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Ever since the classic works of M. Morse, the study of the singularities of a numerical 
function on a manifold has been the object of a great amount of research.  It seems to me 
that theorem 4 of the article (cf. [4]) by M. Morse is subject to generalization.  More 
generally, I was led to consider the singularities of a map f: nℝ → pℝ  and, more 
generally, of a map from a manifold Vn to a manifold Mp.  In that regard, the definition 
itself of the singularities of a map, as well as their classification, pose very delicate 
problems that will be addressed in Chap. I.  In Chap. II, one treats “generic” singularities, 
i.e., singularities that appear for “almost all” maps  f: nℝ → pℝ .  To that end, I have used 
the technique that was developed in an earlier article [8]; one thus obtains precise 
information on the generic dimensions of the critical sets; here, a largely unrecognized 
phenomenon is brought to light: for a generic map nℝ → pℝ  where p < n, the reduction 
in dimension of relates only to a regular point of the map.  The map preserves the 
dimension of the critical set.  Chapter 3 contains the description of the generic 
singularities for low dimensional target spaces, as well as several existence theorems for 
critical manifolds.  Chapter IV addresses – but does not solve – the question of the 
stability of generic maps; here, one also finds a list of unsolved problems that are 
nevertheless quite worthy of interest.  Finally, the last chapter treats the homological 
properties of critical sets; one may see that the outline of a generalization of Morse 
theory, but I will not pretend to its completeness: Only the theory of characteristic classes 
was used here, although one may imagine using a homological theory like that of Leray, 
or an even finer theory like that of the Ljusternik-Schnirelmann “category.”  However, 
the scope is so vast and hitherto devoid of applications that it is difficult to state anything 
but generalities. 
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FIRST CHAPTER 
 

Here, one considers differentiable maps of class Cr from the Euclidean space nℝ to the 
Euclidean space pℝ ; one assumes that f(0) = 0.  Conforming to the terminology of C. 
Ehresmann, nℝ will be called the source space and pℝ  will be called the target space.  In 
general, n will be taken to be ≥ p, and the class r of the map f will be assumed to greater 
than the larger of the numbers n, p (1). 
 Let x be a point of nℝ , and let k be the rank of the map f at x; it is convenient to 
introduce the two differences: 
 
 q = n – k, which one calls the “corank at the source” of x, 
  r = p – k,  “ “      “corank at the target” of x. 
 
 One lets Sk denote the set of points ofnℝ at which the corank r has the value k 

(strictly); it is clear that Sk+1 belongs to the adherence of Sk, in such a way thatkS  

constitutes the set of points where the corank r is ≥ k.  In particular, S0 (if n ≥ p) 
constitutes the set of regular points of f; it is an open set ofnℝ . 

 In the target spacepℝ , one considers the image sets Yk = )( kSf ; one calls Y1 = )( 1Sf  

the set of critical values; one knows that if the map f is of class Cm, where m ≥ n – p + 1, 
then this set has measure zero in pℝ [6].  The complement pℝ – Y1 is the set of regular 
values. 
 For an arbitrary differentiable map, the singularities and the topological structure of 
the sets Sk (and, a fortiori, Yk) may define a pathological manifold.  One nevertheless 
obtains a structure that is already much simpler if one confines oneself to considering 
only “generic” maps.  The precise definition of a generic map is very delicate; for the 
moment, we say only that any map may be approached by a generic map (up to an 
approximation on the derivatives of order r), and that any map that is sufficiently close to 
a generic map, in the preceding sense, is itself generic. 
 To any map  f: nℝ → pℝ , we associate its graph G(f) in the product space n p+ℝ .  Let 
y = f(x) be the image of a point x of nℝ .  At the point (x, y) the graph G(f) admits a 
tangent n–plane Tx. The correspondence x → Tx defines a mapf of nℝ  into the 

Grassmannian p
nG  of n-planes through O in n p+ℝ ; the mapf goes by the name of the 

derived map for the map f. 
 While always assuming (to fix ideas) that n ≥ p, we let Fr denote the pseudo-manifold 
of p

nG  that is composed of the n-planes that intersect thenℝ plane y = 0 along a linear 

subspace of dimension (n – p + r). 
 The Fr are Schubert cycles inp

nG , and their Schubert symbol is (for the definition, 

see, for example, [3] or [11]): 

                                                
 1 Ultimately, when one says “maps” or “manifolds,” one always means maps or manifolds that are 
differentiable to whatever class is necessary.  Any connected component of a manifold is assumed to be 
paracompact (a denumerable union of compacta). 
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The dimension of Fr is therefore: 
 

(p – r)(n – p + r) + p(p – r) = (p – r)(n + r), 
 
and its codimension in p

nG (which is a manifold of dimension np) is np – (np – rn +rp – 

r2) = r(n – p + r).  As we verify, these cycles (mod 2) Fr play an important role in the 
determination of the critical sets Sr; we must also specify their topological nature.  At an 
ordinary point, Fr is a manifold; the singular points of Fr are the ones that belong to 1+rF .  
It is interesting to specify the nature of the immersion of Fr+1 into Fr. 
 Let u be an ordinary point of Fr+1; this n-plane in p

nG  may be generated by n 

orthogonal vectors, of which (n – p + r + 1) are in nℝ (y = 0), in which they generate a 
plane Y and (p – r – 1) generate a subspace Z that is orthogonal to Y.  A neighborhood of 
u in Fr that is normal in Fr+1 is composed of the n-planes such that (n – p + r) of the 
generating vectors are in the plane Y and (p – r – 1) generate Z.  What remains is an nth 
vector V, which is to be determined, that must be in pℝ  and orthogonal to Z; as a result, 
its locus is a linear space of dimension p – (p – r – 1) = r + 1.  From this, it results that the 
normal neighborhood of Fr in Fr+1 is fibered into Euclidean spaces 1r +ℝ  over the set 

n p r− +ℝ , which is contained in 1n p r− + +ℝ , and thus in a sphere Sn−p+r; this neighborhood is 
therefore a fiber of the form Sn−p+r×Sr×ℝ , a fiber that is trivial, at least homologically.  
From this, it results that Fr+1 is embedded in Fr not as a submanifold, but only as a locus 
of singular points. 
 
 Analytical determination of a normal neighborhood of Fr in p

nG . 

 

Let xi (i =  1, 2, …, n) be coordinates in Rn and let yj (j = 1, 2, …, p) be coordinates in pℝ .  

An n-plane of p
nG  is defined by a system of p linear equations of the form: 

 

∑=
i i

i
jj xay . 

 
 Suppose that this plane belongs to Fr; this says that the matrixija  has rank at least (p –

r).  If it is an ordinary point of Fr, moreover, then the matrix ija  has rank strictly (p – r).  

Suppose that the minor M that is formed from the first (p – r) rows and the first (p – r) 
columns is different from zero.  There is a complementary rectangle T in the matrix that 
is formed from the last p rows and the last (n – p + r) columns.  We associate an element 
of the rectangle T to the minor M and, upon completing M with the row and column that 
intersect this element, form a minor of order (p – r + 1).  We thus obtain r(n – p + r) 
minors of order (p – r + 1).  Upon annulling these minors, one thus writes a system of 
local equations for Fr in p

nG . 
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This remark is useful for the practical determination of Fr in the neighborhood of one of 
its ordinary points.  Similarly, one may obtain the normal neighborhood of Fr in Fr+1 by 
writing the quadratic relations between the minors of order (p – r + 1) that appear when 
the minors of order (p – r + 2) are all null. 
 
 The homology of the cycles Fr . – For r > 1, each of the pseudo-manifolds Fr have a 
fundamental cycle mod 2.  Indeed, it is more practical to use the cohomology classes that 
correspond to them by Poincaré-Veblen duality; this is why F1 corresponds to the Stiefel-
Whitney class Wn−p+1.  In a general fashion, the classes that are dual to the Fr are 
polynomials in the classes Wi that one calculates explicitly, thanks to the multiplication 
formulas between Schubert cocycles that were given by S. Chern [1].  Note that for n – p 
= 2(k – 1), the class that is dual to F2 is defined to have integer coefficients; it is none 
other than the Pontrjagin class P4k (cf. Wu [11]).  It will be interesting to know the 
cohomological expression with integer coefficients of the classes that are dual to the F2k, 
which are defined to have integer coefficients when (n – p) is even. 
 
 Critical sets and cycles Fr . – If the rank at a point x of nℝ  is reduced to p – r then 
the tangent plane to the corresponding point (x, y) on the graph G(f) is projected onto pℝ  
along a (p – r)-plane; i.e., the kernel of that projection, which is the intersection of the 
plane with nℝ , has dimension n – p + r; therefore, the tangent plane to G(f) at (x, y) 
belongs to the cycle Fr , and conversely.  If one reverts to the definition of the map f , 
which is the derived map to f, then one sees that the critical sets Sr are the inverse images 
under f of the cycles Fr of the Grassmannian. 
 
 DEFINITION. – A critical point x of Sr will be called transversally critical, or, 
furthermore, generic, if the tangent planes to ( )nf ℝ  and Fr are in general position at the 

point )(xf  of the Grassmannian, which is assumed to be ordinary on Fr .   
 
 In chapter II, we will show that any map f may be approached by a map g for which 
all of the points of Sr are generic.  If this hypothesis is realized then the critical sets Sr are 
true submanifolds of nℝ  of codimension r(n – p + r). 
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 Moreover, Sr+1, which is situated in the adherence of Sr, admits a normal 
neighborhood that is homeomorphic to the cone over the product Sr×Sn−p+r, which is 
described in the local immersion of Fr+1 into Fr . 
 
 

Ordinary critical points and exceptional points. 
 
Now consider the map f restricted to Sr, which takes Sr to the image set Yr.  A question 
presents itself: Does this map have maximal rank, in general? 
 The response is affirmative, by reason of dimension; indeed, the generic dimension of 
Sr is n – r(n – p + r), which is less than p – r whenever r ≥ 1.  Now, any tangent plane to 
Sr is situated in a tangent n-plane to G(f), which is a point of Fr whose projection onto  

pℝ  has dimension p – r; the projection of the tangent plane onto Sr is therefore carried 
out with preservation of the dimension, generically.  Such a point will be called “ordinary 
(generic) critical point.” 
 On the contrary, if the tangent to Sr at the point x of Sr is mapped onto pℝ  by f with 
reduction of the rank then one will say that x is an “exceptional” critical point.  In order 
to comprehend the origin of these exceptional points it is convenient to refer to the 
preceding method and define them by intersections; let m be the dimension of Sr, and let 
q be the dimension of the cycle Fr.  Fr may be considered to be the base space of a fiber 
bundle H, namely, the set of m-planes that are contained in the n-planes that define Fr (m 
< n); as a result, the fiber is the Grassmannian mn

mG − .  In each fiber, one may consider the 

set rF ′ of m-planes that project onto the p r−ℝ  that is the intersection of pℝ and the n-

plane, with a corankr ′ ; the set of rF ′  is obviously invariant under the operation of the 

structure group for the fiber bundle H in such a way that the set of rF ′ comprises a certain 
cycle Zr in H.  The cycle Zr is, moreover, a true submanifold of H at its ordinary points.  
Now, in the base space Fr of H one has a manifold )( rSf of dimension m.  Upon 
associating any point of that manifold with its tangent m-plane one defines a section of 
the fiber bundle H over the manifold f(Sr); the points of intersection between this section 
and the cycles Zr constitute the exceptional critical points upon projecting onto the base 
space Zr .  Therefore, on each manifold Sr there exists a submanifold (without 
singularities, generically) Zr on which f (restricted to Sr) presents a “corank at the target” 
equal tor ′ ; under the map f: Sr → Yr the image f(Zr) is, in general, a locus of singularities 
for Yr; this fact was pointed out for the first time by F. Roger [5].  The set of critical 
values presents singularities in the target space.  As one verifies, these singularities are 
stable, i.e., they persists under a small deformation of the map; they have a special, non-
generic, character, moreover.  In order to understand this phenomenon, the simplest 
example is that of the apparent contour of a surface that is projected onto a coordinate 
plane.  One knows that such an apparent contour presents points of regression, in general 
(example: the apparent contour of a torus when viewed very obliquely with respect to its 
axis); one verifies that these points of regression are stable.  Nevertheless, when 
considered as a singularity of the projection of a curve onto the plane, the point of 
regression is an unstable singularity. 
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 In order to arrive at a complete description of a map, it is now necessary to consider 
the manifolds Zr of exceptional points.  When we iterate the argument made above one 
verifies that these critical manifolds present submanifolds rW ′′  on which the rank of f 

(restricted to rZ ′ ) is reduced byr ′′ units, etc.  One thus defines “super-exceptional” critical 
points.  Nevertheless, by reason of dimension, one is sure that this process stops, 
generically or not; indeed, if p ≤ n then one may not have super-exceptional points of 
order > p.  One ultimately subdivides the source space into a union of manifolds (without 
singularities, generically) Xi such that the restriction of f to each Xi has maximum rank. 
 We conclude with several remarks on the subject of exceptional critical manifolds.  
We first specify the order of the partial derivatives of the map f that intervenes.  In the 
determination of the ordinary critical manifolds Sr only the mapf is involved, i.e., the 

first order derivatives; in the determination of the rZ ′ ⊂ Sr the tangent plane to ( )nf ℝ   is 
involved, hence, the second order derivatives; in the determination of the super-
exceptional manifolds rW ′′ , the third derivatives, etc.  Moreover, it is interesting to give 
an idea – which will be only intuitive – of the genesis of the singularities in the critical 
values that are images of the exceptional critical manifolds.  One obtains them by the 
notion of “ventilating” a singularity by displacing the target space.  We explain: suppose 
that we are given a map  f: nℝ → pℝ  that is critical at O; suppose, moreover, that the 
target space pℝ  moves in p m+ℝ , and that this (n-parameter) motion is defined by a map 
g: nℝ → m

pG  into the Grassmannian of p-planes in p m+ℝ .  Upon assuming that the target 

space pℝ  is carried along by the motion that is defined by g, one defines a map F: nℝ  → 
p m+ℝ , and at O the image F( nℝ ) presents the ventilated singularity of the initial 

singularity of f: nℝ  → pℝ .  Example: n = p = m = 1.  The map f: 1ℝ  → 1ℝ  will be 
defined by u = t2; suppose that the target-line 1ℝ  moves in the plane 2ℝ , and let θ be its 
polar angle with respect to a fixed direction.  Suppose that the map g is defined by θ = at. 
The “ventilated” singularity will then be defined in 2ℝ  by the equations: 
 
    x = t2 cos at = t2 + … 
    y = t2 sin at = t2 + …, 
 
which defines a regression precisely. 
 The images of the exceptional and super-exceptional critical points present 
singularities that are all susceptible to this mode of generation.  In the important 
particular case of the critical points of S1, Z1, etc., under ventilation, the singularities give 
singularities of the type mℝ → mℝ ; hence, the importance of this type of map. 
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CHAPTER II 
 

One lets L( nℝ , pℝ ; r) denote the set of differentiable maps of class r (r ≥ Sup n, p) of 
nℝ  into pℝ , endowed with the topology that is defined by the chart on the partial 

derivatives of order ≤ r over any compactum; under these conditions, L( nℝ , pℝ ; r) is a 
complete metric space, and therefore a Baire space.  A property (P) of maps f: 

nℝ → pℝ that are defined locally at any point of the source space will be called generic if 
the set of f that possess property (P) is a rare closed set (closed without interior point), at 
least at a point of a compactum K of nℝ defined in L( nℝ , pℝ ; r). 
 
DEFINITION. – A map  f: nℝ → pℝ  will be called “generic at the source” if: 
 
1) The derived mapf of nℝ  into the Grassmannian p

nG  is t-regular (in general 

position) over the Schubert cycles Fr of p
nG ; 

2) The section that is defined by a new derivation in the fiber H over each critical 
manifold Sr = f−1(Fr) intersects the cyclerZ ′  t-regularly. 

 
 The exceptional critical manifoldsrZ ′  are then without singularities.  One postulates 
that the sections (in an appropriate fiber of the Grassmannian) that define the super-
exceptional critical manifolds rW ′  in rZ ′ are themselves t-regular on the appropriate cycle, 
and so on. 
 It is clear that the set of functions f: nℝ → pℝ  that are generic at the source define an 
open subset of L( nℝ , pℝ ; r).  Indeed, from theorem I.5 of [8], the property of general 
position (more exactly, of t-regularity) is preserved under a sufficiently small 
deformation (by approximation of the derivatives); the critical manifolds Sr, rZ ′ , rW ′  
remain mutually isotopic. 
 (Note that in theorem I.5 of [8], one assumes that the deformation is valid when it is 
composed with a homeomorphism of the target space; this is not a useful restriction here, 
and the theorem is valid under any deformation in L( nℝ , pℝ ; r).) 
 It remains to be proved − and this is more delicate − that any map f may be arbitrarily 
approached by a map that is “generic at the source.”  We shall first prove the property for 
“ordinary” critical manifolds Sr, and then present the proof for exceptional critical 
manifolds, later on.  The principle of the proof is the following: Let f be the given map; 
assume that the critical set Sr of f is non-vacuous, unless Sr is vacuous for any sufficiently 
close map, and the property is proved.  Therefore, cover Sr by a number (finite or infinite, 
but in the latter case, denumerable, because of paracompactness) of compacta Kj .  Let Mj 
denote the set of maps in L( nℝ , pℝ ; r) that are not t-regular (after derivation) on the 
Schubert cycle Fr for at least one point of the compactum Kj; it is easy to see that Mj is 
closed in L.  One must show that in a neighborhood of f that is assumed to belong to Mj 
there are points that do not belong to Mj .  One knows that since the rank is strictly equal 
to (p – r) on Sr, one may find a system of (p – r) functions u1, u2, …, up-r  in a 
neighborhood of any point x of Sr that are coordinate functions in the target spacepℝ , 
and which one may take for coordinate functions in nℝ .  Under these conditions, in a 
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neighborhood of any x ∈ Sr there is a chart in which nℝ has the coordinates (u1, u2, …, up-

r, up-r+1, …, xn) and pℝ  has the coordinates (u1, u2, …, up-r, yp-r+1, …, yp), and in which 
the map f is represented by the equations: 
 

yp−r+j = hj(uk, xp−r+m),  j = 1, 2, …, r – 1. 
 

 The set Sr is then defined by the relations
k

i

x

y

∂
∂

= 0.  One assumes that Sr is covered by 

an atlas of such charts, and that the compacta Kj are sufficiently small that they are each 
contained in a chart.  One considers the set of maps, g, that are sufficiently close to f that 
they admit the same atlas of distinguished charts as f; it is obviously a Baire space X.  
One then shows that for any map f there exists an approximation g whose restriction to Kj 
is, after derivation, t-regular on the cycle Fr . The deformation of f into g happens as 
follows: for the map f one projects the graph G(f) into the target space parallel to the 
source space nℝ ; one obtains g by projecting G(f) along a direction that is slightly 
oblique with respect to the initial direction; analytically, in the associated chart, this 
amounts to replacing the functions y with functionsy′ such that: j j j iy y m x′ ′= +∑ , in 

which the coefficients jm′  are assumed to be small.  The deformation f → g is therefore 

defined only on the open subset U of the associated chart.  It is nevertheless clear that one 
may prolong the deformation of f into g to the exterior of U; this results from classical 
theorems of Whitney on the prolongation of differentiable maps [9].  One may likewise 
suppose that this deformation reduces to the identity outside of a neighborhood V that 
contains U; in the planar case, the figure above gives us a satisfactory idea in spirit with 
being imbued with excessive formalism. 

 

U 
V 

 
 This being the case, the graph of the map g in U admits a tangent plane at any point 
(xi) that is defined by the system of equations: 
 

ui = ui:   ,p r j p r j
p r j k p r i

k ik p r i

y y
dy du dx

u x
− + − +

− + − +
− +

′ ′∂ ∂
′ = +

′∂ ∂∑ ∑  

namely: 

j j i
p r j k j p r i

k ik p r i

h h
dy du m dx

u x− + − +
− +

 ∂ ∂
′ = + +  ∂ ∂ 

∑ ∑ . 
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 The set Sr for the map g is therefore defined by the equations: j i
j

p r i

h
m

x − +

∂
+

∂
= 0, which 

amounts to looking at the inverse image of Fr by the derived mapg  if one remarks that 
minors relative to the square (ui = ui) form a system of transverse coordinates for the 
Schubert cycle Fr . 

 The map G: nℝ  → ( )r n p r− +ℝ  that is defined by the equations ji
j

p r i

h
m

x − +

∂
= −

∂
 admits 

regular values that are close as one wants to the origin.  If ( )i
jm denote the coordinates of 

such a value then this signifies that the corresponding map g is t-regular, when derived, 
on the Schubert cycle Fr that one would like to obtain precisely.  We therefore see that 
the subspaces Mj in the Baire space X are rare; therefore, their union is meager in X, and 
admits no interior point.  This shows that in any neighborhood of any f there are g that are 
t-regular on Fr after derivation, and this confirms the stated generic property.  We shall 
elaborate on several consequences of this result. 
 
 THEOREM 1. – Any map f: nℝ → pℝ  may be approached arbitrarily closely 
(relative to the partial derivatives of order ≤ r) by a map g whose derived map g  is t-

regular on the Schubert cycles Fr; as a result, the points of nℝ where g has corank at the 
target strictly r define true submanifolds Sr . 
 
 The codimension of Sr in nℝ  is equal to r(n – p + r). 
 
 COROLLARY. – If n < r(n – p + r) then the set Sr is “generically” vacuous. 
 
 If n ≥ p, moreover, then this shows that for n < r2 there is no stable singularity of 
corank at the target ≥ r.  Examples of this are: 
 
 Stable critical points of corank 2. – These appear only for n = p = 4 (maps 

4ℝ → 4ℝ ); by contrast, the maps 5ℝ  → 4ℝ do not admit stable critical points of corank 
2. 
 The first case of a critical point of corank 3 appears for the maps 9ℝ → 9ℝ , and the 

first case of a critical point of corank r appears for maps 
2rℝ → 

2rℝ .  In chapter III we 
verify that these singularities essentially exist and that they are “generic” (stable under 
any small deformation). 
 The formula that gives the codimension of Sr is itself valid for p < n.  One may 
remark that if r is the corank at the target then n – p + r is the corank at the source; one 
therefore has the very mnemonic formula: 
 
 THEOREM 2. – The generic codimension of the critical set of a map is equal to the 
product of the corank at the source with the corank at the target. 
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 From this, one deduces a very curious consequence concerning how the dimensions 
of the critical sets Sr compare for the maps nℝ → n k−ℝ and nℝ → n k+ℝ .  For each of 
these cases, the formula gives: 
 
 for nℝ  → n k−ℝ , codimension of  rS ′ = r(k + r), 

for nℝ  → n k+ℝ , codimension of  r kS + = (k + r)r. 

 
 For example, for n = 2, k = 1 the critical sets of the maps 2ℝ → 1ℝ  and 2ℝ  → 3ℝ  
have the same dimension, namely zero.  In the first case, one has the critical points of a 
function, and in the second case, the cuspoidal points of an immersion of 2ℝ  into 3ℝ . 
 By way of example, we give a table below of the dimensions of the critical manifolds 
of a map 5ℝ  → nℝ ; r always denotes the corank at the target and – denotes a strictly 
negative dimension, hence, the set is generically void. 
 

r =  | 0 1 2 3 4 5 
______________________________________ 
n = 1 |  5 0 _ _ _ _ 
n = 2 |  5 1 _ _ _ _ 
n = 3 |  5 2 _ _ _ _ 
n = 4 |  5 3 _ _ _ _ 
n = 5 |  5 4 1 _ _ _ 
n = 6 |  _ 5 3 _ _ _ 
n = 7 |  _ _ 5 2 _ _ 
n = 8 |  _ _ _ 5 1 _ 
n = 9 |  _ _ _ _ 5 0 
n = 10 |  _ _ _ _ _ 5 

 
 The symmetry therefore exhibits a curious phenomenon that we may call “Whitney 
duality.”  We return to this later on in the context of the global properties of critical sets.  
In a more general fashion, one notes that if n is fixed then it is for p = n that the maps 

nℝ → pℝ  present the greatest diversity from the standpoint of critical sets and corank. 
 
 Remarks on the topological structure of the critical set. 
 
The set of points of a map f where the corank at the target is ≥ r is nothing but the 

adherencerS ; rS obviously contains Sr+1.  Since Sr+1 is the inverse image of the Schubert 

cycle Fr+1 under the derived mapf , which t-regular on Fr+1, one deduces that the normal 
neighborhood of Sr+1 in Sr is homeomorphic to a neighborhood of Fr+1 in Fr; e.g., recall 
the cone over the product of the spheres Sn−p+r×Sr at a generic point.  From this, it results 

that the closed set rS  is not, in general, a true submanifold (unless 1rS +  is generically 

vacuous); rS  is nevertheless a pseudo-manifold (for r ≥ 1), in such a way that one may 
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speak of the fundamental cycle of rS ; this cycle has integer coefficients if the pseudo-

manifold rS  is orientable, modulo 2, in general. 

 
 The exceptional critical singularities. 
 
We shall describe the logic in the most banal case of an exceptional critical point, viz., a 
point of S1 at which the restriction of f has corank (at the source) equal to 1.  In a 
neighborhood U of such a point (as at any generic point of S1) there exists a system of 
coordinates (u1, u2, …, up-1, xp, …, xn) in which the map f is expressed by the equations: 
 

Ui = ui;  y = ϕ(uj, xi) + …, 
 
where ϕ is a quadratic form that is not identically null (indeed, the hypothesis of t-
regularity of ϕ on F1 implies that ϕ is non-null).  The critical set S1 is defined in U by the 

equations: 
i

y

x

∂
∂

= 0, i = p, p + 1, …, n, and its tangent plane at the point (xi, uj) is defined 

by: 
2 2

0j k
j ji j r k

y y
x u

x x x u

∂ ∂+ =
∂ ∂ ∂ ∂∑ ∑ . 

 
This plane is therefore defined in the product 1p n− ×ℝ ℝ  by the matrix: 
 

2 2

1 0

1
0

1

0 1

i j

i

i i k i j

u x

U

y y y

x x u x x

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

. 

 
(One does not include the row that pertains to y, since this row is a linear combination of 
the preceding ones on S1.) 
 With these conditions, the exceptional critical manifold Z1 is defined in nℝ  by the 
nullity of the determinant: 

D = 
2

i j

y

x x

∂
∂ ∂

. 

 
In fact, D may be considered as a coordinate that is transverse to the cycle Z in H (where 
Z is defined by D = 0 in H).  Suppose that the image of a neighborhood of 0 in S1 under 
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the (twice) derived map in H is all integers in the neighborhood of a generic point z∈Z; 
this must say that on the proposed neighborhood the map f when restricted to S1, has rank 
at least (p – 2), or, furthermore, that on the proposed (possibly restricted) neighborhood, 
one may find a minor of the matrix M of order (p – 2) that is not annulled in that 
neighborhood.  Suppose (to fix ideas) that it is the relative minor of the first element (1st 

row, 1st column) of the matrix M =
2

i j

y

x x

∂
∂ ∂

, namely, Q1(x, u) for this minor.  We then 

deform the map f into g, where g is defined on the neighborhood considered by the 
equations: Ui = ui; Y = y + a(xp)

2.  The value D(g) of the determinant D, for the map f will 
be: D(g) = D(f) + 2aQ1(x, u). 
 The relation D(g) = 0 may be written a = − 1/2D(f) / Q1(x, u).  In the neighborhood of 
0 considered, this relation defines a map of S1 onto 1

R .  Take a regular value a = c of this 
function for a, which is sufficiently close to 0 as one prefers.  The map of S1 into H that is 
associated with g and defined by Y = y + 2

pcx  is therefore t-regular on the cycle Z because 

the transverse coordinate D has maximum rank on S1. 
 As in the case of the addition of linear functions, one shows that for a sufficiently 
small c the deformation of f into g may be prolonged by a deformation that reduces to the 
identity outside a sufficiently large neighborhood. 
 It remains to show that any map f is of rank ≥ p – 2 “almost everywhere” on S1; 
indeed, if all of the minors of order p – 2 are null in a neighborhood of 0 then one may 
first suppose that at least one of the minors of order p – 3 is non-null in a − possibly 
restricted − neighborhood.  With these conditions, by adding a conveniently chosen 
quadratic form at x to y, one may obtain that the rank is everywhere ≥ p – 2 on this 
neighborhood, except possibly on the points of a submanifold, and so on for the lesser 
ranks.  The proof is completed, as before, by “combining the pieces.”  It is nevertheless 
important to say that this does not generalize without difficulty to exceptional critical 
manifolds of corank at the source > 1.  Indeed, as we shall verify at the end of chapter 3, 
when one forms the intersection with a cycle Fr of a Grassmannian that defines the 
exceptional manifold, one is led to consider the coefficients of a matrix T.  In general, 
these coefficients contain second derivatives of the map f; now, due to the “integrability” 

relations 
2 2f f

x y y x

∂ ∂=
∂ ∂ ∂ ∂

 it is possible that the rank of this matrix is reduced.  Nevertheless, 

due to the linear character of these relations, the image space is a linear subspace of the 
space of vectors that are transverse to Fr, in such a way that one again speak of the t-
regular map as Fr, considered as embedded in this image linear subspace.  In particular, it 
results from this that the codimension of an exceptional critical manifold generally 
smaller than the one that is given by the formula of theorem 2.  (See the example at the 
end of chapter 3.)  With this restriction, the principle of the last proof remains valid. 
 
 Case of the super-exceptional critical manifolds. 
 
In the case of a super-exceptional manifold of order k, one is led to consider a flag 
manifold of order k (i.e., a system of k-planes that are each contained in the following 
one), and a subset H in such a manifold that is defined by conditions on the dimension of 
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the projection onto the factor pℝ , and finally, a certain cycle Z in the submanifold H. In a 
neighborhood of a generic point of Z, the immersion of Z into H is isomorphic to that of a 
Schubert cycle in a Grassmannian, in such a way that in a neighborhood of such a point, a 
system of normal coordinates of Z in H may be given by the r(n – p + r) minors that 
appear in a matrix.  What appear in the rows of this matrix are the coefficients of the 
tangent plane to the critical manifold of order (k –1) that one maps into H.  These 
coefficients linearly contain the derivatives of order k of the map f. 
 In an associated local chart, one will be led to add homogenous forms of degree k at x 
to the variables y by taking their variable coefficients to be the ones that appear, after 
derivation, in the r(n – p + r) minors that give the local equations of Z in H.  Here again, 
one chooses the values of these coefficients so that the map obtained in H is t-regular on 
the cycle Z, possibly taking into account linear relations between the coefficients that 

give us the integrability relations
2 2f f

x y y x

∂ ∂=
∂ ∂ ∂ ∂

.  The previous combination of the pieces 

then applies without other modifications.  I envision returning to this point in a later 
publication. 
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CHAPTER III 
 

GENERIC FORM OF SINGULARITIES 
FOR LOW DIMENSIONS 

 
Here, we will be occupied with the singularities that are presented by generic maps of nℝ  
into pℝ when p is small. 
 
 1.  p = 1.  Singularities of a function. – Let f: nℝ → 1ℝ  be a function and let G(f) be 
its graph in 1n+ℝ .  One considers the derived map of nℝ into 1

nG .  The Schubert cycle F1 

reduces to a point of 1nG  (the horizontal n-plane).  A system of normal coordinates for F1 

is given by the coefficients of the equation for the tangent plane, hence, by the partial 

derivatives 
i

f

x

∂
∂

.  From theorem 2, for an f that is generic at the source the critical set S1 

reduces to a certain number of points.  At each of these points, the derivatives 
i

f

x

∂
∂

are 

linear forms in the local coordinates, and, as a result of the regularity of F1 these linear 
forms are independent.  This says that the local development of f about each critical point 
begins with a non-degenerate quadratic form.  Therefore: 
 
 THEOREM 3. – Any differentiable function on nℝ  may be approached as close as 
one wants (as well as its partial derivatives up to an arbitrary large, but finite, order), by 
a function g whose only singularities are non-degenerate quadratic critical points. 
 
 [Cf. M. Morse, The Calculus of Variations in the Large.  Colloque, Publ. XVIII, pp. 
178, th. 8.7.] 
 
 2.  p = 2.  Singularities of a map into the plane. – There exists only one non-
vacuous generic critical set; its dimension is 1, and, since S2 is vacuous, it is a true 
submanifold (a curve in nℝ ).  There are exceptional critical points that are defined as 
S1(S1).  It is easy to see the corresponding singularity in the target plane; it is obtained by 
“ventilating” the singularity 1ℝ  → 1ℝ , which is defined by u = t2.  As we saw in chapter 
I, when it is composed with a map of degree 1 of1ℝ  into 1

1G  = S1 it gives a regression of 

ordinary type.  One easily obtains the local equations of the singularities.  One may give 
nℝ  a system of local coordinates of the form nℝ (u, x2, xn) → nℝ (u, v) in which v is a 

quadratic form ϕ in u and xi.   The critical curve in nℝ  is defined by 
i

v

x

∂
∂

 = 0, and its 

tangent vector at 0 is defined by 
ix

ϕ∂
∂

= 0.  In the present case, where the rank of the form 

ϕ(0, xi) is reduced, one may assume that v admits a development that begins with: 
 

v = ux1 +
2
3x + … + (xn)

2, 
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and the critical curve is then locally parameterized by the variable x2.  Its image under the 
map is composed of u =(x2)

2  by a “ventilation” of the angle kx2.   If we set x2 = t then 
this gives u = t2, v = kt3 + …, for the image of the critical curve.  Moreover, one directly 
recovers this result by writing the term in (x2)

3 of the development of v.  In the case 
2ℝ  → 2ℝ , the singularity is represented by the equation: z = x3 – xy, in which f sends the 

plane (x, y) onto the plane (y, z).  We shall return to this in a more general case, 
moreover. 
 
 3.  p = 3. – Here again, one has only one critical set S1 on S1 that is a true surface; one 
has exceptional curves S1(S1) and super-exceptional points S1(S1(S1))).  In the target 
space, the exceptional curves have images that are curves of regression of surface of 
critical values.  In general, a map 2ℝ  → 3ℝ  presents points of corank at the target equal 
to 2; they are cuspoidal points.  Here we see that the critical value surface does not, in 
general, present cuspoidal points.  Therefore, a critical value set presents stable 
singularities other than the generic singularities, and, moreover, certain generic 
singularities for the dimensions considered may not present themselves.  The local 
equations for the map 3ℝ  → 3ℝ  in the neighborhood of a super-exceptional point that is 
taken to be the origin may be written in the form: 
 

X = x,  Y = y,  Z = zy + z2x – z4. 
 

 The critical surface is defined by 
Z

z

∂
∂

= y + z2x – 4z3 = 0, and its image in the XY-

plane, which is defined by the parametric representation in x at z: X = x, Y = −2zx + 4z3, 
presents a singularity in the form of an exceptional critical point 2ℝ → 3ℝ .  The third 
coordinate: 

Z = z(−2zx + 4z3) + z3x – z4 = −z2x + 3z4, 
 
defines the “ventilation” of this singularity in 3ℝ . 
 For the sake of completeness, we also mention the generic singularity of a map 

2ℝ → 3ℝ .  It amounts to the set S2, which is composed of isolated points.  In a 
neighborhood of such a point, the map is represented by the equations: x = u, y = uv, z = 
v2; it amounts to the classical cuspoidal point of a surface.  One knows that such a point is 
the extremity of a curve segment of the self-intersection u = 0 whose image is the z-axis.  
The manifold of self-intersection therefore presents a singularity of corank 1 at this point. 
 
 4.  p = 4. – The case 3ℝ → 4ℝ presents a unique singularity, which is an S2 that is a 
curve of cuspoidal points (topological product of the singularity 3ℝ  → 4ℝ with ℝ .); this 
curve may, moreover, itself present exceptional critical points that may give rise to 
regressions. 
 The interesting case is presented by the maps 4ℝ → 4ℝ ; S1 is then composed of a 3-
dimensional manifold that may itself present exceptional and super-exceptional critical 
manifolds that one may easily specify.  However, one has, moreover, an S2 that is 
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composed of isolated points that are singular points for1S .  A system of local equations 

in the neighborhood of a point of S2 is given by: 
 

x = u,  y = v,  z = w2 + t2, Z = uw + vt. 
 
 Indeed, if one forms the coefficient matrix of the tangent plane to the graph then one 
finds: 

1 0 0

0 1

0

w t

u v

 
 
 
 
 
 

 

 
and, as a result, the derived mapf  is regular on the Schubert cycle F2 with the normal 
coordinates of F2 given by the elements of the lower right-hand submatrix. 
 For the maps 5ℝ → 4ℝ , S2 is vacuous; likewise for nℝ → 4ℝ , n > 5.  We conclude 
these particular considerations and begin the study of general singularities. 
 
 Critical manifolds Sr.  Local generic form.  Existence. 
 
Up to the present, we have not shown the actual existence of non-vacuous critical 
submanifolds Sr when their generic codimension allows this; i.e., when n ≥ r(n – p + r).  
Their existence is not obvious; indeed, if we are given a map g: nℝ → p

nG  then it is, in 

general, impossible to “integrate” this map, i.e., to find a map f: nℝ → pℝ  such that g is 
its derivative.  g must satisfy integrability conditions that are expressed, for example, by 
the symmetry of certain coefficients.  This is why the existence of a map f whose 
derivativef  is t-regular on the Schubert cycle Fr necessitates a proof.  If we are given a 

system (u1, u2, …, up-r, xp-r+1, …, xn) of coordinates in nℝ  then we consider the map into 
pℝ  with coordinates (U1, U2, …, Up−r, Yp−r+1, …, Yp) that is defined by the equations: 

 
Um = um, m = 1, 2, …, p – r;  
Yp−r+1 =

2
1( )p r

i

x − +∑ ; 

   Yp−r+2 = U1 xp−r+1 + U2 xp−r+2 + … + Un−p xn ; 
   Yp−r+3 = Un−p+r+ I xp-r+1 + Un−p+r+ 2 xp−r+2 + … 
 
and so on, until we have exhausted all of the variables Ui.   However, this may not 
happen because there are (p – r) variables Uj, and one disposes of (r – 1) quadratic forms 
Yp-r+j, j > 1, which each contain (n – p + r) coefficients, and one has: (p – r) > (r – p + r) 
of them such that n > r(n – p + r), as one initially assumed. 

 The critical set Sr of the map f is then a plane defined by the linear forms:p r j

n p r k

Y

x
− +

− − +

∂
∂

= 

0, forms that are r(n – p + r) in number.  If one specifies these forms at xj and uk then one 
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confirms that the set of these forms at uk and xj has maximum rank, which is equal to r(n 
– p + r).  From this, one deduces that the derived map f  is t-regular on the Schubert 
cycle Fr . 
 Therefore, all of the critical sets Sr with a non-negative generic dimension are 
essentially presented, and may be realized by algebraic maps that are expressed locally 
thanks to the quadratic forms.  It remains to be known – and this is a problem that we 
defer – whether any generic point of Sr admits a local chart in which the map f has the 
form above.  We treat the problem only in the case of the generic points of S1. 
 
 Case of points of corank at the target equal to 1 (n ≥ p) (cf. [5]). 
 
At such a point, there exists a local chart (u1, up−1, x) in which the map into pℝ (U1, U2, 
…, Up−1, y) takes the form: Uj = uj, j = 1, 2, …, p – 1; y = ϕ(u, xp−1+i) + …, in which ϕ is 
a quadratic form in u and x; by a change of variables that is a homeomorphism of the 
source space tangent to the identity at 0, one may assume that y is reduced to the just the 
quadratic form ϕ, and that the terms of higher order have disappeared [4].  Moreover, one 
may add an arbitrary quadratic form in the (ui) to y.  This amounts to performing a 
homeomorphism of the target space pℝ  that is tangent to the identity at the origin.  The 
condition of t-regularity of the derived map f  may be expressed by the fact that the (n – 

p + 1) linear forms
n p i

y

x − +

∂
∂

are linearly independent.  Therefore, the rank of the form ϕ(uj, 

x) may not be (generically) reduced by more than (n – p + 1).  By subtracting an arbitrary 
quadratic form in ui the reduced form ϕ(0, xi) that is obtained for ui = 0 has rank at least n 
– 2(p – 1). 
 It is clear that the index of the quadratic form restricted to the plane u = 0, ϕ(0, xi) is 
an invariant.  One may interpret this in the following manner: suppose that the point x = 0 
is an ordinary critical point.  The mapf  has maximum rank on the critical manifold at x, 
and, as a result, at y = f(x), the image of the critical manifold is a regularly embedded (p – 
1)-dimensional submanifold of pℝ .  Consider a line 1

R , which is transverse to that 
manifold at y and let Q be its inverse image under f.  In general, it is a submanifold Y and 
the restriction of f to Y defines a function f:Y → 1

R .  The index of this function, which 
presents a critical point at x in Y, is the index of the form ϕ(0, y).  One calls this the 
“ transverse index” of the indicated point x. 
 If one wants to analytically express the condition for a critical point to not be 

exceptional, then one must express that the mapfɺ  on the tangent plane to S1 has 

maximum rank, therefore its kernel is null.  Now, in the space of vectors tangent to nℝ at 

O, fɺ has a kernel composed of the (n – p + 1)-plane u1 = u2 = … = up-1 = 0, and the 

tangent plane to S1, which is defined by 
j

y

x

∂
∂

= 0, is nothing but the plane that is conjugate 

to the kernel of f with respect to the cone of second degree that is defined by ϕ(u, x) = 0.  
Now, a plane and its conjugate may admit a common line only if the plane is tangent to 
the cone along this line.  This amounts to saying that the hyperquadric that is defined 
projectively by the equation ϕ(0, x) = 0 admits a double point.  The exceptional critical 
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points are therefore characterized by the fact that the quadric ϕ(0, xi) = 0 presents 
multiple points.  On the contrary, at a generic point, this quadric has no singularity, and 
conversely. 
 Thus, it is easy to determine the topological structure at a point that is not exceptional 
whose corank at the target is equal to 1.  Indeed, one may assume that the variables ui 
(therefore Ui) are chosen in such a fashion that the tangent plane to the critical manifold 
in the target space pℝ is defined by Y = 0.  This imposes the condition that the tangent 
plane to S1 at O must be the plane that is defined by xn−p+i = 0.  Under these conditions, Y 
takes the form: 

Y = ( )( )i
j j ia x x∑ , 

in which the terms in uixj are zero. 
 One then sees that the singularity is nothing but the topological product of the map Y: 

1n p− +ℝ → 1ℝ  that presents a critical point at the origin with a space, (that of the ui = Ui). 
 
 Generic exceptional critical points. 
 
Let O be such a point.  At the point O the critical manifold S1 admits a tangent (p – 1)- 
plane, which one assumes to be parameterized by the coordinates u1, u2, …, up-2, v.  One 
supposes that the functions ui are chosen in such a fashion that they have total rank (p – 

2) on this tangent plane, and the kernel of the prolonged map fɺ  is the line ui = 0 
parameterized by the function, v.  Under these conditions, the restricted map f on S1 may 
be defined by the formulas: 
 

Ui = ui,  i = 1, 2, …, p – 2; V = 3v2. 
 
We complete the system of coordinates of nℝ  with: 
 

(u1, u2, …, up-2, w, v, xp+1, …, xn), 
 
and those of pℝ with (U1, U2, …, Up−2, W, Y).  One then embeds S1 into nℝ  by setting: w 
= V = 3v2, and since the map f: nℝ → pℝ  is defined by Ui = ui, W = w, Y will begin with 
a quadratic form in (ui, v, xj).  However, the critical set S1 is then defined by the 

equations
i

Y

x

∂
∂

 = 0, 
Y

v

∂
∂

= 0.  Since this set must be identified with S1, which is defined by 

xj = 0, and w – 3v2 = 0, one sees that Y = wv – v3 + 2( )jx∑ , in which 2( )jx∑ is a 

quadratic form of rank strictly n – p.  In this reduced form, one sees that the singularity is 
the product of the singularity 2n p− +ℝ → 2ℝ  that is associated with a regression point of 
the apparent contour curve with a space2p−ℝ (that of the ui = Ui). 
 One easily verifies that the transversal index on that reduced form at an ordinary 
critical point that is close to an exceptional point varies by a unit when this point 
traverses the manifold of exceptional points. 
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 Several results on the exceptional singularities. 
 
The explicit description of “all” the generic singularities of the differentiable maps 
obviously appears to be a quasi-chimerical task.  On this subject, one may at least pose 
the prejudicial question of their existence.  One has already seen that all of the critical 
manifolds Sr of corank at the target r exist when the dimensional conditions of theorem 2 
are satisfied.  In turn, one may demand that the same be true for the exceptional 
singularities.  The response is affirmative when one is dealing with super-exceptional 
singularities of finite order k, provided that the k singularities are “banal,” i.e., of corank 
1.  It is negative, in general, for singularities of corank greater than 1.  We show: 
 
 The existence of super-exceptional singularities of arbitrary order such that all of the 
components of the singularity are of corank (at the target) equal to 1. 
 
 This amounts to constructing a map f: nℝ → pℝ such that if Sj+1 denotes the critical 
manifold of Sj (which is assumed to pass through the origin O) then the point O is a 
critical point of corank at the target equal to 1, generically, for all restrictions f|Sj, j = 1, 2, 
k – 1, and proceeding by recurrence on k.  We assume known a map g: 1p−ℝ → 1p−ℝ  such 
that O is a critical point of corank 1 for all the successive critical manifolds (which are k 
– 1 in number).  Since the map f is of corank 1, one assumes that one may find (p – 2) 
functions u1, up, …, up-1 that are preserved by the map.  Upon completing these functions 
ui with a (p – 1)th function v one obtains a system of coordinates in the source space in 
which the map f into 1p−ℝ with coordinates (U1, Up−2, W) is expressed by the equations: Ui 
= ui, W = h(ui, v); h is a polynomial of degree k.  One then immerses the source space 

1p−ℝ  into a space nℝ  of coordinates (ui, w, v, xn-p+1, …, xn) by setting: xn-p+1 = 0; w = 
h(ui, v).  One then sets: 

Y = wv − 2

0
( , ) ( )

v

i n p jh u v dv x− ++∑∫ .    (P) 

 
One immediately verifies that the map F: 
 

nℝ (ui, w, v, xn-p+j) → pℝ (Ui, W, Y) 
 
is defined by the equations: Ui = ui, i = 1, 2, …, p – 2; W = w; Y = the polynomial (P) that 
answers to the desired conditions.  One sees that the polynomial that serves to define Y is 
then of degree k + 1.  Indeed, in the case of S1 (k = 1), it suffices to define Y as a 
quadratic form. 
 
 Inexistence (in general) of an exceptional singularity of corank 2. 
 
Consider a map f: nℝ → 5ℝ , n ≥ 5.  The critical manifold S1 is of dimension 4.  At each 
point x ∈ S1 the plane that is tangent to S1 is mapped into 5ℝ  with a rank equal to 4.  One 
may thus see whether the manifold S1 presents exceptional singularities of type S2(S1) of 
corank 2, which will thus be isolated points.  For n = 5, it is obvious that such a 
singularity is impossible.  Indeed, at a generic point of S1, the kernel of the map f has 
dimension 1 in the space of tangent vectors (corank 1).  As a result, an 1ℝ  may not be 
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mapped onto an 2ℝ  by f.  For n = 6, this argument is no longer valid.  Take a system of 
coordinates u, v, x, y, z, t in 6ℝ such that the 4 functions u, v, x, y define a map of 
maximum rank on 4ℝ .  Then take a system of coordinates (U, V, X, Y, Z) in 5ℝ  such that 

U = u, V = v, X = x, Y = y.  The critical set S1 is then defined by the equations 
Z

z

∂
∂

= 0 and 

Z

t

∂
∂

= 0.  The tangent plane must contain the kernel of f; one may suppose that it is the 

plane u = v = 0.  One obtains this situation by setting: 
 

Z = uz + vt + g(u, v, x, y, z, t), 
 
 in which g contains terms of at least third order.  A parametric representation of S1 in 6ℝ  

is given by the 4 variables (x, y, z, t) and the equations: ux =
g

x

∂−
∂

, v =
g

t

∂−
∂

.  As a result, 

the tangent plane to S1 at the point (x, y, z, t) will be defined by the matrix: 
 

2 2 2 2

2

2 2 2 2

2

| 1 0 0 0

| 0 1 0 0

|

|

x y z t

X

Y

g g g g
U

z x z y z tz

g g g g
V

t x t y t z t

 
 
 
 
 

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂∂
 
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂  

. 

 
 The intersection of the image of S1 under the twice-derived map with the Schubert 

cycle F2 ⊂ 2
2G  will thus be defined by the equations: 

2

2

g

z

∂
∂

 = 
2g

z t

∂
∂ ∂

 = 
2

2

g

t

∂
∂

 = 0.  They are 

three in number, instead of the four that normally appear.  This proves that because of the 

integrability condition 
2g

z t

∂
∂ ∂

 =
2g

t z

∂
∂ ∂

 the intersection of 1( )f S with the cycle F2 (or its 

extension to a fiber bundle such as H, pp 5) is never t-regular.  The critical set S1(S2) will 
exist, but it will be of dimension 1 instead of zero.  In the case n > 6 one has, apparently, 
an analogous conclusion.  Here, we only draw attention to this phenomenon, which 
merits a more concerted study.  In any case, it emphasizes the difference between the 
nature of the singularities of critical manifolds and the critical singularities, period − a 
difference that we have pointed out previously. 
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CHAPTER IV 
 

GLOBAL PROPERTIES OF GENERIC MAPS 
 

 
Recall that a property (P) of maps f: nℝ → pℝ  that are defined locally at any point of the 
source space is called “generic” if the set of f that do not possess property (P) at one or 
more points of a compactum K in nℝ  form a rare closed subset (closed, without interior) 
in ( , ; )n pL rℝ ℝ . 
 
 Passage from the local to the global. 
 
If Vn and Mp denote two manifolds of dimension n, p, respectively then the space of maps 
of class r from Vn to Mp, L(Vn, Mp; r), is well defined and is a Baire space.  One must 
show that if (P) is generic then the set of maps f: Vn → Mp that do not possess property 
(P) at one or more points Vn is a meager subset of L(Vn, Mp; r). 
 Let Kj be a compactum of Vn and let (Dj) be the set of f that do not possess property 
(P) at one or more points of Kj.  One must show that (Dj) is rare in L(Vn, Mp; r).  Indeed: 
 
 i)   (Dj) is closed. This is true because if g belongs to the complement of (Dj) then g 
possesses property (P) at any point of Kj.  The same must be true for any g that is 
sufficiently close to g since (P) is generic. 
 
 ii )  (Dj) has no interior point.  Let g be a point of (Dj).  Choose an atlas Uj on Vn and 
an atlas Wk on Mp, such that the image of an open subset Ui under g is contained in an 
open subset Wj of Wk.  Let (G) denote an open neighborhood of g in L(V, M) that is 
sufficiently small that if f ∈ (G) then the image f(Uj) is also contained in Wj.  As a result, 
there exists a canonical map h of (G) into L(Ui, Wj) that is defined by the restriction of the 
map to (Ui); h is obviously an open map for the Baire space topology that is defined on 
(G) and L(Ui, Wj).  Set Kji = i jU K∩ , and let Zij denote the set of f ∈ (G) that do not 

possess (P) at one or more points of Kji. Zij is a rare set in L(Ui, Wj).  As a result, its 
inverse image h−1(Zij) in (G) is likewise rare in (G).  The union (over the variable i) of the 
h−1(Zij) in (G) obviously gives the intersection( ) jG D∩ .  It is therefore a meager set in 

(G), hence it has no interior point, and, as a result, there is a ( )g G′∈  in the neighborhood 
of g that does not belong to (Dj). 
 If one then covers Vn by an at most denumerable infinitude of compacta then one will 
deduce that the set of f ∈ L(Vn, Mp), which do not possess property (P) at a point of Vn is 
represented by ( )j

i

D∪ .  Hence, by a “meager” subset (rare, if Vn is compact; there are 

only a finite number of Kj). 
 As an application of this theorem, we cite: 
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 THEOREM 4. – Any real numerical function on a manifold may be approached 
arbitrarily closely (as well as its derivatives up to order r) by a function that possesses 
only non-degenerate quadratic critical points. 
 
 It is clear that one may state an analogous theorem for any system of generic 
singularities n p→ℝ ℝ  once one has obtained an exhaustive description of these 
singularities.  For example: 
 
 THEOREM 5. – Any map f of a manifold Vn onto the plane 2ℝ may be approached by 
a map g that has only a critical curve of corank at the target equal to 1, and is without 
singularities in Vn.  By projection onto 2ℝ , the critical curve will possess, other than 
self-intersection points, ordinary regression points (images of the exceptional critical 
points). 
 

Some generalities on generic maps. 
 
We first give several definitions. 
 
 Differentiable set. – A subset E of is kℝ called differentiable of class r if at any point 
x of E there exists a neighborhood Ux of x in kℝ and an ideal (with a finite basis) of the 
ring of differentiable functions of class r in Ux such that xU E∩  is the set of points that 

annul all of the functions of the ideal.  One may assume that E is defined by a “coherent 
system of ideals” relative to an atlas Uj that covers E.  [In fact, any closed set is 
differentiable in the preceding sense.  In the sequel, one assumes, moreover, that E is a 
manifold with singularities: On the basis for the ideal, the functions have partial 
derivatives of non-null finite order at any point of E.] 
 
 Differentiably isotopic sets. – Two differentiable sets E, E′ that are both defined by a 
coherent system of ideals in the same open subset U of kℝ  will be called differentiably 
isotopic if there exists a homeomorphism h: U → U that reduces to the identity on the 
frontier of U, and transforms the system of ideals relative to E into a system relative to E′. 
 
 Locally isotopic sets. – Two differentiable sets E, E′ will be called locally isotopic if 
there exists an atlas Ui on a common neighborhood U such that the intersections iE U∩  

and iE U′ ∩  are differentiably isotopic in each Ui (the homeomorphisms hi of Ui do not 

necessarily reduce to the identity on the frontier of Ui). 
 
 Continuously isotopic sets. – Let E be a differentiable set that depends continuously 
on the parameter t; one says that E remains continuously isotopic to itself if for every 
value of t there exists a homeomorphism ht of U that transforms E into Et .  There is a 
similar definition for locally continuously isotopic sets.  In that regard, we have the 
theorem: 
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 THEOREM 6. – Two locally continuously isotopic differentiable sets are globally 
continuously isotopic. 
 
 Proof. – One forms the product k ×ℝ ℝ  in which the factor ℝ  is parameterized by t.  
In each product iU ×ℝ  the homeomorphism hi(t) allows us to define a direction Dy at any 

point y on which one may assume that t has maximum rank.  To any point y ∈ iU ×ℝ , 

one associates a vector Vi(y) that is non-null at any point of iU ×ℝ  and parallel to Dy .  

Let (ci(y), y∈U) be a partition of unity subordinate to the atlas Ui.  One associates the 
vector Z = ( ) ( )i ic y V y∑  to any point (y, t).  The vector field thus defined has rank 1 

everywhere on the t-axis, and its integration gives a system of trajectories that defines the 
desired global homeomorphism h(t).  Moreover, one may assume that the complement to 
U is covered by an element X of the atlas, on which one takes a field that is parallel to the 
t-axis.  With these conditions, the homeomorphism h(t) so obtained reduces to the 
identity outside of U. 
 
 A fundamental lemma. – Suppose that the set E is defined as the inverse image of a 
submanifold by a t-regular map of the space kℝ  that contains E.  E is then itself a 
submanifold.  If one deforms the map f sufficiently little then the set E remains 
continuously isotopic to itself. 
 
 It suffices to show that E remains locally continuously isotopic to itself.  The proof 
has been given in [8] (Isotopy Th., I.5).  This result is then generalized to the 
differentiable sets that contain singular points.  It suffices to assume that each of these 
manifolds of singular points is itself defined as the inverse image of a submanifold by a t-
regular map, so the extension of a manifold of singular points in a singular manifold to 
which it adheres is itself defined by a t-regular map.  If these conditions are satisfied then 
for a sufficiently small deformation of the map E remains continuously isotopic to itself. 
 One may define a map f: n p→ℝ ℝ  to be generic at the source as follows: f is generic 
at the source if each of the critical manifolds of f (simply critical Sr exceptional and 
super-exceptional critical) may be defined as the inverse image of the submanifold by a t-
regular map (which is canonically defined by “derivation,” starting with f). 
 By this, one intends, for example, either that the critical manifolds Sr are defined as 
the inverse images of Schubert cycles Fr by the derived mapf , which is assumed to be t-
regular on Fr, or that the exceptional manifolds are themselves also inverse image of 
certain cycles of folded manifolds, etc.  As far as this is concerned, one must note that 
there is reason to take into account the phenomenon that was pointed out at the end of the 
preceding chapter, namely, that the derived maps are not arbitrary.  This may have then 
the effect of reducing the codimension of the cycle that defines an exceptional manifold. 
If these conditions are satisfied then any sufficiently small deformation of the map f will 
define a continuous isotopy of the set S of critical manifolds (simple, exceptional, super-
exceptional) into the source space nℝ . 
 Now consider the set f(S) of critical manifolds.  One may think that it results from the 
preceding fact that for any sufficiently small deformation of f the set f(S) remains 
continuously isotopic to itself in the target space pℝ .  This is true only for “almost all” 
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maps.  Indeed, if we are given a differentiable map E → nℝ  and a map f:E → mℝ  then 
any f may be approached by a map g that is “generic at the target,” which enjoys the 
following characteristic property: for any sufficiently small deformation of g the set g(E) 
remains isotopic to itself.  (We simply accept this result, since the proof seems to be 
difficult without some prior analysis of the generic singularities.)  In the case of f(S), the 
situation is then further complicated by the fact that the generic singularities of the 
critical manifolds are of a special type. 
 With these conditions, if a map f: Vn → Mp is generic at the source and at the target 
then one may conjecture the following: to any mapf ′  that is sufficiently close to the f, 
one may associate a homeomorphism h of Vn and a homeomorphism j of Mp such 
that 0 0f h j f′ = .  The (non-unique) homeomorphisms h and j are close to the identity, 

depend continuously onf ′ , and reduce to the identity iff ′ tends to f.  We shall establish 

this fact completely in the case of maps of Vn into 1ℝ (functions). 
 A function on Vn is generic at the source if and only if it possesses only non-
degenerate quadratic critical points.  Moreover, it will be generic at the target if the 
corresponding critical values are all distinct and finite in number.  Let qi be the critical 
points of f and let ci = f(qi) be the corresponding critical values, which are all assumed to 
be distinct.  One assumes that we are given a deformation f(t) of f (by approximating the 
derivatives of order, r ≥ 2) such that the critical values f(t, qi(t)) remain distinct.  One may 
consider this deformation to be a map F of Vn × I into nℝ × I, such that F maps (Vn, t) into 
(ℝ , t).  In the target space to F − viz., 2ℝ − the trajectories of the critical values f(t, qi(t)) 
are given, and one may admit that they cut the lines t = constant transversally.  Since 
these trajectories remain distinct, one may define a homeomorphism ( )ih →ℝ ℝ  such that 

hi(qi) = f(t, qi(t)).  One lets G denote the system of trajectories that are defined by x → 
(hi(x), t), for t variable.  Each critical point qi admits a fixed neighborhood Ui in Vn (Ui 
disjoint) such that qi(t) stays continuously isotopic to itself in Ui for t variable.  Let k(t) be 
a homeomorphism of U = i

i

U∪ onto itself such that k(t, qi) = qi(t), and which reduces to 

the identity on the frontier of U.  This homeomorphism k(t), when completed with the 
identity outside of U, permits us to define a system of trajectories (K), and the differential 
dt is not annulled on the product Vn × I or on any trajectory of (K).  Let k denote a non-
null vector that is tangent at each point of Vn × I to the curve (K) that passes through that 
point, and is a continuous function of that point (as well as its derivatives).  Let (x, t) be a 
point of Vn ×  y, and let (y, t) be its image in 2ℝ  under F.  If x is (x, t) critical for f(t) then 
the trajectory of (x, t), which is (qi(t), t), is projected onto 2ℝ along a (G).  Otherwise, 
consider the tangent plane at (x, t) (which necessarily exists, since F is regular on (G)) to 
the inverse image F−1(G) of the trajectory (G) that issues from the point (y, t).  Let k′  be 
the projection along the direction t = constant that is orthogonal to k in this plane.  k′  is 
never null because its projection on the t-axis is non-null.  The integration of the vector 
field k′  gives rise to a system of trajectories( )K ′ that must replace the initial system (K).  
However, under F the trajectories( )K ′  project onto the trajectories (G).  As a result, they 

define a homeomorphism ( )k t′ of Vn onto itself such that: ( ) ( ) if t k t h f′ =	 	 , which is 
precisely what we had to construct. 
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 Some problems. –  
 
 1.  Prove the preceding theorem (stability of generic maps) in full generality, without 
having to resort to a description of the singularities. 
 
 2.  Say that a differential set E ⊂ Vn is algebroid if it is isotopic (continuously or not) 
to a set E′ that is defined by a coherent system of ideals of algebraic functions (of nℝ or 
the algebraic variety Vn).  From the preceding theorem, it results that the set of critical 
manifolds of a generic map into the source space, and the set of critical values in the 
target space are algebroid because one may approach f by an algebraic map.  Problem: Is 
a set E that is locally algebroid also globally algebroid(2)? 
 
 3.  One has seen that if the differentiable sets E, E′ are locally continuously isotopic 
then they are globally so.  What happens to this statement if one drops the hypothesis of 
“continuity?” 

                                                
 2 In all of the examples that were cited in chapter III, a super-exceptional generic singularity of order k 
always admitted a local algebraic representation in which only polynomials of degree at most (k+1) 
appeared.  There are good reasons for showing whether this is the general phenomenon. 



The singularities of differentiable maps. 26 

CHAPTER IV 
 

HOMOLOGICAL PROPERTIES OF CRITICAL MANIFOLDS 
 

The formula of theorem 2 that gives the generic codimension of the critical set Sr shows 
that this difference depends only on the difference (n – p) between the source and target 
spaces, with the corank r fixed.  From this, it results that any simple critical singularity of 
a map nℝ → pℝ  gives rise, upon topologically multiplying the source and target by a 
factor ℝ  to a simple singularity of a map 1n+ℝ → 1p+ℝ , which one calls the “suspension” 
of the initial singularity.  One easily proves that the suspension of a generic singularity is 
again a generic singularity and that the dimension of the critical set for the suspended 
singularity is equal to that of the critical set of the initial singularity plus one.  These 
considerations generalize to the exceptional and super-exceptional singularities, but the 
proof is too lengthy to describe here.  Of course, not all of the generic singularities of 
maps 1n+ℝ → 1p+ℝ  are suspensions.  It is easy to see the necessary and sufficient 
condition for this to be the case: a map  f: 1n+ℝ  → 1p+ℝ  such that f(0) = 0 is a suspension 
at 0 if and only if the critical set of the minimum dimension that is associated with the 
singularity has dimension ≥ 1.  By this, we mean that if one forms the sequence of 
simple, exceptional, and super-exceptional critical points in a neighborhood of O, then 
the manifold with the lowest dimension has dimension 1.  Under these conditions, one 
may find a function t in a neighborhood of V that has maximum rank at any point on each 
of these manifolds.  This entails that the critical sets that are defined by the hypersurfaces 
t = constant in the intersection of the critical manifolds are “continuously isotopic” for 
variable t, which shows that the map f is the suspension of a map g, which is the 
restriction of f to the hypersurface t = constant.  From this, it results that if a singularity of 
a map f: 1n+ℝ  → 1p+ℝ  is not the suspension of map from nℝ  to pℝ then the critical set of 
minimum dimension for f has dimension 0; hence, it reduces to the origin O. 
 

Homotopy invariance of the critical cycles. 
 
Let f, g, be two maps of the same manifold Vn into a manifold Mp.  Suppose that f and g 
are homotopic and generic.  One may then find a generic map F from Vn×I into Mp×I such 
that F(V, t) is in (M, t) and f = F|(V, 0), g = F|(V, 1).  One may, moreover, assume that F 
coincides with f (g, resp.), for values of t that are close to 0 (1, resp.).  With these 
conditions, form the critical sets of the map F.  For example, the set Sr of F is a “pseudo-
manifold” with boundary whose boundary is composed of critical sets Sr of f and g.  
These boundary manifolds are pseudo-manifolds themselves; hence, they are cycles mod 
2.  It may possible be the case that some Sr does not have a representative in (V, 0) and 
(V, 1).  It is then the case that the corresponding singularity is not a suspension, and, as a 
result, the corresponding singular points are isolated points.  The local neighborhoods of 
these points in the sets Sj of F for j < r are always cyclic (they are quadratic cones), in 
such a way that the existence of these points does not contradict the statement that 

any jS is a cycle modulo its boundaries in (V, 0) and (V, 1).  This permits us to state: 
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 THEOREM 7. – The critical pseudo-manifolds Sr of corank r of two homotopic maps 
f, g, of Vn into Mp define cycles mod 2 that are homologous. 
 
 REMARK. – In certain cases, one may substitute homology with integer coefficients 
for homology mod 2.  This will be the case, notably, for the critical cycles that are dual to 
the Pontrjagin characteristic classes in an orientable manifold. 
 
 It is clear that the preceding result may be extended to exceptional and super-
exceptional manifolds.  Nevertheless, one encounters the following difficulty here: one 
does not know the neighborhood of the isolated singular points of the map F into the 
exceptional critical sets.  Meanwhile, there is little to doubt that they are all cyclic 
neighborhoods.  The proof may be carried out explicitly in the case of exceptional 
singularities of corank one for small dimensions for which there are no exceptional 
singularities of corank ≥ 2, namely, p < 4. 
 Suppose that the critical set Sr exists (for f, g, as well as for F), and that for these three 
maps the critical set Sr+1 has a strictly negative critical dimension.  With these conditions, 
Sr is a submanifold with boundary in Vn × I whose boundary consists of the sets Sr for f 
and g.  Therefore, in this case one sees that the critical cycles may be realized by true 
submanifolds and that these submanifolds are L-equivalent in the sense of [8] (hence, 
they are cobordant). 
 
 An important particular case. – The target space is a Euclidean spacekℝ .  Suppose 
that we are given a map f of a compact manifold Vn into a Euclidean space kℝ .  The 
homotopy classes of the critical sets of this map do not depend on the map f, since all of 
the maps of Vn into kℝ are homotopic. 
 One may suppose that Vn is regularly embedded in a space k m+ℝ  in such a fashion 
that the map f is given by the projection of k m+ℝ  onto the k-plane kℝ  of the first k 
coordinates.  With these conditions, the critical sets Sr are inverse images of Schubert 
cycles Fr of the Grassmannian m k n

nG + −  underf .  The homology classes of the cycles Sr 

may therefore be calculated.  Recall that: 
 
1. The cohomology class that is dual to S1 for a map of Vn into kℝ , p < n, is the Stiefel-

Whitney class Wn−p+1. 
 
2. The (integer) cohomology class that is dual to S2 for a map Vn → kℝ  is the 

Pontrjagin class P4k (its mod 2 reduction is (W2k)2). 
 
 Apropos of property 1, it is interesting to remark that for a map g: Vn → n k+ℝ  the 
critical set of corank at the source 1 (which has the same dimension as the critical set at 
the target 1, for a map of Vn into n k+ℝ ) has a homology class that is dual to the class 

1kW + , with the notations of Whitney. 

 
 COROLLARY. – An invariance theorem for the characteristic classes: 
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 Suppose we are given two manifolds V, V ′ of the same dimension, n, and we assume 
that following: 
 
1. V andV ′ have the same homotopy type. 
 
2. There exists manifold with boundary Q that admits V andV ′ for its boundary, and 

which has the same homotopy type as the product V× I (or furthermore: such that V 
and V ′ are retracts). 

 
 With these conditions, the map of Q into a Euclidean space of the form kℝ × I (V is 
mapped into kℝ × 0, and V ′ is mapped into kℝ × 1) permits us to state: 
 V andV ′ have characteristic classes (Stiefel-Whitney and Pontrjagin) that correspond 
to each other under the isomorphism of homotopy types. 
 Of course, this result says nothing about the Steifel-Whitney classes, which one 
knows are determined by the homology type of Vn.  However, the result is very 
interesting for the Pontrjagin classes.  Indeed, one knows that there exist manifolds of the 
same homotopy type whose Pontrjagin classes do not correspond.  (They are fibrations of 
spheres S3 over S4; cf [2]). 
 
 

Homology class of the critical cycle of map f: Vn → Mp. 
 

Let 1S  be the critical set of corank at the target ≥ 1 of a map f of Vn into Mp (p < n).  f has 

maximum rank on the complement to1S , and, as a result, the space of tangent vectors to 

Vn decomposes at every point of Vn − 1S  into a direct sum of two vector spaces: the kernel 
n p−ℝ of the extended mapfɺ , and a transverse subspace kℝ , which is mapped onto the 

tangent space of vectors to the target space isomorphically under f.  From this, it results 

that on Vn − 1S  one may write the multiplication relation between the “Stiefel-Whitney 

polynomials” that says that the space of tangent vectors at any point of Vn − 1S  is the sum 

(in the sense of Whitney) of the two preceding fibers.  Since the fiber space with fiber 
pℝ  is nothing but the fiber space that is induced by the tangent spaces to the target under 

the map, one may deduce that on Vn − 1S  the image (under the injection onto Vn − 1S ) of 

the Stiefel-Whitney polynomial i
iW t∑ of Vn is “divisible” by the polynomial 

( ) j
jf U t∗∑ , which is the image of the Stiefel-Whitney polynomial j

jU t∑ of Mp under 

f.  Now, if one formally carries out the division (for increasing powers) of i
iW t∑  by 

( ) j
jf U t∗∑ , and one stops the division at the term of the quotient in tn−p then one 

generally obtains a remaining polynomial of the form: n p i
n p it c− +

− +∑ , 1 ≤  i ≤ n. 
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 From this, it results that the classes cn-p+i, i = 1, …, p must have a null image in Vn 

− 1S .  In particular, since1S has dimension p – 1 only one cohomology class is annulled 

by the injection homomorphism: 
 

Hn−p+1(Vn) → Hn−p+1(Vn − 1S ), 

 

namely, the dual class of the fundamental cycle in Hp−1( 1S ) under Poincaré-Veblen 

duality.  One thus has the theorem: 
 
 THEOREM 8. – For any map f of a manifold Vn into a manifold Mp (n ≥ p) the 
homology class of the cycle of the critical points of corank at the target 1 is dual to the 
coefficient of the term of degree n – p + 1 that appears in the remainder of the division of 
the Stiefel-Whitney polynomial of Vn by the image of the Stiefel-Whitney polynomial of Mp 
under f. 
 
 One will remark that all of the classes cn−p+i have null images in the complement to 

1S .  One may interpret this result as follows: the homology classes that are dual to the 

cn−p+i have representative cycles whose support is contained in 1S . 

 I know of no practical procedure for the determination of the critical sets Sr of f of 
corank r > 1.  One may describe the theoretical procedure as follows: one forms the 
product P = Vn× Mp, and then the graph G(f) of the map f in P.  P is the base for a fiber 
bundle H whose fiber is the Grassmannian pnG of p-planes that issue from the given point 

x of P.   In each fiber, one has a Schubert cycle Fr(x) and the union of all the Fr(x) when x 
varies over P forms a cycle Z.  Furthermore, if one associates to any x ∈ G(f), the n-plane 
that is tangent to G(f) at x then one defines a canonical section( )G f′ of H over G(f).  The 
problem then comes down to forming the intersection of the cycles Z and ( )G f′  in H.  If 
we project onto G(f) then it will give the critical set Sr .  Here, the essential difficulty 
resides in the determination of the homology class of Z, a difficulty that seems to be not 
in the least bit insurmountable, moreover. 
 

 
Homology classes of the exceptional critical cycles. 

 
If we are given a map f: Vn → pℝ where p ≤ n then the critical set Sr is a pseudo-manifold 
of dimension p – 1.  One has an exceptional critical manifold X1 on S1 whose corank at 
the source is equal to 1.  One proposes to determine the homology class mod 2 of X1 in 
Vn, a class that is independent of (f), as we saw above. 
 We first treat the case p = 2, which is relatively simpler.  One then knows that the 
critical manifold S1 is a curve whose image in the plane 2ℝ (the apparent contour of the 
manifold) presents a certain number of ordinary regression points, which are images of 
exceptional critical points. 
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 Let q be the number of these points.  One assumes that the manifold is compact, n-
dimensional, and embedded in a Euclidean space2 N×ℝ ℝ , and that the map f is the 
projection of the first two coordinates (x, y) onto the plane. 
 Let F1 be the Schubert cycle of 2N

nG +  that is formed from n-planes that project onto 
2ℝ along an 1ℝ .  By associating any element y of F1 with its projection in 2ℝ , one 

defines a canonical map G of F1 into the Grassmannian 11G  of unoriented lines in the 

plane.  Since S1 is the inverse image of the intersection by F1 of the image of Vn by the 
derived map, one may consider that S1 is embedded in F1.  Now, since S1 is the union of 
circles, it may be given an orientation, which is arbitrary, moreover.  To each point of the 
apparent contour F(S1) we associate its oriented tangent.  One thus defines a map h of S1 

into the Grassmannian 11Ĝ  of oriented lines in the plane.  This map is continuous at any 

point of S1, except at q exceptional critical points where it is discontinuous (it passes from 
the oriented line to the line oriented in the reverse sense).  Since every continuous map of 

a circle into 1
1Ĝ  has an even degree on 11G  by identification, one deduces that the degree 

of the map h: S1 → 1
1G  is congruent to q, modulo 2. 

 Now, it is easy to calculate the degree of the map h.  It suffices (when calculating 
mod 2) to compute the number of points where the apparent contour F(S1) admits a 
tangent that is parallel to a given direction; for example, the direction y = 0.  It then 
amounts to the same thing as computing the number of critical points of the function y on 
Vn, a number that is equal, mod 2, to the Euler characteristic χ(Vn) (or furthermore, to the 
Stiefel-Whitney number Wn(V

n)). 
 As a result, we have proved: 
 
 THEOREM 9. – The number of regression points that are generically presented by 
the apparent contour of a compact manifold Vn by projecting onto a coordinate plane is 
congruent mod 2 to the Euler characteristic of V. 
 
 We have used the following (perhaps well-known?) property, in passing: if a system 
of closed curves in the plane possesses only self-intersections and regression points as 
singularities then its class (the number of tangents that issue from a given point) is 
congruent, mod 2, to the number of regression points.  This is a very curious real form of 
Plhcker’s theorem. 
 Now return to the general case of a map f of Vn into pℝ , which we assume is 
obtained by projecting Vn, which is embedded in p N+ℝ .  Here again, the critical set S1 
will be considered as embedded in the Schubert cycle F1 (which is assumed to be reduced 
to just its ordinary points). 
 To simplify, one will assume that S1 has no points of corank > 1, in such a way that it 
is a true submanifold of dimension p − 1 that is dual to Stiefel-Whitney classWn−p+1.  
Here again, one has a canonical map of F1 onto the Grassmannian 1 1pG − , of unoriented 

(p−1)-planes, i.e., the projective space PR(p−1).  Let h: S1 → 1
1pG −  be the induced map on 

the critical manifold, which is considered to be embedded in F1.  One must determine the 
obstruction to the lifting of the map h to a maph′  of S1 into the Grassmannian of oriented 
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p-planes, which has the same dimension as 1
1

ˆ
pG − .  Let Z1 in S1 be the p−2-dimensional 

cycle that is dual to the class W1 of the tangent structure to the manifold S1.  This must 
say that the complement S1 – Z1 is an orientable (p−1)-manifold.  Moreover, let X1 be the 
exceptional critical manifold of S1.  The embedding in Nℝ has maximum rank on S1 – Z1.  
From this, it results that on the complement S1 – X1 − Z1 one may associate any point of 
the image f(S1) with its oriented tangent (p−1)-plane.  Therefore, on S1 – X1 − Z1 the map 
h is the projection of a map h′  into the Grassmannian of oriented (p−1)-planes.  On X1 + 
Z1, the map h′  extends by “jumping from leaf to leaf,” i.e., by reversing the orientation of 
the (p−1)-plane when one traverses the (p−2)-cycle X1 + Z1.  From this, it results that the 
obstruction to the existence of the map h′  is given by the cohomology class that is dual 
to the cycle X1 + Z1, namely, W1(S) + D, where D denotes the class that is dual to the 
exceptional critical cycle X1.  Now, one may easily calculate this obstruction: let u be the 

characteristic class of the lifting to two leaves 
1

1ˆ
PG → 

1

1ˆ
PG .  The obstruction to the lift of 

the map h to 1
1

ˆ
pG −  is h*(u) = W1(S) + D.  Now, in 1

1pG − = PR(p−1), u is the class that is 

dual to the linear hyperplane PR(p−2).  One then is down to considering the set of (p−1)-
planes in 1

1pG −  that contain a fixed direction (A).  Let (J) be the set of n-planes in the 

initial Grassmannian N
nG  that project onto pℝ along a (p−1)-plane that contains (A).  If 

HA denotes the hyperplane in pℝ that is orthogonal to (A) then J may be defined as the set 
of n-planes in N

nG  whose projection onto HA is a (p−2)-plane.  As a result, J is a Schubert 

cycle F1 of N
nG , and its dual cohomology class is the Stiefel-Whitney class Wn−p+2 .  

Therefore, let (T) be a tubular neighborhood of (S1) in Vn, and let: 
 

ϕ*: Hp−1−k(S) ≅ Hn−k(Vn) 
 
be the attached isomorphism (ϕ*) (whose definition and notation is in [7]).  The 
cycle 1J S∩  admits the obstruction h*(u) as its dual class in (S1), and the class Wn−p+2 as 
its dual in T.  Therefore: 

Wn−p+2 = ϕ*(h(u)) = ϕ*(W1(S1) + D). 
 
Let i: S1 → Vn be the injection of S1 into Vn and let 1Wν  be the Stiefel-Whitney class of 
dimension 1 in the fiber space of vectors that are normal to S1 in Vn.  The Whitney duality 
formula gives: W1(S1) = i*(W1) + 1Wν .  Now, formulas (8) and (32) of [7] give: ϕ*( i*(W1)) 

= W1 · ϕ*(1) = W1 · Wn−p+1  and ϕ*(W1) = Sq1ϕ*(1) = Sq1Wn−p+1 =  W1· Wn−p+1  + (n – p + 
2)Wn−p+2, from the formulas of Wu [12]. 
 What finally remains is: ϕ*(D) = (n – p + 1) Wn−p+2.  Therefore: 
 
 THEOREM 10. – The homology class mod 2 of an exceptional critical cycle X1 is null 
in S1 if the codimension (n – p + 1) of S1 in Vn is even.  If (n – p + 1) is odd then the class 
X1 is dual to the Stiefel-Whitney class Wn−p+2 in Vn. 
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 Remark. – If the critical manifolds S1 and X1 possess singularities of corank > 1 then 
the preceding proof is still valid if we consider the relative homologies of S1 and X1, 
modulo the singular sets, which changes nothing about the fundamental class of X1. 
 The nullity mod 2 of the cycle X1 in the in the case where the codimension (n – p + 1) 
is even is, moreover, easily proved at x, thanks to the notion of the transverse index of a 
singularity of corank 1.  One knows that when one crosses the cycle X1 in S1 the 
transverse index varies by unity.  One must, moreover, remark that since X1 is not, in 
general, an orientable neighborhood in S1 there is no reason to distinguish the index q 
from the index c – q, if c is the codimension.  Now, if c is even then by likewise 
identifying the complementary dimensions any change of a unit in the index leads to a 
change of class for the index (an index may not be transformed into its complement).  As 
a result, if one considers a loop L in S1 then the total number of index changes, hence, the 
exceptional critical points on L, is necessarily even, since the index must finally coincide 
with the initial index or its complement.  Hence, it results that X is homologous to 0 mod 
2 in S1.  If the codimension c is odd: c = 2k + 1 then the two indices (k, k + 1) and (k + 1, 
k) are identified, in such a way that the number of exceptional points on L may be odd.  
One may state, moreover: 
 
 If the Stiefel-Whitney class Wn−p+2 of a manifold Vn is non-null, and if n – p is odd 
then the critical manifold of a map of Vn into pℝ always possesses points whose index is 
(n – p)/2. 
 
 This is true because the change of index from (n – p)/2 to its complement must 
happen at least once for every loop L whose intersection number with X in S1 is equal to 
1. 
 One may continue the study further, and notably study the homology of super-
exceptional critical cycles.  We point out this result in passing: 
 
 THEOREM 11. – The number of super-exceptional critical points that are 
generically presented by a map of a compact three-dimensional  manifold V3 into kℝ  is 
even. 
 
 This results immediately from the fact that any three-dimensional manifold V3 is the 
boundary of a four-dimensional manifold with boundary Q4.  The super-exceptional 
critical points in V3 are then the boundary of a super-exceptional critical curve for an 
extension of f to Q4. 
 In conclusion, there is no reason to doubt that the study of the local and global 
properties of the singularities of differentiable maps opens an extremely rich domain to 
research.  At some point, it may be necessary to make some attempt to distinguish the 
problems and the methods that might be interesting for the neighboring disciplines - 
notably, Differential Geometry and Algebraic Geometry. 
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