y* then they are *L*-equivalent to each other. This results from the fact that one may assume, with no restriction on generality, that the submanifold with boundary X^{k+1} meets the boundary $(V^n, 0) \cup (V^n, 1)$ of $V^n \times I$ orthogonally (for a Riemannian metric that is given in advance). One will denote the set of *L*-equivalence classes for oriented submanifolds of dimension k, with no orientability conditions, by $L_k(V^n; \mathbb{Z}_2)$. If k < n/2 then the representatives of two classes may be assumed to be disjoint, and their

union defines a law of addition on $L_k(V^n)$ that makes it an Abelian group. (Indeed, here again, $W^k + (-W^k)$ is the boundary of $W^k \times I$, which is embedded as a neighborhood of W^k .) Two *L*-equivalent submanifolds are both *cobordant* and *homologous*. If two

submanifolds W, W' form the boundary in V^n of a submanifold with boundary X that is embedded in V^n ; they are obviously L-equivalent.

It is easy to verify that the characteristic numbers of submanifolds that are defined by either starting with characteristic classes of the fiber bundle of normal vectors (*normal* characteristic numbers) or starting with classes of the tangent bundle (*tangent* characteristic numbers) give essentially numerical invariants of the *L*-equivalence classes.

Map associated to a submanifold. One denotes the orthogonal group in k variables by O(k) and the subgroup of O(k) that is formed from transformations that preserve the orientation (the rotation group) by SO(k). G_k will denote the Grassmannian of unoriented k-planes, and \hat{G}_k will denote the Grassmanian of oriented k-planes, which is a covering with two sheets. $A_{SO(k)}$ will denote the universal bundle of k-balls with base \hat{G}_k that is obtained by associating any k-plane with the unit ball that is contained in it. $A_{SO(k)}$ is a manifold with boundary whose boundary $E_{SO(k)}$ is the universal fiber bundle that is fibered into (k-1)-spheres. Let Φ be the map that is defined by identifying the boundary $E_{SO(k)}$ of $A_{SO(k)}$ to a point. The image space $\Phi(A_{SO(k)})$ will be denoted M(SO(k)). One has analogous definitions for $E_{SO(k)}$, $A_{SO(k)}$, and M(O(k)).

Let W^{n-k} be a submanifold of the manifold V^n , and endow V^n with a Riemannian metric. The set of points that are situated at a geodesic distance from W^{n-k} that is less than \mathcal{E} is, for a sufficiently small $\mathcal{E} > 0$, a fiber bundle on W^{n-k} that is fibered into geodesic normal k-balls. This set N – which is a normal tubular neighborhood of W^{n-k} in V^n – is a manifold with boundary whose boundary T is fibered over W^{n-k} into spheres S^{k-1} . Suppose that the manifold V^n is embedded in Euclidian space \mathbb{R}^{n+m} . At any point xof W^{n-k} , let H_x be the k-plane that is tangent to V^n and normal to W^{n-k} , and endowed with an orientation that is compatible with the given orientations of V^n and W^{n-k} . Choose a kplane that is parallel to H_x at the origin O of \mathbb{R}^{n+m} . This defines a map:

$$g: W^{n-k} \to \hat{G}_k$$

Upon associating any normal geodesic at x with its tangent vector at x and the unit vector that issues from O and is parallel to it, one defines a map:

$$G: N \to A_{SO(k)}$$
,

where g is the projection of the fibration into k-balls of N and $A_{SO(k)}$.

We form the composed map:

$$N \xrightarrow{G} A_{SO(k)} \xrightarrow{\Phi} M(SO(k))$$

Its restriction to the boundary T of N maps T onto $\Phi(E_{SO(k)}) = a$, a singular point of M(SO(k)). As a result, there exists an obvious prolongation of $\Phi \circ G$ to any V^n . It

suffices to map any point of the complement $V^n - N$ onto the point *a*. The map thus obtained:

$$f: V^n \to M(SO(k))$$

is, by definition, the map associated with the submanifold W^{n-k} . One remarks that if one considers \hat{G}_k to be embedded in M(SO(k)) (as the image by Φ of the central section of $A_{SO(k)}$) then the reciprocal image f of \hat{G}_k is nothing but the submanifold W^{n-k} , and the map f, when prolonged to tangent vectors, induces an isomorphism of the fiber bundle of vectors transverse to W^{n-k} with the bundle of vectors transverse to \hat{G}_k in M(SO(k)). One may easily show that the *homotopy class* of the map f depends upon neither the choice of Riemannian metric on V^n nor the immersion of V^n in \mathbb{R}^{n+m} . Conversely, being given a map f: $V^n \to M(SO(k))$, there exists an approximation f' to f such that $f'^{-1}(\hat{G}_k)$ is a submanifold W^{n-k} of V^n , the prolonged map f' inducing an isomorphism of the spaces of transverse vectors. Moreover, one may show that if f and g verify these conditions and they are two *homotopic* maps of V^n into M(SO(k)) then the submanifolds $W^{n-k} = f^{-1}(\hat{G}_k)$, $W'^{n-k} = g^{-1}(\hat{G}_k)$ are L-equivalent. (It suffices to conveniently regularize the map of $V'' \times$ *I* that defines the homotopy.) Finally, in any class of maps $f: V^n \to M(SO(k))$ there exists an f that may be obtained by the construction that was described above. Let $C_k(V^n)$ the set of maps of V^n into M(SO(k)). One then proceeds to show that there is a bijective correspondence between elements of $L_{n-k}(V^n)$ and elements of $C_k(V^n)$; the class of submanifolds that are L-equivalent to O corresponds to the class of inessential maps. On the other hand, if k > n/2 then $C_k(V^n)$ may be endowed with an Abelian group structure as the cohomotopy group. Indeed, one easily shows that M(SO(k)) is aspherical for dimensions < k, in such a way that the classes of maps of a space of dimension < 2k - 1into M(SO(k)) may be endowed with an Abelian group structure.

One finally obtains:

Theorem 1. The set $L_{n-k}(V^n)$ of L-classes of dimension n-k may be identified with the set $C_k(V^n)$ of classes of maps $f: V^n \to M(SO(k))$. For k > n/2, this identification is an isomorphism of Abelian groups $L_{n-k}(V^n)$ and $C_k(V^n)$. Likewise, $L_{n-k}(V^n; \mathbb{Z}_2)$ is identified with the set of classes of maps $f: V^n \to M(SO(k))$.

3. Maps. There exists a canonical map *J* of the set $L_k(V^n)$ into the homology group $H_k(V^n)$; for any k > n/2, it is an isomorphism. The image of *J* in $H_k(V^n)$ is comprised of only those homology classes that are realizable by a submanifold; Theorem 1 allows us to resolve that question to a certain degree. One recovers the essence of these results in (1). Here, we shall occupy ourselves with only the kernel of the map *J*; this kernel is non-zero, in general. We meanwhile point out the following special case: The kernel of *J* is zero on $L_{n-1}(V^n)$, $L_{n-2}(V^n)$, and $L_i(V^n)$, $i \le 3$, and similarly on $L_{n-1}(V^n; \mathbb{Z}_2)$. One deduces, for example:

Any oriented submanifold of dimension n-2 that is homologous to 0 in V^n is *L*-equivalent to 0. In particular, it is a manifold with boundary. We now place ourselves in the case where V^n is the sphere S^n . One obtains:

Lemma. If n > 2k + 2 then the groups $L_k(S^n)$ and $L_k(S^n; \mathbb{Z}_2)$ are identified with the cobordism groups Ω_k and \mathfrak{N}_k , respectively.

This results from the facts that any manifold V^k may be embedded in \mathbb{R}^n and that two cobordant manifolds in it are *L*-equivalent.

Moreover, as is known, the cohomotopy groups $C_k(S^n)$ are identified with the homotopy groups $\pi_n(M(SO(k)))$. Theorem 1 thus gives:

Theorem 2. – The cobordism groups Ω_k and \mathfrak{N}_k are isomorphic to the homotopy groups $\pi_{n+k}(M(SO(n)))$ and $\pi_{n+k}(M(O(n)))$.

It then results from this that the homotopy groups $\pi_{n+k}(M(SO(r)))$ are independent of r for k < 2r - 2. One may, moreover, show directly that these complexes M(SO(k)) and M(O(k)), like the sphere and the Eilenberg-MacLane complexes $\pi_{n+k}(M(SO(n)))$, verify a "suspension" theorem.

Theorem 2 thus reduces the calculation of the groups Ω_k and \mathfrak{N}_k to that of homotopy groups of a space. This latter problem may be approached by a method that was pointed out by H. Cartan and J. P. Serre: Construct a complex that is homotopically equivalent to the space that is given by successive fibrations of Eilenberg-MacLane complexes. The method arrives at the complexes M(O(r)); it then collides with some algebraic difficulties that I cannot surmount, for the moment, at least, not in the case of complexes M(SO(r)). Here are the results:

4. The ring \mathfrak{N} . Up to a dimension 2r, the complex that is homotopically equivalent to M(O(r)) is a product *Y* of Eilenberg-MacLane complexes $K(\mathbb{Z}_2, i)$ of the form:

$$Y = K(\mathbb{Z}_2, i) \times (K(\mathbb{Z}_2, r+2))^2 \times \ldots \times (K(\mathbb{Z}_2, r+h))_r^{d(h)}, \qquad h \le r,$$

where d(h) denotes the number of partitions of the integer *h* into integers that do not have the form $2^m - 1$.

One may show that the generators of the Eilenberg-MacLane space $K(\mathbb{Z}_2, r+h)$ that are factors of *Y* correspond to certain characteristic classes of the universal fibration $A_{O(k)}$ $\rightarrow G_{k'}$ that is defined as follows: Let the "Stiefel-Whitney polynomial" be defined:

$$1 + W_1 t + W_2 t^2 + \ldots + W_r t^r$$
,

in which $t_1, t_2, ..., t_i, ...$ denote the symbolic roots of that polynomial. The d(h) generators in dimension r + h correspond to d(h) characteristic classes that are defined as symmetric functions of t_i :

$$X_{\omega} = \sum (t_1)^{a_1} (t_2)^{a_2} \cdots (t_m)^{a_m} ,$$

where the integers $a_1, a_2, ..., a_m$, none of which have the form $2\lambda - 1$, define the d(h) possible partitions ω of the integer h.

This permits us to show that if f is a map of S^{n+h} into M(O(n)), when it is regularized on G_k in such a fashion that the reciprocal image $W^h = f^{-1}(G_k)$ is a subspace, and that if f is not inessential then at least one of the normal characteristic numbers X_{ω} of the manifold W^h is non-zero. This gives:

Theorem 3. – If the d(h) normal characteristic Stiefel-Whitney numbers that are associated with the classes X_{ω} of a manifold W^h are zero then all of the characteristic Stiefel-Whitney numbers (both normal and tangent) of W^h are zero, and W^h is a bounding manifold mod 2.

This contains the converse of the theorem of Pontrjagin that was cited above. From that, one may deduce the structure of the ring \mathfrak{N} .

Theorem 4. – The ring \mathfrak{N} of cobordism classes mod 2 is isomorphic to an algebra of polynomials over the field \mathbb{Z}_2 that admits a generator U_k for any dimension k that is not of the form $2^k - 1$.

For example, the first generators are:

- U_2 : the class of the real projective plane $\mathbb{R}P^2$,
- U_4 : the class of the real projective space \mathbb{RP}^4 ,
- U_5 : the class of the manifold of Wu Wen-Tsün, which is a fiber bundle over S^1 whose fiber is the complex projective plane \mathbb{CP}^2 (Cf. [4]).
- U_6 : the class of $\mathbb{R}P^6$.

The groups \mathfrak{N}_i are:

 $\mathfrak{N}_2 = \mathbb{Z}_2$, which is generated by U_2 , $\mathfrak{N}_2 = 0$, $\mathfrak{N}_4 = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, with generators U_4 and $(U_2)^2$, $\mathfrak{N}_5 = \mathbb{Z}_2$, which is generated by U_5 , $\mathfrak{N}_4 = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, with generators U_6 , U_4 , U_2 , and $(U_2)^3$.

One may take the generator U_2 of even dimension to be the class of the real projective space U_2 . By contrast, I do not know of the general construction of U_i for odd *i*. (The first unknown one is U_{11} .)

5. The ring Ω . One may determine the complex that is equivalent to M(SO(r)) for dimensions r + k, $k \le 7$. One thus obtains:

Theorem 5. – *The cobordism groups* Ω_k *are, for* $k \leq 7$:

 $\Omega_1 = \Omega_2 = \Omega_3 = 0, \qquad \Omega_4 = \mathbb{Z}, \qquad \Omega_5 = \mathbb{Z}_2, \qquad \Omega_6 = \Omega_7 = 0.$

Any class of Ω_4 is characterized, on the one hand, by the value of the characteristic Pontrjagin number $P^4(V)$, and on the other hand, by the index τ that was defined in paragraph 1. For the complex projective plane \mathbb{CP}^2 , one has $P^4(V) = 3$ and $\tau = 1$. Therefore, the generator Ω_4 is the class of \mathbb{CP}^2 and:

Theorem 6. – The characteristic Pontrjagin number $P^4(V)$ of an oriented manifold of dimension 4 is equal to 3τ , where τ is the excess of the number of positive squares over that of the negative squares of the quadratic form that is defined by the cup product on $H^2(V^4; \mathbb{R})$ (Cf., [5]).

It is therefore a topological invariant, just like the class of Ω^4 , if the same topological manifold V^4 can be endowed with two non-isomorphic differential structures, while that manifold remains cobordant to itself.

The algebra Ω in rational coefficients. – Let \mathbb{Q} be the field of rational numbers. Upon applying the *C*-theory of J. P. Serre [6] to the complex M(SO(r)) (*C* being a family of finite groups) one obtains:

Theorem 7. – Any of the groups Ω_i are finite for $i \neq 0 \mod 4$. The algebra $\Omega \oplus \mathbb{Q}$ is an algebra of polynomials that admits a generator Y_{4m} for any dimension that is divisible by 4.

One may take Y_{4m} to be the class of complex projective space $\mathbb{C}P^{2m}$. One then obtains:

Corollary 8. – For any oriented manifold V^n there exists a non-zero integer N such that the multiple manifold is cobordant to a linear combination with integer coefficients m_i of products of complex projective spaces of even complex dimension. The integers m_i are homogeneous linear functions of the characteristic Pontrjagin numbers of the manifold $N \cdot V^n$.

In particular, if all of these numbers are zero then there exists an $N \neq 0$ such that $N \cdot V$ is a bounding manifold.

Bibliography

- [1] "Sous-variétés et classes d'homologie des variétés différentielles," C. R. Paris **236** (1953) pp. 453 and 573.
- [2] S. EILENBERG, "Problems in Topology," Ann. of Math. **50** (1945), pp. 247-60.
- [3] L. PONTRJAGIN, Math. Sbornik, **21**, 63a, pp. 233-84 (1947), th. 3.
- [4] W. WU, C. R. Paris **230**, pp. 508-511.
- [5] S. A. ROKHLIN, Doklady **81** (1951), pp. 355, and **84**, no. 2 (1952), pp. 221.
- [6] J. P. SERRE, "Groupes d'homotopie et classes de groupes abéliens," to appear in Ann. of Math.