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THE SINGULARITIES OF DIFFERENTIABLE MAPS

By R. THOM (Strasbourg)

Translated by D.H. Delphenich

Ever since the classic works of M. Morse, the studtyhefsingularities of a numerical
function on a manifold has been the object of a gnemiuat of research. It seems to me
that theorem 4 of the article (cf. [4]) by M. Morsesisbject to generalization. More
generally, | was led to consider the singularities ofhap f: R" - RP and, more
generally, of a map from a manifold to a manifoldMP. In that regard, the definition
itself of the singularities of a map, as well as thdassification, pose very delicate
problems that will be addressed in Chap. I. In Chapni,treats “generic” singularities,
i.e., singularities that appear for “almost all” mapsR" - RP". To that end, | have used
the technique that was developed in an earlier article d8¢ thus obtains precise
information on the generic dimensions of the critisats; here, a largely unrecognized
phenomenon is brought to light: for a generic nitlp-~ RP wherep < n, the reduction
in dimension of relates only to a regular point of the mafhe map preserves the
dimension of the critical set. Chapter 3 containe tescription of the generic
singularities for low dimensional target spaces, a$ agekeveral existence theorems for
critical manifolds. Chapter IV addresses — but does net selthe question of the
stability of generic maps; here, one also finds a distunsolved problems that are
nevertheless quite worthy of interest. Finally, tast chapter treats the homological
properties of critical sets; one may see that thdéineubf a generalization of Morse
theory, but | will not pretend to its completenesaiyQhe theory of characteristic classes
was used here, although one may imagine using a homoloiggzaly like that of Leray,
or an even finer theory like that of the Ljusternik-Sosinrann “category.” However,
the scope is so vast and hitherto devoid of applicatlatsit is difficult to state anything
but generalities.
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FIRST CHAPTER

Here, one considers differentiable maps of clasfom the Euclidean spacR"to the
Euclidean spacéR”; one assumes th&t0) = 0. Conforming to the terminology of C.
EhresmannR" will be called thesourcespace andR® will be called theargetspace. In
generaln will be taken to be p, and the class of the mag will be assumed to greater
than the larger of the numbarsp ().

Let x be a point ofR", and letk be therank of the mapf at x; it is convenient to
introduce the two differences:

, which one calls thecbrank at the sourc¢eof x,

q -k
r -k ¢ “  “corank at the targétof x.

T S

One letsS denote the set of points Rf at which the corank has the value
(strictly); it is clear thatS.; belongs to the adherence & in such a way th&?

constitutes the set of points where the corank > k. In particular,S (if n = p)
constitutes the set oégular points off; it is an open set &" .

In the target spad®®, one considers the image s¥ts f (§); one callsy; = f(§)

the set of critical valugsone knows that if the mafds of classC™, wherem=n —p +1,
then this set has measure zeraRifi[6]. The complemeniR”-Y; is the set ofegular
values.

For an arbitrary differentiable map, the singulariaesl the topological structure of
the sets& (and, a fortiori, Y) may define a pathological manifold. One nevertheless
obtains a structure that is already much simplemé& oonfines oneself to considering
only “generic” maps. The precise definition of a genen&p is very delicate; for the
moment, we say only that any map may be approached dgneric map (up to an
approximation on the derivatives of oragrand that any map that is sufficiently close to
a generic map, in the preceding sense, is itself generic

To any mapf: R" - RP, we associate its grajg(f) in the product spacR™". Let
y = f(x) be the image of a point of R". At the point X, y) the graphG(f) admits a
tangent n—plane T,. The correspondence — Ty defines a map of R" into the
GrassmanniarG” of n-planes througlO in R™"; the mapf goes by the name of the
derived magor the mag.

While always assuming (to fix ideas) timet p, we letF, denote the pseudo-manifold
of GP that is composed of theplanes that intersect tie planey = 0 along a linear

subspace of dimension & p + 1).
The F, are Schubert cycles @&, and their Schubert symbol is (for the definition,
see, for example, [3] or [11]):

! Ultimately, when one says “maps” or “manifolds,” oakvays means maps or manifolds that are
differentiable to whatever class is necessary. Asnynected component of a manifold is assumed to be
paracompact (a denumerable union of compacta).
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(F) (p-r,p=r,--,p=r p,;-,p,p).

(n=p+r) (p-1)

The dimension of; is therefore:
(Pp-nNn=p+n)+pP-0=pE-n(n+r),

and its codimension i (which is a manifold of dimensiomp) is np —(np — rn +rp —
r) =r(n — p + 1. As we verify, these cycles (mod B) play an important role in the
determination of the critical se®, we must also specify their topological nature. At an
ordinary pointF; is a manifold; the singular points Bf are the ones that belong Eo,, .
It is interesting to specify the nature of the immamnfF,., into F,.

Let u be an ordinary point oF.s; this n-plane in G” may be generated by
orthogonal vectors, of whicm(= p + r + 1) are inR" (y = 0), in which they generate a
planeY and p — r —1) generate a subspaféehat is orthogonal t&. A neighborhood of

u in F, that is normal inF..; is composed of the-planes such than(— p + 1) of the
generating vectors are in the plaand ¢ — r —1) generat&. What remains is an”

vectorV, which is to be determined, that must beRifi and orthogonal t&; as a result,
its locus is a linear space of dimenspr(p —r —1) =r + 1. From this, it results that the
normal neighborhood of; in F.1 is fibered into Euclidean spacé® ™ over the set
R"P*" which is contained iR"™"™, and thus in a sphe@™""; this neighborhood is
therefore a fiber of the forr8' P*'xSxR , a fiber that is trivial, at least homologically.
From this, it results th&™ ' is embedded i not as a submanifold, but only as a locus
of singular points.

Analytical determination of a normal neighborhood pfrFG” .

Letx (i= 1, 2, ...,n) be coordinates iR" and lety, (j = 1, 2, ...,p) be coordinates iR".
]

An n-plane ofG? is defined by a system pflinear equations of the form:

Suppose that this plane belong$tpthis says that the matrzi»'g has rank at leasp (-

r). If it is an ordinary point oF,, moreover, then the matria(ij has rank strictlyg — r).

Suppose that the mindd that is formed from the firs{p(— r) rows and the first(— 1)
columns is different from zero. There is a completary rectangld in the matrix that

is formed from the lagb rows and the lasin(— p + 1) columns. We associate an element
of the rectangld to the minorM and, upon completiniyl with the row and column that
intersect this element, form a minor of ordpr{r + 1). We thus obtain(n — p + 1)
minors of orderg — r + 1). Upon annulling these minors, one thus writes eegysif

local equations foF, in G.
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This remark is useful for the practical determinatiofr0ih the neighborhood of one of
its ordinary points. Similarly, one may obtain th@mal neighborhood d¥; in F+1 by
writing the quadratic relations between the minorsrdeo (o — r + 1) that appear when
the minors of ordemp(—r + 2) are all null.

The homology of the cyclesF, . — Forr > 1, each of the pseudo-manifoleshave a
fundamental cycle mod 2. Indeed, it is more practicalk®the cohomology classes that
correspond to them by Poincaré-Veblen duality; this is lhgorresponds to the Stiefel-
Whitney classWhp+1. In a general fashion, the classes that are dualed-tlare
polynomials in the classad; that one calculates explicitly, thanks to the mliltation
formulas between Schubert cocycles that were give®. liyhern [1]. Note that for — p
= 2k —1), the class that is dual & is defined to have integer coefficients; it is none
other than the Pontrjagin clags (cf. Wu [11]). It will be interesting to know the
cohomological expression with integer coefficientshef classes that are dual to e
which are defined to have integer coefficients whes f) is even.

Critical setsand cycles F; . — If the rank at a point of R" is reduced tg — r then

the tangent plane to the corresponding point)(on the graplG(f) is projected ontdR”
along a p — n-plane; i.e., the kernel of that projection, whictthsg intersection of the

plane withR", has dimensiom — p + r, therefore, the tangent plane @gf) at , y)
belongs to the cyclE, , and conversely. If one reverts to the definitidrihe map f ,
which is the derived map fothen one sees that the critical s@tare the inverse images
underf of the cycles, of the Grassmannian.

DEFINITION. — A critical pointx of S will be calledtransversally critical, or,
furthermore generic,if the tangent planes t6é (R") andF; are in general position at the

point f(x) of the Grassmannian, which is assumed to be ordinaFy.on

In chapter Il, we will show that any mépnay be approached by a nmgor which
all of the points of are generic. If this hypothesis is realized then thealsetsS are

true submanifolds oR" of codimension(n — p + ).
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Moreover, S+1, which is situated in the adherence &f admits a normal
neighborhood that is homeomorphic to the cone ovempthduct SxS'™*", which is
described in the local immmersionlef. 1 into F, .

Ordinary critical pointsand exceptional points.

Now consider the maprestricted taS, which takesS to the image seY;. A question
presents itself: Does this map have maximal rank, in géher

The response is affirmative, by reason of dimensiwdeed, the generic dimension of
Sisn—1(n—-p +1), which is less thap — rwhenever > 1. Now, any tangent plane to
S is situated in a tangentplane toG(f), which is a point of, whose projection onto
R” has dimensiop — r; the projection of the tangent plane o&ds therefore carried
out with preservation of the dimension, genericalluct8a point will be calleddrdinary
(generic) critical point.”

On the contrary, if the tangent $ at the poinix of S is mapped ontd®R” by f with
reduction of the rank then one will say thkat an ‘exceptiondl critical point. In order
to comprehend the origin of these exceptional points itanvenient to refer to the
preceding method and define them by intersectionsn le¢ the dimension &, and let
g be the dimension of the cydle. F, may be considered to be the base space of a fiber
bundleH, namely, the set ofiplanes that are contained in thg@lanes that defin&; (m

<n); as a result, the fiber is the Grassmanr&fi". In each fiber, one may consider the

setF,' of m-planes that project onto thR"" that is the intersection oR"and then-
plane, with a corank ; the set ofF,' is obviously invariant under the operation of the
structure group for the fiber bundtein such a way that the set &f comprises a certain
cycleZ in H. The cycleZ is, moreover, a true submanifold léfat its ordinary points.
Now, in the base spadé of H one has a manifolfi(Sr)of dimensionm. Upon
associating any point of that manifold with its tangerplane one defines sectionof
the fiber bundleH over the manifold(S;); the points of intersection between this section
and the cycleg&; constitute the exceptional critical points upon profgcthnto the base
spaceZ . Therefore, on each manifol& there exists a submanifold (without
singularities, genericallyX, on whichf (restricted tdS) presents a “corank at the target”
equal ta’; under the mafi S - Y; the imagd(Z) is, in general, a locus of singularities
for Y;; this fact was pointed out for the first time by F.geo[5]. The set of critical
values presents singularities in the target space. nAsverifies, these singularities are
stable i.e., they persists under a small deformation ofmtla@; they have a special, non-
generic, character, moreover. In order to understarsd pinenomenon, the simplest
example is that of the apparent contour of a surfaaeis projected onto a coordinate
plane. One knows that such an apparent contour psgseints of regression, in general
(example: the apparent contour of a torus when viewedoldiquely with respect to its
axis); one verifies that these points of regressiom stable. Nevertheless, when
considered as a singularity of the projection of a cumi® dhe plane, the point of
regression is an unstable singularity.
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In order to arrive at a complete description of a nitaig, how necessary to consider
the manifoldsZ, of exceptional points. When we iterate the argumeade above one
verifies that these critical manifolds present subnodagfV. on which the rank of
(restricted t&,.) is reduced by" units, etc. One thus defines “super-exceptional” critical
points. Nevertheless, by reason of dimension, onsuig that this process stops,
generically or not; indeed, < n then one may not have super-exceptional points of
order >p. One ultimately subdivides the source space intoi@uwf manifolds (without
singularities, generically) such that the restriction 6fo eachX; has maximum rank.

We conclude with several remarks on the subject ofpgis®l critical manifolds.
We first specify the order of the partial derivatives ltd tapf that intervenes. In the

determination of the ordinary critical manifol&s only the magf is involved, i.e., the

first order derivatives; in the determination of theJ S the tangent plane td (R") is
involved, hence, the second order derivatives; in the metation of the super-
exceptional manifold$V,., the third derivatives, etc. Moreover, it is inteirggtto give

an idea — which will be only intuitive — of the genesigha# singularities in the critical
values that are images of the exceptional critical folls. One obtains them by the
notion of “ventilating” a singularity by displacing therget space. We explain: suppose

that we are given a map: R" - RP that is critical atO; suppose, moreover, that the
target spaceéR® moves inR""™, and that thisrtparameter) motion is defined by a map
g: R" -~ G]' into the Grassmannian pfplanes inR"”"™. Upon assuming that the target

spaceR" is carried along by the motion that is definedgbgne defines a mdg R" -
RP*™, and atO the imageF(R") presents the ventilated singularity of the initial
singularity off: R" -~ RP. Examplen =p =m =1. The mag: R' ~ R will be
defined byu = t% suppose that the target-lif@* moves in the plan®?, and let@be its
polar angle with respect to a fixed direction. Suppoakttie map is defined byd = at.
The “ventilated” singularity will then be defined IR* by the equations:

x=t?cosat =t* + ...
y=t’sinat=t£+ ...,

which defines a regression precisely.

The images of the exceptional and super-exceptiondgicadripoints present
singularities that are all susceptible to this mode afegtion. In the important
particular case of the critical points &f Zi, etc., under ventilation, the singularities give

singularities of the typ&®™ - R™; hence, the importance of this type of map.
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CHAPTER 1I

One letsL(R",R"; r) denote the set of differentiable maps of clags=> Supn, p of
R" into RP, endowed with the topology that is defined by the charthenpartial
derivatives of ordeg r over any compactum; under these condititf®" ,R"; r) is a
complete metric space, and therefore a Baire space.profierty P) of mapsf:
R" — RPthat are defined locally at any point of the source spaltee calledgenericif
the set of that possess property)(is arare closedset (closed without interior point), at
least at a point of a compactuofR" defined inL(R",R"; r).

DEFINITION. — Amapf: R" - RP will be called feneric at the sourtef:

1) The derived map of R" into the Grassmannia®s? is t-regular (in general

position) over the Schubert cyclesof G”;

2) The section that is defined by a new derivation infther H over each critical
manifold§ = f*(F,) intersects the cycle,. t-regularly.

The exceptional critical manifolds. are then without singularities. One postulates
that the sections (in an appropriate fiber of the Grassimn) that define the super-
exceptional critical manifoldd.. inZ . are themselvesregular on the appropriate cycle,
and so on.

It is clear that the set of functiofisR" — R that are generic at the source define an
open subset df(R",R"; r). Indeed, from theorem 1.5 of [8], the property of gaher
position (more exactly, oft-regularity) is preserved under a sufficiently small
deformation (by approximation of the derivatives); theigait manifolds §Z,. ,W.
remain mutually isotopic.

(Note that in theorem 1.5 of [8], one assumes that#fermation is valid when it is
composed with a homeomorphism of the target space; thet & useful restriction here,
and the theorem is valid under any deformatiob(iR",R"; r).)

It remains to be provedand this is more delicatethat any magp may be arbitrarily
approached by a map that is “generic at the source.” WlEfsst prove the property for
“ordinary” critical manifoldsS, and then present the proof for exceptional critical
manifolds, later on. The principle of the proof is tbbowing: Letf be the given map;
assume that the critical s§tof f is non-vacuous, unle§sis vacuous for any sufficiently
close map, and the property is proved. Therefore, gy a number (finite or infinite,
but in the latter case, denumerable, because of paractraps) of compacts;. LetM,;
denote the set of maps I{RR",R"; r) that are not-regular (after derivation) on the
Schubert cycld= for at least one point of the compactinit is easy to see thad; is
closed inL. One must show that in a neighborhood tfat is assumed to belong
there are points that do not belongMp. One knows that since the rank is strictly equal
to (p — 1 onS, one may find a system op (— r) functionsu, W, ..., Uy Iin a
neighborhood of any point of § that are coordinate functions in the target sfdce
and which one may take for coordinate functionsRih. Under these conditions, in a
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neighborhood of any O S there is a chart in whicR" has the coordinatesi( U, .., Up.
ry Upr+1, -+-, Xn) @nd RP has the coordinatesi( W, ..., Uy, Yp-r+1, ---, Yp), @nd in which
the mapf is represented by the equations:

Yo+ = Nij(Uk, Xp-r+m), j=1,2, ...r=1.

The setS is then defined by the relatiog)%i— = 0. One assumes thatis covered by
k

an atlas of such charts, and that the compiéceaie sufficiently small that they are each
contained in a chart. One considers the set of ngapisat are sufficiently close tathat
they admit the same atlas of distinguished chartls iigs obviously a Baire spack.
One then shows that for any miaghere exists an approximatigrwhose restriction t&;
is, after derivationt-regular on the cyclé, . The deformation of into g happens as
follows: for the mapf one projects the grapB(f) into the target space parallel to the
source spaceR"; one obtainsg by projectingG(f) along a direction that is slightly
oblique with respect to the initial direction; analytigalln the associated chart, this

amounts to replacing the functiogswith functionsy’ such that:y; =y, +Z n x, in
which the coefficientsm; are assumed to be small. The deformationg is therefore

defined only on the open sub4ébf the associated chart. It is nevertheless ¢thedrone
may prolong the deformation éfinto g to the exterior olJ; this results from classical
theorems of Whitney on the prolongation of differengablaps [9]. One may likewise
suppose that this deformation reduces to the identity oubdideneighborhood/ that
containsU; in the planar case, the figure above gives us a satisyaidea in spirit with
being imbued with excessive formalism.

==

This being the case, the graph of the map U admits a tangent plane at any point
(%) that is defined by the system of equations:

oy, ... oy ..
U = U;: d T p—r”d + p—rﬂd i
Vo 25 M Zaxm X

namely:

o, oh
dy, ., = > d ' Ay -
Vo = 250 L“Z{ax +n?} ¥

| p-r+i
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oh. _
The setS for the mapy is therefore defined by the equations:—— + m; = 0, which
p—r+i
amounts to looking at the inverse imageFpby the derived mag if one remarks that
minors relative to the square; = u) form a system of transverse coordinates for the
Schubert cyclé, .

_ oh.
The mapG:R" - R'""™ that is defined by the equatioms =3 L admits
Xp—r+i

regular values that are close as one wants to th'ﬂn.onig(m} ) denote the coordinates of

such a value then this signifies that the corresponehiagg is t-regular, when derived,
on the Schubert cyclg, that one would like to obtain precisely. We therefeee that
the subspacdy|; in the Baire spack are rare; therefore, their union is meagexX,imnd

admits no interior point. This shows that in anyghebrhood of anythere arey that are
t-regular onF, after derivation, and this confirms the stated geneopgtty. We shall
elaborate on several consequences of this result.

THEOREM 1. —Any mapf:R" - R” may be approached arbitrarily closely
(relative to the partial derivatives of orderr) by a map g whose derived map is t-

regular on the Schubert cycleg, Bs a result, the points @&"whereg has corank at the
target strictlyr define true submanifolds .

The codimension d& in R" is equal ta(n —p +1).
COROLLARY. —Ifn<r(n —p + 1) then the se% is “generically” vacuous.

If n > p, moreover, then this shows that fox r? there is no stable singularity of
corank at the targetr. Examples of this are:

Stable critical points of corank 2. — These appear only far = p = 4 (maps
R* . R*); by contrast, the mapR® — R*do not admit stable critical points of corank
2.

The first case of a critical point of corank 3 appdarshe mapsR® — R?, and the

first case of a critical point of coramkappears for maper - R”. In chapter Il we
verify that these singularities essentially exist amat they are “generic” (stable under
any small deformation).

The formula that gives the codimension$fis itself valid forp < n. One may
remark that ifr is the corank at the target then- p + ris the corank at the source; one
therefore has the very mnemonic formula:

THEOREM 2. —The generic codimension of the critical set of gpnsequal to the
product of the corank at the source with the coranhthe target.
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From this, one deduces a very curious consequence conceowntihd dimensions

of the critical setsS compare for the map®" - R"*and R" - R™*. For each of
these cases, the formula gives:

for R" - R", codimension ofS.=r(k +r),
for  R" - R™*, codimension ofS,, = (k + r)r.

For example, fon = 2, k = 1 the critical sets of the maf®* -~ R' and R* - R?®
have the same dimension, namely zero. In thedase, one has the critical points of a
function, and in the second case, the cuspoidal poir#s Ihimersion oR? into R®.

By way of example, we give a table below of the dism@ms of the critical manifolds
of a mapR® - R"; r always denotes the corank at the target and — denctigistly
negative dimension, hence, the set is generically void.

r= | O 1 2 3 4 5
n=1 |5 0 _ _ _ _
n=2 |5 1 _ _ _ _
n=3 |5 2 _ _ _ _
n=4 |5 3 _ _ _ _
n=5 |5 4 1 _ _ _
n=6 | _ 5 3 _ _ _
n=7 | _ _ 5 2 _ _
n=8 | _ _ _ 5 1 _
n=9 | _ _ _ _ 5 0
n=10 | 5

The symmetry therefore exhibits a curious phenomendamnwt@anay call “Whitney
duality.” We return to this later on in the contextlod global properties of critical sets.
In a more general fashion, one notes that ig fixed then it is fop = n that the maps

R" - RP present the greatest diversity from the standpointitiéal sets and corank.

Remarks on the topological structure of the critical set.

The set of points of a mapwhere the corank at the target>s is nothing but the

adherencs, ;S obviously contains§.;. SinceS.1is the inverse image of the Schubert

cycle Fr+1 under the derived map, whicht-regular orF..1, one deduces that the normal
neighborhood 08+; in § is homeomorphic to a neighborhoodFef; in F;; e.qg., recall
the cone over the product of the sphe3E%™' xS at a generic point. From this, it results

that the closed se§, is not, in general, a true submanifold (unl&g is generically
vacuous);§r Is nevertheless a pseudo-manifold (fat 1), in such a way that one may
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speak of the fundamental cycle gj; this cycle has integer coefficients if the pseudo-
manifoldS, is orientable, modulo 2, in general.

The exceptional critical singularities.

We shall describe the logic in the most banal case ekaeptional critical point, viz., a
point of § at which the restriction of has corank (at the source) equal to 1. In a
neighborhoodJ of such a point (as at any generic poiniSgfthere exists a system of
coordinatesus, W, ..., Up1, X, ..., X») INn Which the mayh is expressed by the equations:

Ui = u; y=ou, x) + ...,

where ¢ is a quadratic form that is not identically null (iedle the hypothesis df

regularity ofg on F; implies thatg is non-null). The critical s&, is defined inU by the

equatlonsg—y— 0,i=p, p+1,..,n and its tangent plane at the poixt ) is defined
X

by:

2% guan LM

6>s6>9 , axaq

This plane is therefore defined in the prodRéf* x R" by the matrix:

i U X
I 0
U, 1 0
1
0 1
oy 9’y 0%y
0X; 0%0y, 0%0 X

(One does not include the row that pertaing, tince this row is a linear combination of
the preceding ones &.)
With these conditions, the exceptional critical malaifZ, is defined inR" by the
nullity of the determinant:
_| 9%
ox 0 |

In fact,D may be considered as a coordinate that is transtetke cycleZ in H (where
Z is defined byD = 0 inH). Suppose that the image of a neighborhood of® imder



The singularities of differentiable maps. 12

the (twice) derived map iHl is all integers in the neighborhood of a generic pdiix;
this must say that on the proposed neighborhood thef mben restricted t&,;, has rank
at least |p —2), or, furthermore, that on the proposed (possibly résthicmeighborhood,
one may find a minor of the matrid of order f — 2) that is not annulled in that
neighborhood. Suppose (to fix ideas) that it is thetive minor of the first element {1
2

6ay , hamely,Qi(x, u) for this minor. We then
%

row, I column) of the matriM =

deform the magd into g, whereg is defined on the neighborhood considered by the
equationsyU; =u; Y=y + a(xp)Z. The valueD(g) of the determinarD, for the mag will
be:D(g) = D(f) + 2aQu(x, U).

The relatiorD(g) = 0 may be writtera = — 1/2D(f) / Qu(X, U). In the neighborhood of
0 considered, this relation defines a magadntoR*. Take a regular value = ¢ of this
function fora, which is sufficiently close to 0 as one prefers. Tlag wfS, into H that is

associated witlyg and defined by =y +cx§ is thereford-regular on the cycl& because

the transverse coordinaehas maximum rank o8.

As in the case of the addition of linear functioase shows that for a sufficiently
smallc the deformation off into g may be prolonged by a deformation that reduces to the
identity outside a sufficiently large neighborhood.

It remains to show that any méps of rank> p — 2 “almost everywhere” o1%;
indeed, if all of the minors of ordgr—2 are null in a neighborhood of 0 then one may
first suppose that at least one of the minors of opder3 is non-null in a possibly
restricted— neighborhood. With these conditions, by adding a coewglgi chosen
guadratic form ai to y, one may obtain that the rank is everywherp —2 on this
neighborhood, except possibly on the points of a submdn#émd so on for the lesser
ranks. The proof is completed, as before, by “combitinegpieces.” It is nevertheless
important to say that this does not generalize witlibfficulty to exceptional critical
manifolds of corank at the source > 1. Indeed, as wiewahdy at the end of chapter 3,
when one forms the intersection with a cycledF a Grassmannian that defines the
exceptional manifold, one is led to consider the coeffitcs of a matrix T In general,

these coefficients contain second derivatives of thefmaow, due to the “integrability”
2 2

relations 9 = f it is possible that the rank of this matrix is reducliévertheless,
oxdy 0yoX
due to the linear character of these relations, tlegérspace is a linear subspace of the
space of vectors that are transverse tarFsuch a way that one again speak oftthe
regular map as;Fconsidered as embedded in this image linear subspace.titulpay it
results from this that the codimension of an excepti@ngical manifold generally
smaller than the one that is given by the formulthebrem 2. (See the example at the
end of chapter 3.) With this restriction, the principtehe last proof remains valid.

Case of the super-exceptional critical manifolds.

In the case of a super-exceptional manifold of oldeone is led to consider fdag
manifold of orderk (i.e., a system ok-planes that are each contained in the following
one), and a subset in such a manifold that is defined by conditions on theedssion of
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the projection onto the factd”, and finally, a certain cyclg in the submanifold. In a
neighborhood of a generic pointffthe immersion oZ into H is isomorphic to that of a
Schubert cycle in a Grassmannian, in such a wayrtaheighborhood of such a point, a
system of normal coordinates afin H may be given by the(n — p + 1) minors that
appear in a matrix. What appear in the rows of thigirnate the coefficients of the
tangent plane to the critical manifold of ordér 1) that one maps intél. These
coefficients linearly contain the derivatives of orll@f the mag.

In an associated local chart, one will be led to adddgenous forms of degr&eat x
to the variabley by taking their variable coefficients to be the ortest tappear, after
derivation, in the(n — p + 1) minors that give the local equationszin H. Here again,
one chooses the values of these coefficients ¢dtieanap obtained iH is t-regular on
the cycleZ, possibly taking into account linear relations betwten coefficients that

2 2
give us the integrability relatiom(?si = of . The previous combination of the pieces
oxdy 0yoXx

then applies without other modifications. | envisiorureing to this point in a later
publication.
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CHAPTER 11l

GENERIC FORM OF SINGULARITIES
FOR LOW DIMENSIONS

Here, we will be occupied with the singularities that aresented by generic mapspT
into R”whenp is small.

1. p = 1. Singularities of a function. — Letf:R" —. R' be a function and l&s(f) be
its graph inR™™. One considers the derived mapRfinto G'. The Schubert cyclg;

reduces to a point d&; (the horizontah-plane). A system of normal coordinates Far
is given by the coefficients of the equation for thegent plane, hence, by the partial

L f . . .
derlvatlvesg—. From theorem 2, for anthat is generic at the source the critical§et

X
. : . ... Of
reduces to a certain number of points. At each oftlpesnts, the derlvatlveg— are
%

linear forms in the local coordinates, and, as a ra&sdile regularity of; these linear
forms are independen(This says that the local development about each critical point
begins with a non-degenerate quadratic form. Therefore:

THEOREM 3. -Any differentiable function ofR" may be approached as close as
one wantgas well as its partial derivatives up to an arbiydarge, but finite, ordéex, by
a function g whose only singularities are non-deggate quadratic critical points.

[Cf. M. Morse, The Calculus of Variations in tharge. Colloque,Publ. XVIII, pp.
178, th. 8.7.]

2. p = 2. Singularities of a map into the plane. — There exists only one non-
vacuous generic critical set; its dimension is 1, and,esicis vacuous, it is a true
submanifold (a curve iR"). There are exceptional critical points that areneef as
Si(S). It is easy to see the corresponding singulanithe target plane; it is obtained by

“ventilating” the singularityR* — R, which is defined by = t>. As we saw in chapter
|, when it is composed with a map of degree R'ointoG, = S' it gives aregression of
ordinary type. One easily obtains the local equations of the sargids. One may give
R" a system of local coordinates of the fofi(u, », x,) - R"(u, V) in whichv is a

guadratic formg in u andx. The critical curve inR" is defined byg—v =0, and its
%

tangent vector at O is defined %ﬁz 0. Inthe present case, where the rank of the form
%

#(0, x) is reduced, one may assume thatimits a development that begins with:

V=Uux X+ L+ (X)
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and the critical curve is then locally parameterigdhe variablee. Its image under the
map is composed af =(xz)° by a “ventilation” of the angléx. If we setx, = t then
this givesu = t%, v = kt + ..., for the image of the critical curve. Moreowene directly
recovers this result by writing the term )¢ of the development of. In the case
R? — R?, the singularity is represented by the equationx’ —xy, in whichf sends the
plane &, y) onto the planey( 2. We shall return to this in a more general case,
moreover.

3. p = 3. — Here again, one has only one critical%e&in S, that is a true surface; one
has exceptional curveS;(S;) and super-exceptional poin&(Si(S1))). In the target
space, the exceptional curves have images that arescafuegression of surface of
critical values. In general, a ma’ — R® presents points of corank at the target equal
to 2; they are cuspoidal points. Here we seetti@tritical value surface does not, in
general, present cuspoidal points.Therefore, a critical value set presents stable
singularities other than the generic singularities, anwreover, certain generic
singularities for the dimensions considered may not ptefemselves. The local
equations for the mafR® - R? in the neighborhood of a super-exceptional point that is
taken to be the origin may be written in the form:

X=X, Y=y, Z=zy+2x-7"

The critical surface is defined b%éz y + Zx —47 = 0, and its image in th¥Y-
z

plane, which is defined by the parametric representatiorairz. X = x, Y = —2zx + 42°,
presents a singularity in the form of an exceptionalcafitpoint R> -~ R*. The third
coordinate:

Z = 2(-2zx+ 42°) + x - 7' = -Px + 3,

defines the “ventilation” of this singularity iR®.

For the sake of completeness, we also mention therigesingularity of a map
R? . R®. It amounts to the se%, which is composed of isolated points. In a
neighborhood of such a point, the map is representeldebgdquationsx = u, y = uv, z =
V% it amounts to the classical cuspoidal point of a saerfa@ne knows that such a point is
the extremity of a curve segment of the self-intetiea u = 0 whose image is the z-axis.
The manifold of self-intersection therefore presergmgularity of corank 1 at this point.

4. p = 4. — The casR®_. R’presents a unique singularity, which isQrthat is a
curve of cuspoidal points (topological product of the simifylaR® — R*with R.); this
curve may, moreover, itself present exceptional alitpoints that may give rise to
regressions.

The interesting case is presented by the niips R*; S is then composed of a 3-
dimensional manifold that may itself present exceptiGand super-exceptional critical
manifolds that one may easily specify. However, tas, moreover, af that is
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composed of isolated points that are singular pointgforA system of local equations
in the neighborhood of a point &f is given by:

X = U, y=v, z=W+t%, Z=uw+wt

Indeed, if one forms the coefficient matrix of tlaagent plane to the graph then one
finds:

and, as a result, the derived nfags regular on the Schubert cydfe with the normal
coordinates oF; given by the elements of the lower right-hand submatr

For the mapsR® - R*, S is vacuous; likewise foR" — R*, n> 5. We conclude
these particular considerations and begin the studynargesingularities.

Critical manifoldsS.. Local generic form. Existence.

Up to the present, we have not shown the actual exetehaon-vacuous critical
submanifoldsS when their generic codimension allows this; i.e., whenr(n — p + 1).
Their existence is not obvious; indeed, if we are givemapg: R" » GP then it is, in
general, impossible to “integrate” this map, i.e., mfa mag: R" - R such thag is
its derivative. g must satisfy integrability conditions that are expedsgor example, by
the symmetry of certain coefficients. This is wh téxistence of a map whose

derivativef is t-regular on the Schubert cydfe necessitates a proof. If we are given a

system (1, W, ..., Upr, Xor+1, ---, Xn) Of cOOrdinates inR" then we consider the map into
R with coordinates\, Uy, ..., U=, Yor+1, ..., Yp) that is defined by the equations:

Um = Um, m=12 ...p-r
Yp-f+l :Z(Xp—rﬂ)z ,

Ypr+2 = U1 Xpr+1 + UoXprs2 + ... +UnpXa;
Yo++3 = Unper+1 Xpr+1 + Unpare2Xpre2 + .

and so on, until we have exhausted all of the bslJ;. However, this may not
happen because there goe(r) variablesU;, and one disposes af{ 1) quadratic forms
Yo-r+j» ] > 1, which each contaim - p + 1) coefficients, and one hag €1 > —p +7r)
of them such that > r(n — p + 1), as one initially assumed.

oY ...
The critical se§§ of the magf is then a plane defined by the linear forms®™ =

aXn—p—r+k
0, forms that are(n — p + 1) in number. If one specifies these forms;atnduy then one
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confirms that the set of these formauatindx; has maximum rank, which is equalr(@
— p +1). From this, one deduces that the derived najs t-regular on the Schubert
cycleF;.

Therefore, all of the critical setS with a non-negative generic dimension are
essentially presented, and may be realized by algebis that are expressed locally
thanks to the quadratic forms. It remains to be knownd-this is a problem that we
defer — whether any generic point ®fadmits a local chart in which the mapas the
form above. We treat the problem only in the cagé@fjeneric points ;.

Case of points of corank at the target equal (o = p) (cf. [9]).

At such a point, there exists a local chaxt (1,4, X) in which the map intdR” (Uy, Uy,
..., Up1, y) takes the formt; =u;, j= 1, 2, ..., p -1,y = (U, Xpa+) + ..., in whichg is

a quadratic form inu andx; by a change of variables that is a homeomorphisnmef t
source space tangent to the identity at O, one may ashaty is reduced to the just the
guadratic formp, and that the terms of higher order have disappeareddieover, one
may add an arbitrary quadratic form in the) (o y. This amounts to performing a
homeomorphism of the target spaRé that is tangent to the identity at the origin. eTh

condition oft-regularity of the derived map may be expressed by the fact that the- (

p + 1) linear forms(,)xf—y are linearly independent. Therefore, the rank of the #u;,
ot

X) may not be (generically) reduced by more thar ¢ +1). By subtracting an arbitrary

guadratic form iny; the reduced forng(0, x) that is obtained fow; = 0 has rank at least

-2(p -1).

It is clear that the index of the quadratic form riettd to the plane = 0, ¢(0, x) is
an invariant. One may interpret this in the followingnmer: suppose that the poit 0
is an ordinary critical point. The mdphas maximum rank on the critical manifoldxat
and, as a result, gt= f(x), the image of the critical manifold is a regularlybsdded |§ —
1)-dimensional submanifold oR?. Consider a lineR*, which is transverse to that
manifold aty and letQ be its inverse image undker In general, it is a submanifold Y and
the restriction of to Y defines a functiof:Y — R'. The index of this function, which
presents a critical point atin Y, is the index of the forng(0, y). One calls this the
“transverse indéxof the indicated poink.

If one wants to analytically express the condition & critical point to not be
exceptional, then one must express that the fmam the tangent plane t6 has
maximum rank, therefore its kernel is null. Now, ie #pace of vectors tangentI&J at
O, f has a kernel composed of the« p + 1)-planeu; = u, = ... = up1 = 0, and the

tangent plane t&;, which is defined by(%: 0, is nothing but the plane that is conjugate

]
to the kernel of with respect to the cone of second degree that is ddfyexu, x) = 0.
Now, a plane and its conjugate may admit a common ling ibttie plane is tangent to
the cone along this line. This amounts to saying thathijperquadric that is defined
projectively by the equatiog(0, X) = 0 admits a double point. The exceptional critical
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points are therefore characterized by the fact thatqtredric ¢(0, x) = O presents
multiple points. On the contrary, at a generic pdimt quadric has no singularity, and
conversely.

Thus, it is easy to determine the topological strucitiree point that is not exceptional
whose corank at the target is equal to 1. Indeed, oneassyme that the variables
(thereforeU;) are chosen in such a fashion that the tangent plane trritltal manifold

in the target spac®"is defined byY = 0. This imposes the condition that the tangent
plane toS; atO must be the plane that is definedXay+ = 0. Under these condition¥,
takes the form:

Y=2a(x)(%),
in which the terms imix; are zero.
One then sees that the singularity is nothing butdpeldgical product of the may
R"P* . R' that presents a critical point at the origin witspace, (that of tha = U)).

Generic exceptional critical points.

Let O be such a point. At the poif the critical manifoldS; admits a tangenp(—1)-
plane, which one assumes to be parameterized by thdima@su,, uy, ..., Upo, V. One
supposes that the functionsare chosen in such a fashion that they have total mrk (

2) on this tangent plane, and the kernel of the prolongedf is the lineu; = 0

parameterized by the function, Under these conditions, the restricted mhap S may
be defined by the formulas:

Ui = u;, i=1,2,..p-2; V=374
We complete the system of coordinateRdf with:
(U, Up, ..., Up2, W, V, Y1, ..., Xn),
and those ofR” with (Uy, Uy, ..., Up2, W, Y). One then embed into R" by setting:w

=V = 3/ and since the map R" - R" is defined byJ; = u, W=w, Y will begin with
a quadratic form iny, v, x). However, the critical se§ is then defined by the

equationsgl =0, Z_Y: 0. Since this set must be identified waih which is defined by
X vV

x = 0, andw —3v* = 0, one sees that =wv — V +Y (x,)*, in which)_(x,)’is a
guadratic form of rank strictlg — p In this reduced form, one sees that the singularity is
the product of the singularitR" "> . R? that is associated with a regression point of
the apparent contour curve with a SpRE€ (that of theu; = U;).

One easily verifies that the transversal index on teduced form at an ordinary

critical point that is close to an exceptional poir@tries by a unit when this point
traverses the manifold of exceptional points.
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Several results on the exceptional singularities.

The explicit description of “all” the generic singutsgs of the differentiable maps
obviously appears to be a quasi-chimerical task. On thigdy one may at least pose
the prejudicial question of their existence. One hasadly seen that all of the critical
manifoldsS of corank at the targetexist when the dimensional conditions of theorem 2
are satisfied. In turn, one may demand that the shené¢rue for the exceptional
singularities. The response is affirmative when @ndealing with super-exceptional
singularities of finite ordek, provided that th& singularities are “banal,” i.e., of corank
1. It is negative, in general, for singularities ofastde greater than 1. We show:

The existence of super-exceptional singularities of arbitrary ondeln that all of the
components of the singularity are of corgakthe targetequal tol.

This amounts to constructing a mapR" — R such that ifS:1 denotes the critical
manifold of § (which is assumed to pass through the or@jnthen the poinO is a
critical point of corank at the target equal to 1, gentyicer all restrictionsf|S, j = 1, 2,

k —1, and proceeding by recurrencelonWe assume known a mgpR®™ -~ R"™ such
that O is a critical point of corank 1 for all the successiviical manifolds (which ar&

— 1 in number). Since the mdps of corank 1, one assumes that one may fnd %)
functionsu, up, ..., Uy that are preserved by the map. Upon completing thestidns

u with a p — 1)" functionv one obtains a system of coordinates in the source spac
which the mag intoR°*with coordinatesi, Uy, W) is expressed by the equatiols:

= u;, W= h(u, v); his a polynomial of degreke One then immerses the source space
RP™ into a spaceR" of coordinatesy(, W, V, %-.p+1, ..., %) by setting:X,p+1 = 0; W =

h(u, v). One then sets:

Y=wv - [ h(y, ) dve Y () (P)
One immediately verifies that the map
R" (Ui, W, V, %-p+j) - RP (Ui, W,Y)

is defined by the equationd; =u;,i =1, 2, ...,.p—2; W=w;, Y = the polynomial R) that
answers to the desired conditions. One sees that Wmopaal that serves to definéis
then of degre&k + 1. Indeed, in the case &f (k = 1), it suffices to define¥ as a
guadratic form.

Inexistencgin genera) of an exceptional singularity of cora@k

Consider a mafi R" ~ R®, n>5. The critical manifold, is of dimension 4. At each
pointx 0 S; the plane that is tangent $pis mapped intdR®> with a rank equal to 4. One
may thus see whether the manif@dpresents exceptional singularities of typ€S,) of
corank 2, which will thus be isolated points. Hor= 5, it is obvious that such a
singularity is impossible. Indeed, at a generic pofingo the kernel of the map has
dimension 1 in the space of tangent vectors (corankAk)a result, alR* may not be
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mapped onto afR® byf. Forn = 6, this argument is no longer valid. Take a system of
coordinatesu, v, x, y, z, in R°such that the 4 functions, v, x, ydefine a map of
maximum rank orR*. Then take a system of coordinates, X, Y, Z) in R® such that

U=u V=v, X=X Y=y. The critical se§ is then defined by the equatio%szrz 0 and
z

%—f: 0. The tangent plane must contain the kerndj ohe may suppose that it is the

planeu = v =0. One obtains this situation by setting:
Z=uz+vt+g(u,Vv, XY,z

in whichg contains terms of at least third order. A paramegficesentation o, in R°
ag _99

is given by the 4 variableg,(y, z, } and the equationsix :_6_ V= St As a result,
X
the tangent plane t8 at the pointX, y, zt) will be defined by the matrix:
1l ox oy oz t]
X| 1 0 0 0
Y | 0 1 0 0
u; %9 9'g 0°g 9'gf
0z0x 0Dy 02> 0Dt
v| %9 0°g 0°g 0°g

otox atdy 0tz ot® |

The intersection of the image &f under the twice-derived map with the Schubert
2

2 2
cycleF, O G2 will thus be defined by the equation%% 99 _0 ?
0z 0z0t ot

three in number, instead of the four that normapipear. This proves that because of the
2 2

0°g _0°g
0zot 0dtoz
extension to a fiber bundle suchkspp 5) isnever t-regular. The critical se6,(S) will
exist, but it will be of dimension 1 instead ofaerin the casa > 6 one has, apparently,
an analogous conclusion. Here, we only draw attento this phenomenon, which
merits a more concerted study. In any case, ithasipes the difference between the
nature of the singularities of critical manifoldsdathe critical singularities, periotdl a
difference that we have pointed out previously.

=0. They are

integrability condition the intersection of(Sl)with the cycleF, (or its
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CHAPTER IV

GLOBAL PROPERTIES OF GENERIC MAPS

Recall that a propertyPj of mapsf: R" - RP” that are defined locally at any point of the
source space is called “generic” if the sef diat do not possess property (P) at one or

more points of a compactukhin R" form arare closedsubset (closed, without interior)
inL(R",R";r).

Passage from the local to the global.

If V' andMP denote two manifolds of dimension p, respectively then the space of maps
of classr from V" to MP, L(V", MP; r), is well defined and is a Baire space. One must
show that if P) is generic then the set of mapa/" — MP that do not possess property
(P) at one or more poind¢’ is ameagersubset of (V", M; r).

Let Kj be a compactum &f" and let D)) be the set of that do not possess property
(P) at one or more points &. One must show thab() israre in L(V", MP; r). Indeed:

1) (D)) is closed.This is true because ¢f belongs to the complement d@;) theng
possesses property)(at any point ofK;. The same must be true for agythat is
sufficiently close tay since P) is generic.

i) (Dj) has no interior point.Letg be a point of D). Choose an atldd; on V" and
an atlasw® on MP, such that the image of an open suli$etinderg is contained in an
open subsew, of WK Let G) denote an open neighborhoodgfn L(V, M) that is
sufficiently small that iff O (G) then the imag&V;) is also contained iW. As a result,
there exists a canonical mapf (G) into L(U;, W) that is defined by the restriction of the
map to Ui); h is obviously an open map for the Baire space topologtyishdefined on
(G) andL(Ui, W). SetKj =U; n K, and letZ; denote the set dfl] (G) that do not

possessR) at one or more points &f;. Z; is a rare set ih(U;, W)). As a result, its
inverse imageh‘l(Zi,-) in (G) is likewise rare in@). The union (over the variabilgof the

h‘l(Zi,-) in (G) obviously gives the intersecti¢@) n D, . It is therefore a meager set in

(G), hence it has no interior point, and, as a rethdte is @' J(G) in the neighborhood

of g that does not belong t®y.
If one then cover¥" by an at most denumerable infinitude of compauta ne will
deduce that the set bfl L(V", MP), which do not possess properB) @t a point ol is

represented dyJ(Dj). Hence, by a “meager” subsearg, if V" is compact; there are

only a finite number okK;).
As an application of this theorem, we cite:
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THEOREM 4. —Any real numerical function on a manifold may be approached
arbitrarily closely (as well as its derivatives up to ordgrby a function that possesses
only non-degenerate quadratic critical points.

It is clear that one may state an analogous theoogmary system of generic

singularities R" — RP once one has obtained an exhaustive description ok thes
singularities. For example:

THEOREM 5. -Any map f of a manifold6nto the planeR® may be approached by
a map g that has only a critical curve of corank at the target equa) amd is without
singularities in V. By projection ontoR?, the critical curve will possess, other than
self-intersection points, ordinary regression poiithages of the exceptional critical
points.

Some generalitieson generic maps.

We first give several definitions.

Differentiable set. — A subseE of is R* calleddifferentiable of class if at any point
x of E there exists a neighborhoat} of x in R*and an ideal (with a finite basis) of the
ring of differentiable functions of classin Uy such thatU, n E is the set of points that
annul all of the functions of the ideal. One may asstimtE is defined by a “coherent
system of ideals” relative to an atléf that coversE. [In fact, any closed set is
differentiable in the preceding sense. In the sequelassemes, moreover, thatis a
manifold with singularities On the basis for the ideal, the functions have partial
derivatives of non-null finite order at any pointif

Differentiably isotopic sets. — Two differentiable sets, E' that are both defined by a
coherent system of ideals in the same open sihsétR* will be called differentiably
isotopic if there exists a homeomorphismU — U that reduces to the identity on the
frontier ofU, and transforms the system of ideals relative tato a system relative tf .

Locally isotopic sets. — Two differentiable sets, E' will be called locally isotopic if
there exists an atldd; on a common neighborhoadi such that the intersectiorisn U,

and E'n U, are differentiably isotopic in eadh (the homeomorphismis of U; do not
necessarily reduce to the identity on the frontidd;pf

Continuoudly isotopic sets. — LetE be a differentiable set that depends continuously
on the parameter, one says thaE remainscontinuously isotopic to itseif for every
value oft there exists a homeomorphidmof U that transform< into E;. There is a
similar definition for locally continuously isotopiets. In that regard, we have the
theorem:
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THEOREM 6. — Twolocally continuously isotopidifferentiable sets arglobally
continuously isotopic.

Proof.— One forms the produ®* xR in which the factorR is parameterized by
In each product, xR the homeomorphisihi(t) allows us to define a directiddy at any

point y on which one may assume thatas maximum rank. To any pomt] U, xR,
one associates a vectd(y) that is non-null at any point aJ, xR and parallel tdDy .

Let (ci(y), ydU) be a partition of unity subordinate to the atllas One associates the
vector Z :Zc,(y)\{(y) to any point ¥, f). The vector field thus defined has rank 1

everywhere on theaxis, and its integration gives a system of trajeesotiat defines the
desired global homeomorphidnt). Moreover, one may assume that the complement to
U is covered by an elemeXtof the atlas, on which one takes a field that is perd the
t-axis. With these conditions, the homeomorphisft) so obtained reduces to the
identity outside otJ.

A fundamental lemma: Suppose that the sEtis defined as the inverse image of a

submanifold by a-regular map of the spacR* that containsE. E is then itself a
submanifold. If one deforms the mdpsufficiently little then the seE remains
continuously isotopic to itself.

It suffices to show thaE remains locally continuously isotopic to itself. T@of
has been given in [8] (Isotopy Th., I.5). This resultthen generalized to the
differentiable sets that contain singular points.suffices to assume that each of these
manifolds of singular points is itself defined as the isggmage of a submanifold byt-a
regular map, so the extension of a manifold of singopdants in a singular manifold to
which it adheres is itself defined byt-aegular map. If these conditions are satisfied then
for a sufficiently small deformation of the mBgemains continuously isotopic to itself.

One may define a mdpR" - RP to be generic at the source as follofws.generic
at the sourcef each of the critical manifolds df (simply critical S exceptional and
super-exceptional critical) may be defined as the invearage of the submanifold byta
regular map (which is canonically defined by “derivationdrgng withf).

By this, one intends, for example, either that¢hcal manifoldsS are defined as
the inverse images of Schubert cycle®y¥the derived map , which is assumed to ibe

regular onF,, or that the exceptional manifolds are themselves ialserse image of
certain cycles of folded manifolds, etc. As far as thisoncerned, one must note that
there is reason to take into account the phenomembnvis pointed out at the end of the
preceding chapter, namely, that the derived maps ararbitary. This may have then
the effect of reducing the codimension of the cycle dedihes an exceptional manifold.
If these conditions are satisfied then any suffidyesinall deformation of the mapwill
define a continuous isotopy of the &xbf critical manifolds (simple, exceptional, super-
exceptional) into the source spaRe.

Now consider the s&S) of critical manifolds. One may think that it resutsm the
preceding fact that for any sufficiently small defotima of f the setf(S remains

continuously isotopic to itself in the target spa®. This is true only for “almost all”
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maps. Indeed, if we are given a differentiable leap R" and a mag:E - R" then
any f may be approached by a mgghat is “generic at the target,” which enjoys the
following characteristic property: for any sufficiensynall deformation of the setg(E)
remains isotopic to itself. (We simply accept thisule since the proof seems to be
difficult without some prior analysis of the generingilarities.) In the case €S, the
situation is then further complicated by the fact the generic singularities of the
critical manifolds are of a special type.

With these conditions, if a mdpV" -~ MP is generic at the source and at the target
then one may conjecture the following: to any rhaghat is sufficiently close to thi
one may associate a homeomorphisnof V' and a homeomorphisin of MP such
thatf,h = j,f. The (non-unique) homeomorphismsand| are close to the identity,

depend continuously oft, and reduce to the identity fif tends tof. We shall establish

this fact completely in the case of maps 8fivto R* (functions).

A function onV" is generic at the source if and only if it possessey oah-
degenerate quadratic critical points. Moreover, it willgemeric at the targetf the
corresponding critical values are all distinct andtéinh number. Let; be the critical
points off and letc; = f(q;) be the corresponding critical values, which are alliaged to
be distinct. One assumes that we are given a defimmf&) of f (by approximating the
derivatives of orderm, > 2) such that the critical valugs, g(t)) remain distinct. One may
consider this deformation to be a nfapf V" x | into R" x I, such thaF maps {", t) into
(R, t). In the target space - viz.,R* - the trajectories of the critical valu§s, g(t))
are given, and one may admit that they cut the liresonstant transversally. Since
these trajectories remain distinct, one may defiheraeomorphisrh § ) R such that

hi(g) = f(t, g(t)). One letsG denote the system of trajectories that are defined by
(hi(x), 1), for t variable. Each critical poirg; admits a fixed neighborhodd; in V" (U;
disjoint) such thatj(t) stays continuously isotopic to itselfh for t variable. Lek(t) be

a homeomorphism df :UUi onto itself such thak(t, g) = qi(t), and which reduces to

the identity on the frontier df). This homeomorphisrk(t), when completed with the
identity outside otJ, permits us to define a system of trajectori€s and the differential
dt is not annulled on the produet x | or on any trajectory ofK). Letk denote a non-
null vector that is tangent at each poinB# | to the curveK) that passes through that
point, and is a continuous function of that point (al agits derivatives). Let( 1) be a
point of V' x y, and let ¥, 1) be its image inR* underF. If x is (x, 1) critical for f(t) then
the trajectory ofX, 1), which is €i(t), t), is projected ontdR?along a ). Otherwise,
consider the tangent plane & {) (which necessarily exists, sinEes regular on@)) to
the inverse imagé *(G) of the trajectory®) that issues from the poing, ¢). Let k' be
the projection along the directidr= constant that is orthogonal kan this plane. k' is
never null because its projection on tkexis is non-null. The integration of the vector
field k' gives rise to a system of trajector(is) that must replace the initial systeK)(
However, undeF the trajectorie@K’) project onto the trajectorie§). As a result, they
define a homeomorphisrk'(t) of V' onto itself such thatf: t (9k’ t(F h o f, which is

precisely what we had to construct.
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Some problems. —

1. Prove the preceding theorem (stability of generic mapsill generality, without
having to resort to a description of the singularities.

2. Say that a differential set0] V" is algebroidif it is isotopic (continuously or not)
to a setE’ that is defined by a coherent system of ideals of adgelfunctions (ofR" or
the algebraic variety). From the preceding theorem, it results that theokeritical
manifolds of a generic map into the source space, andethef critical values in the
target space are algebroid because one may apprbscdn algebraic map. Problem: Is
a setE that is locally algebroid also globally algebré)a

3. One has seen that if the differentiable &S’ are locally continuously isotopic
then they are globally so. What happens to this stateihone drops the hypothesis of
“continuity?”

2 n all of the examples that were cited in chapterdluper-exceptional generic singularity of orkler
always admitted a local algebraic representation in wbidy polynomials of degree at most+()
appeared. There are good reasons for showing whethé the general phenomenon.



The singularities of differentiable maps. 26

CHAPTER IV

HOMOLOGICAL PROPERTIESOF CRITICAL MANIFOLDS

The formula of theorem 2 that gives the generic codimarsf the critical se§ shows
that this difference depends only on the differemce ) between the source and target
spaces, with the coramifixed. From this, it results that any simple critisalgularity of

a mapR" -~ RP gives rise, upon topologically multiplying the sourcel aarget by a
factor R to a simple singularity of a maR"" — R, which one calls thestispensich

of the initial singularity. One easily proves that suspension of a generic singularity is
again a generic singularity and that the dimension ottheal set for the suspended
singularity is equal to that of the critical set bétinitial singularity plus one. These
considerations generalize to the exceptional and supeptewal singularities, but the
proof is too lengthy to describe here. Of course, nodfalhe generic singularities of

maps R™ —. RP" are suspensions. It is easy to see the necessdrpudificient

condition for this to be the case: a maR"" — RP" such thaf(0) = 0 is asuspension

at 0 if and only if the critical set of the minimunmainsion that is associated with the
singularity has dimensioke 1. By this, we mean that if one forms the sequence of
simple, exceptional, and super-exceptional critical gointa neighborhood dD, then
the manifold with the lowest dimension has dimensionUhder these conditions, one
may find a functiort in a neighborhood of that has maximum rank at any point on each
of these manifolds. This entails that the critiegtkshat are defined by the hypersurfaces
t = constant in the intersection of the critical nfialdis are “continuously isotopic” for
variable t, which shows that the malpis the suspension of a map which is the
restriction off to the hypersurface= constant. From this, it results that if a singtyeof

a mapf: R™ _ RP" is not the suspension of map frdRi to RPthen the critical set of
minimum dimension fof has dimension O; hence, it reduces to the ogin

Homotopy invariance of the critical cycles.

Let f, g, be two maps of the same manifMdinto a manifoldMP. Suppose thdtandg
arehomotopicand generic. One may then find a generic m&om Vx| into MPx| such
thatF(V, t) is in (M, t) andf = F|(V, 0),g = F|(V, 1). One may, moreover, assume that
coincides withf (g, resp), for values oft that are close to 0 (1, resp.). With these
conditions, form the critical sets of the map For example, the s& of F is a “pseudo-
manifold” with boundary whose boundary is composed ofcatlitsetsS of f and g.
These boundary manifolds are pseudo-manifolds themselvese, ey are cycles mod
2. It may possible be the case that s@mdoes not have a representative\ih @) and

(V, 1). Itis then the case that the corresponding &niuis not a suspension, and, as a
result, the corresponding singular points are isolatedtgoiThe local neighborhoods of
these points in the se8of F for j <r are always cyclic (they are quadratic cones), in
such a way that the existence of these points doesambtadict the statement that

anygj is a cycle modulo its boundaries M, ©) and V, 1). This permits us to state:
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THEOREM 7. —The critical pseudo-manifolds 8f corank r of two homotopic maps
f, g, of V' into M° define cycles mo#that are homologous.

REMARK. — In certain cases, one may substitute hogyoWwith integer coefficients
for homology mod 2. This will be the case, notably,ther critical cycles that are dual to
the Pontrjagin characteristic classes in an ori#atmanifold.

It is clear that the preceding result may be extendedxt®ptional and super-
exceptional manifolds. Nevertheless, one encounterfotlosving difficulty here: one
does not know the neighborhood of the isolated singulartpa@if the mag= into the
exceptional critical sets. Meanwhile, there is littte doubt that they are all cyclic
neighborhoods. The proof may be carried out expliciilythe case of exceptional
singularities of corank one for small dimensions for Wwhibere are no exceptional
singularities of corank 2, namelyp < 4.

Suppose that the critical sgtexists (forf, g, as well as foF), and that for these three
maps the critical s&k.1 has a strictly negative critical dimension. Witkgh conditions,
S is a submanifold with boundary M' x | whose boundary consists of the sgt$or f
andg. Therefore, in this case one sees that the dritiades may be realized by true
submanifolds and that these submanifolds laegjuivalent in the sense of [8] (hence,
they are cobordant).

An important particular case. — The target space is a Euclidean spRée Suppose
that we are given a mdpof a compact manifold/" into a Euclidean spac®*. The
homotopy classes of the critical sets of this map @adepend on the mdpsince all of
the maps o¥/" into R* are homotopic.

One may suppose thef is regularly embedded in a spaB&*™ in such a fashion

that the magf is given by the projection oR**™ onto thek-plane R* of the firstk
coordinates. With these conditions, the criticak Setare inverse images of Schubert

cyclesF; of the Grassmannia@™" " underf . The homology classes of the cycs
may therefore be calculated. Recall that:

1. The cohomology class that is dualSgofor a map oV" into R*, p <n, is the Stiefel-
Whitney class\V'?*,

2. The (integer) cohomology class that is dualSofor a mapV" - R* is the
Pontrjagin clas®* (its mod 2 reduction isA?)?).

Apropos of property 1, it is interesting to remark tlata mapg: V' — R™* the
critical set of corank at the source 1 (which has tineesdimension as the critical set at

the target 1, for a map of" into R™*) has a homology class that is dual to the class
W,., , with the notations of Whitney.

COROLLARY. —Aninvariance theorem for the characteristic classes
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Suppose we are given two manifoMsV' of the same dimension, and we assume
that following:

1. Vandv'have the same homotopy type.

2. There exists manifold with bounday that admitsvV andv'for its boundary, and
which has the same homotopy type as the produdt(or furthermore: such that
andV'are retracts).

With these conditions, the map @finto a Euclidean space of the forfRf x | (V is
mapped intaR* x 0, andV' is mapped int®* x 1) permits us to state:

V andv' have characteristic classes (Stiefel-Whitney and riggm) that correspond
to each other under the isomorphism of homotopy types.

Of course, this result says nothing about the Stéfielney classes, which one
knows are determined by the homology type\Bf However, the result is very
interesting for the Pontrjagin classes. Indeed, ona/&itbat there exist manifolds of the
same homotopy type whose Pontrjagin classes do na&spomd. (They are fibrations of
spheress® overS*:; cf [2]).

Homology class of the critical cycle of map f: V' - MP.

Let § be the critical set of corank at the target of a mayf of V" into MP (p < n). f has
maximum rank on the complementﬁq and, as a result, the space of tangent vectors to
V" decomposes at every point\é‘f—§ into a direct sum of two vector spaces: the kernel

R™Pof the extended map, and a transverse subspaRé, which is mapped onto the
tangent space of vectors to the target space isomodghicalerf. From this, it results

that onV" =S one may write the multiplication relation betwetbie “Stiefel-Whitney

polynomials” that says that the space of tangentovect any point of" —§ Is the sum
(in the sense of Whitney) of the two preceding fibeBnce the fiber space with fiber
RP is nothing but the fiber space that is induced by the tarsgpaces to the target under

the map, one may deduce that\é‘n—§ the image (under the injection orw6—§) of
the Stiefel-Whitney polynomial ZV\/itj of V' is “divisible” by the polynomial
D 79Ut , which is the image of the Stiefel-Whitney polynompalu ;t’ of MP under
f. Now, if one formally carries out the division (forcreasing powers) OZV\/itj by
D> f9U)t’, and one stops the division at the term of the quofient™ then one

generally obtains a remaining polynomial of the forEI”‘p“c l<i<n.

n-p+i
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From this, it results that the classgs.+, i = 1, ..., p must have a null image M’
=S . In particular, sinc&§ has dimensiop —1 only one cohomology class is annulled
by the injection homomorphism:

Hn—p+1(vn) . Hn—p+1(vn_ g),

namely, the dual class of the fundamental cycld—l‘?ﬁ1(§) under Poincaré-Veblen
duality. One thus has the theorem:

THEOREM 8. —For any map f of a manifoldd" into a manifoldMP (n > p) the
homology class of the cycle of the critical points of corank at thettargedual to the
coefficient of the term of degree n — [ that appears in the remainder of the division of
the Stiefel-Whitney polynomial of by the image of the Stiefel-Whitney polynomial bf M
underf.

One will remark that all of the classes,+i have null images in the complement to
S . One may interpret this result as follows: the hagglclasses that are dual to the

Cn-p+i Nave representative cycles whose support is conterinﬁd [

I know of no practical procedure for the determinatiébthe critical setsS of f of
corankr > 1. One may describe the theoretical procedure asaallone forms the
productP = V"x MP, and then the grapB(f) of the magf in P. P is the base for a fiber
bundleH whose fiber is the Grassmanni&f of p-planes that issue from the given point

x of P. In each fiber, one has a Schubert c¥¢(®) and the union of all the,(x) whenx
varies ovelP forms a cycleZ. Furthermore, if one associates to anyG(f), then-plane
that is tangent t&(f) atx then one defines a canonical sec@ff ) of H overG(f). The
problem then comes down to forming the interseatibthe cyclesZ andG'(f) in H. If
we project ontaG(f) then it will give the critical se§& . Here, the essential difficulty
resides in the determination of the homology ct#ss, a difficulty that seems to be not
in the least bit insurmountable, moreover.

Homology classes of the exceptional critical cycles.

If we are given a map V" -~ RPwherep < n then the critical se® is a pseudo-manifold
of dimensionp —1. One has an exceptional critical manifldon S, whose corank at
the source is equal to 1. One proposes to deterthen homology class mod 2 X¥{ in
V", a class that is independent Hf &s we saw above.

We first treat the case = 2, which is relatively simpler. One then knothat the
critical manifoldS; is a curve whose image in the plaRé(the apparent contour of the
manifold) presents a certain number of ordinaryesgjon points, which are images of
exceptional critical points.
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Let g be the number of these points. One assumes thamah#dold is compactn-
dimensional, and embedded in a Euclidean sRieeR", and that the map is the
projection of the first two coordinates, () onto the plane.

Let F1 be the Schubert cycle &'** that is formed fronrm-planes that project onto
R*along anR'. By associating any elemewptof F; with its projection inR?, one
defines a canonical map of F; into the Grassmannia®;, of unorientedlines in the

plane. Since is the inverse image of the intersectionfayof the image o¥/" by the
derived map, one may consider tlgais embedded if;. Now, sinceS is the union of
circles, it may be given an orientation, which is adoyr moreover. To each point of the
apparent contour(S;) we associate its oriented tangent. One thus defimespé of S

into the Grassmanniafa:;ll of orientedlines in the plane. This map is continuous at any

point of S, except at] exceptional critical points where it is discontinudtipasses from
the oriented line to the line oriented in the reverssee Since every continuous map of

a circle intoéll has an even degree @j by identification, one deduces that the degree

of the maph: S, - G/ is congruent t@, modulo 2.

Now, it is easy to calculate the degree of the imagdt suffices (when calculating
mod 2) to compute the number of points where the apparenbwd-(S;) admits a
tangent that is parallel to a given direction; for ragée, the directiory = 0. It then
amounts to the same thing as computing the number alatqtoints of the functiog on
V", a number that is equal, mod 2, to the Euler charaitex{/") (or furthermore, to the
Stiefel-Whitney numbew;,(V")).

As a result, we have proved:

THEOREM 9. —The number of regression points that are generically presented by
the apparent contour of a compact manifoltby projecting onto a coordinate plane is
congruent mo@ to the Euler characteristic of.V

We have used the following (perhaps well-known?) propertgassingif a system
of closed curves in the plane possesses only self-intersectionsgradsien points as
singularities then its clasgthe number of tangents that issue from a given paint
congruent, mo@, to the number of regression pointghis is a very curious real form of
Plhcker’s theorem.

Now return to the general case of a nfapf V' into R”, which we assume is
obtained by projectingy”, which is embedded iiR"*". Here again, the critical s&
will be considered as embedded in the Schubert &oe/hich is assumed to be reduced
to just its ordinary points).

To simplify, one will assume th& has no points of corank > 1, in such a way that it
is a true submanifold of dimensign - 1 that is dual to Stiefel-Whitney clag&®**,

Here again, one has a canonical map-pbnto the Grassmannia@é_l, of unoriented

(p—1)-planes, i.e., the projective spd(p—1). Leth: S - G;_l be the induced map on

the critical manifold, which is considered to be embedddd.i One must determine the
obstruction to the lifting of the mdpto a magh' of § into the Grassmannian of oriented
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p-planes, which has the same dimensiorfié,_q. Let Z; in § be thep—2-dimensional
cycle that is dual to the cla¥¥ of the tangent structure to the manif@d This must
say that the complemeS8t — Z; is an orientablep-1)-manifold. Moreover, leX; be the
exceptional critical manifold 8. The embedding ilR" has maximum rank o8, —Z;.
From this, it results that on the complem&nt X; — Z; one may associate any point of
the imagd(S,) with its orientedtangent p—1)-plane. Therefore, o& — X; — Z; the map

h is the projection of a map' into the Grassmannian of orientge-1)-planes. OrX; +

Z;, the maph' extends by “jumping from leaf to leaf,” i.e., IBversing the orientation of
the (p—1)-plane when one traverses tpeZ)-cycleX; + Z;. From this, it results that the
obstruction to the existence of the mhapis given by the cohomology class that is dual
to the cycleX; + Z;, namely,Wy(S + D, whereD denotes the class that is dual to the
exceptional critical cycl;. Now, one may easily calculate this obstructletu be the

characteristic class of the lifting to two Ieavé,él - é,ﬁl . The obstruction to the lift of
the maph toéi_l is h*(u) = Wi(S) + D. Now, in G;_lz PR(p-1), u is the class that is

dual to the linear hyperplaf®@R(p-2). One then is down to considering the sefpel}-
planes inG;_l that contain a fixed directiorA]. Let () be the set of-planes in the

initial GrassmanniarG that project ontaR” along a p—1)-plane that containgf. If

Ha denotes the hyperplane Id° that is orthogonal toA) thenJ may be defined as the set

of n-planes inG! whose projection ontbla is a p—2)-plane. As a resulfl,is a Schubert

cycle F1 of G, and its dual cohomology class is the Stiefel-Wjt classWh-p+2 -

Therefore, letT) be a tubular neighborhood &) in V", and let:
¢ HPKS) OHX(V)

be the attached isomorphisng Y (whose definition and notation is in [7]). The
cycled n § admits the obstruction (u) as its dual class ir§(), and the clas®Vhp+2 as
its dual inT. Therefore:

Wh-pi2 = ¢ (h(U)) = ¢ (Wa(S)) + D).

Leti: S — V" be the injection 0§ into V' and letW,” be the Stiefel-Whitney class of
dimension 1 in the fiber space of vectors thatamnal toS; in V'. The Whitney duality
formula givesWi(S;) =i"(Wh) + W, . Now, formulas (8) and (32) of [7] gives: ( i" (W)
=W - ¢*(1) = Wi - Whper andg (Wh) =Sd @ (1) = 1'Whpe1= Wi Woper + (N —p +
2)Whp+2, from the formulas of Wu [12].

What finally remains isg (D) = (n — p +1) Whp+2. Therefore:

THEOREM 10. -The homology class m@mbf an exceptional critical cycl¥; is null
in S if the codimensiofn —p +1) of S in V'is even. I{n — p+ 1)is odd then the class
X1 is dual to the Stiefel-Whitney class W, in V.
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Remark— If the critical manifoldss; andX; possess singularities of corank > 1 then
the preceding proof is still valid if we consider théatiee homologies of5 and X,
modulo the singular sets, which changes nothing abodticdamental class of;.

The nullity mod 2 of the cycl¥; in the in the case where the codimensior  +1)
is even is, moreover, easily provedxathanks to the notion of thteansverse indexf a
singularity of corank 1. One knows that when one sgsesthe cycleX; in § the
transverse index varies by unity. One must, moreoeenark that sinceX; is not, in
general, an orientable neighborhoodSinthere is no reason to distinguish the index
from the indexc — q, if ¢ is the codimension. Now, i is even then by likewise
identifying the complementary dimensions any change afitairu the index leads to a
change of class for the index (an index may notdmestormed into its complement). As
a result, if one considers a lobpn S then the total number of index changes, hence, the
exceptional critical points o, is necessarily even, since the index must finally adénc
with the initial index or its complement. Henceresults thai is homologous to 0 mod
2inS. Ifthe codimensior is odd:c = 2k + 1 then the two indice&,(k +1) and k + 1,

k) are identified, in such a way that the number of exoegl points orL. may be odd.
One may state, moreover:

If the Stiefel-Whitney cladshp+» of a manifoldV" is non-null, and if n — p is odd

then the critical manifold of a map of \nto R always possesses points whose index is
(n—p/2.

This is true because the change of index from-(p/2 to its complement must
happen at least once for every ldogvhose intersection number wikhin S is equal to
1.

One may continue the study further, and notably stueyhihmology of super-
exceptional critical cycles. We point out this resulpassing:

THEOREM 11. —The number of super-exceptional critical points that are

generically presented by a map of a compact three-dimensional manifiitb\R* is
even.

This results immediately from the fact that any éhdémensional manifoldy® is the
boundary of a four-dimensional manifold with bound&®$. The super-exceptional
critical points inV? are then the boundary of a super-exceptional criticatecfor an
extension of to Q”.

In conclusion, there is no reason to doubt thatstiuely of the local and global
properties of the singularities of differentiable mapgrs an extremely rich domain to
research. At some point, it may be necessary to make attempt to distinguish the
problems and the methods that might be interestingherneighboring disciplines -
notably, Differential Geometry and Algebraic Geometry.



[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

The singularities of differentiable maps. 33

BIBLIOGRAPHY

S. CHERN, On the Multiplication of the Charaaséic Ring of a Sphere-Bundle,
Ann. Of Math.49, 1948, pp. 2.

A. DOLD, Uber fasernweise Homotopiedquivalenz voasdfraumenMath.
Zeitschr. Bd62, S. 111-136 (1955).

C. EHRESMAN, Sur la topologie de certains variélggbrique reélleslournal
de Math.,104 (1939), pp. 362-372.

M. MORSE, Functional Topology and Abstract Vaoaal Theory Memorial,
Fascicule 10.

F. ROGER, Sur les variétés critigues des systedeegunctions de plusieurs
variables... Comtes Rendug939, pp. 29.

A. SARD, The Measure of the Critical Values offerentiable MapsBull. Amer.
Math. Soc.\Vol. 48, no. 12, pp. 883-890.

R. THOM, Espaces fibrés en spheres et carrés etn&td Annales Ecole Norm.
Sup.,69 (3), 1952, pp. 109-181.

R, THOM, Quelques propriétés globales des variétdéérdiftiablesCommentarii
Math. Helv.,28 (1), 1954, pp. 17-86.

H. WHITNEY, Analytic Extensions of Differentiable Rations defined in Closed
Sets,Trans. Amer. Math. Sqc36 (1), 1934, pp. 63-89.

H. WHITNEY, Topology of Differentiable Manifoldsivichigan Lecturespp.
101-141.

W. T. WU, Sur les classes caractéristiqgues des gtagfibrées sphériqueAct.
Sci. et Ind.no. 1183.

W. T. WU, On Squares in Grassmannian Manifoktga Scientica Sinica/ol. |1,
pp. 91-115.



