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 The theory of the second variation of a simple integral with one unknown function that Jacobi 

founded in volume 17 of this journal and Hesse developed further in volume 54 was connected 

with the theory of linear differential equations with analytic functions as coefficients in the treatise 

by the author in Bd. 125, and indeed the foundations of the latter theory come under consideration 

in that way. 

 The assumption was made there that in a strip in the construction plane of the complex 

independent variables that includes the segment on the real axis between the limits of integration 

in its interior, the real function that is determined by setting the first variation of the integral along 

that segment equal to zero is a single-valued and continuous analytic function. The first and 

second-order partial derivatives of the expression under the integral sign that one takes with respect 

to the function and its differential quotients shall be single-valued and continuous analytic 

functions of the independent variables. Let the Jacobi condition be fulfilled that the second partial 

derivatives of that expression with respect to the highest differential quotients does not vanish 

between the limits of integration. 

 If those conditions are fulfilled then, as was proved in the aforementioned treatise, the curve 

that is found will have the property that the integral will be a maximum or minimum for it 

(according to the sign of the last second partial derivative) when one appeals to the family of 

neighboring curves for the sake of comparison, in general. In the present article, it will be shown 

that on the basis of Jacobi’s theory and the previously-applied theorems from the theory of linear 

differential equations, the restrictions that were made before can be essentially omitted. 

 Thus, under the given assumption, the maximum (minimum, respectively) of the integral will 

be assured from the outset with the originally-given integration limits when the curve that was 

found belongs to the family of neighboring curves and that family of neighboring curves is taken 

to be fully general. 

 These investigations into the calculus of variations might be dedicated to the memory of Jacobi 

as a contribution to the centennial of his birthday that falls in the year 1904. 
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1. – Review of the contents of Section One in the author’s treatise in Bd. 125. 

 

 There (no. 1), the integral: 

(1)  
(1) ( )( , , , , )

b

n

a

f x y y y dx  

 

is given, in which f is a real function of x, y, (1)y , to ( )ny . y is the unknown real function of x, ( )ry

= /r rd y dx , and a and b are real. y is set equal to y +  z, in which  is a quantity that varies in the 

neighborhood of zero, z is an arbitrary real function of x that remains finite and continuous from a 

to b, along with its derivatives up to order 2n, and vanishes at x = a and b, along with its first 1n−  

derivatives. Initially, z might be zero in arbitrary neighborhoods of a finite number of points 

between a and b. 

 The first differential quotient of the integral (1) with respect to  – viz., the first variation – 

must vanish for  = 0. That leads to the differential equation, in which one sets: 

 

(2)  
( )p

f

y




 = ( )( )pf y , 

namely: 

(3)  
2

(1) (2) ( )

2
( ) ( ) ( ) ( 1) ( )

n
n n

n

d d d
f y f y f y f y

dx dx dx
   − + − −  = 0 . 

 

y emerges from that differential equation as a real function between a and b that has given values 

at the endpoints x = a and b, along with its first n – 1 derivatives. 

 The second differential quotient of the integral (1) with respect to   − viz., the second variation 

– will be given by the following expression for  = 0. Let the notations: 

 

(4)   
2

( ) ( )p q

f

y y



 
 = apq , 

(5)  
r

r

d z

dx
 = ( )rz , 

and 

 

(6)  2  = (1) (1) (1) ( 1) ( ) ( ) ( )

00 01 11 1,2 2 2 n n n n

n n nna z z a z z a z z a z z a z z−

−+ + + + + , 

 

(7)   
( )rz




 = 

( )( )rz   

 

be given. In order to convert the expression for the second variation of (1), which comes about by 

differentiation under the integral sign at  = 0, while taking into account the fact that z vanishes at 

x = a and b, along with its first n – 1 derivatives, one considers: 
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(8)  
2

(1) (2) ( )

2
( ) ( ) ( ) ( 1) ( )

n
n n

n

d d d
y z z z

dx dx dx
    − + − −  . 

 

The latter expression can always be put into the form: 

 

(9)  
2

(1) (2) ( )

0 1 22
( 1)

n
n n

nn

d d d
z z z z

dx dx dx
− + − −A A A A  =  (z) , 

 

in which the An, An−1, down to A1, are entire rational functions of the quantities apq in (6), and 

whose derivatives with respect to x are: 

 

(10)  An = ann = 
2

( ) ( )n n

f

y y



 
. 

 

 The second variation of the integral (1) for  = 0 will now have the expression: 

 

(11)  ( )

b

a

z z dx . 

 

One must now investigate whether the expression (11) will keep one and the same sign for the 

various functions z. Since z vanishes at x = a and b, along with its first n – 1 derivatives, according 

to Jacobi’s theory, that will give the following representation for the integral (11): 

 

(12) 
(1) (2) ( ) 2

1 2( )

b

n

nn n

a

a u v w z dx , 

 

[Treatise in Bd. 125 of this Journal, no. 1, (30)] Here, u, v, w, etc., are n integrals of the 

homogeneous linear differential equation of order 2n : 

 

(13) 
1

( )
n

z
A

 = 0 , 

 

by means of which the n functions u, (1)

1v , (2)

2w , … that were given in loc. cit. are constructed. The 

latter functions shall be real, finite, continuous, and nowhere-vanishing along the interval from a 

to b. ( )n

nz  emerges from z by the substitutions: 

 

(14) z = u z1 , 
1dz

dx
 = (1)

1z  = (1) (1)

1 1v z , 
(1)

2dz

dx
 = (2)

2z  = (2) (2)

2 3w z , … 
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The expression that enters into (12): 

 

(15)  (1) (2) ( )

1 2

n

nuv w z  

 

was represented by Hesse (cf., the author’s articles in Bd. 125 of this journal, pps. 7, 8) as the 

quotient: 

(16)  
n




, 

in which: 

 

(17) n = (1) 1 (2) 2

1 2( ) ( )n n nu v w− −  

 

is the determinant of the n functions u, v, w, …, and its first n – 1 derivatives, and: 

 

(18)   = 1 (1) (2) 1 ( )

1 2( ) ( )n n n n

nu v w z+ −  

 

is the determinant of the n + 1 functions u, v, w, up to z, and their first n derivatives. 

 y will then emerge as a function of x with 2n constants by integrating the differential equation 

(3), and the latter shall be determined such that y, along with its first n – 1 derivatives, assumes 

prescribed values at x = a and b, where y is now real between a and b. 

 As was said in the introduction (for the details, see the article in Bd. 125 of this journal, pp. 

10), one then makes the following assumption: Let the function y to be determined be a single-

valued and continuous analytic function of x in a strip T in the construction plane of the complex 

variables x that includes the segment along the real axis between a and b. When y, 
(1)y , up to ( )ny  

are taken to be independent, the function 
(1) ( )( , , , , )nf x y y y  in (1) and its first and second-order 

partial derivatives y, 
(1)y , up to 

( )ny  shall be finite and continuous real functions of x, y, 
(1)y , up 

to ( )ny  along real intervals that include the values of those variables in their interior when x varies 

from a to b. Moreover, let the functions 
( )p

f

y




, 

2

( ) ( )p q

f

y y



 
 (p, q = 0, …, n) be single-valued and 

continuous analytic functions of x in the strip T, and let 
2

( ) ( )n n

f

y y



 
 = ann be nowhere-vanishing 

along the interval of x from a to b. 

 The quantity An = ann in (13) will not vanish in a strip like T then, and the theory of linear 

differential equations with analytic functions as coefficients could then be used as the basis for an 

application to the differential equation (13) in the treatise in Bd. 125 of this journal. That led to the 

following result: 

 Select a finite number of points 1, 2, up to  along the interval of x from a to b and then take 

consecutive subintervals: 
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(19)  1, 2, …,  , 

 

each of which includes a point  in its interior. Those subintervals can be chosen to be arbitrarily 

small, but they shall be fixed. There are n integrals u, v, w, … of the differential equation (13) in a 

strip like T that are single-valued and continuous analytic functions and are real when x is real, and 

n functions u, (1)

1v , (2)

2w , … as in (12) will emerge from them that will be single-valued and 

continuous non-zero analytic functions that are real when x is real in a region inside of T that 

includes the segment of the real line from a to b in its interior, except for the points  (a, b can also 

belong to them). 

 The integration path from a to b in (11) is divided into pieces, namely, the segments  in (19) 

and the segments between any two  (between a or b and the neighboring , respectively). The 

function z, which is real, finite, and continuous from a to b, along with its first 2n derivatives, and 

vanishes at a and b, along with its first n – 1 derivatives, is set equal to zero on the segments , 

but shall not vanish everywhere. The conditions on the functions u, (1)

1v , (2)

2w , … that allow one to 

express the integral in the form (12) are fulfilled on each of the remaining segments. That integral 

will have the sign of ann as long as z does not vanish everywhere there. The integral (11) will then 

have the sign of ann for every such function z. 

 In the present article, we shall also deal with functions z in the integral (11) that are finite and 

continuous from a to b, along with their first 2n derivatives, and vanish at a and b, along with their 

first n − 1 derivatives and do not vanish on the subintervals  in (19). 

 The generalization that was given in no. 3 of the treatise in Bd. 125 of this journal, which 

replaced the y +  z that originally replaced z in the integral (1) with z +  Z, where z is the previous 

function, and Z is a function of x and  with the behavior that was cited in loc. cit., will also remain 

valid for the z that is to be constructed now. 

 

 

2. – Addressing the problem that was posed in the conclusion of no. 1. 

 

 I. – At each of the points  on the subinterval  [no. 1, (19)], take n functions u, (1)

1v , (2)

2w , … 

as in [no. 1, (12)] that are single-valued, continuous, and non-zero analytic functions of  and in 

the neighborhood of  and are real when x is real by means of the homogeneous linear differential 

equation 
1

( )
n

z
A

 = 0 in [no. 1, (13)]. That will happen as a result of what was given on pp. 11 in 

the treatise in Bd. 125 of this journal. Let the segment  in [no. 1, (19)] be a segment in that region 

along the real axis between a and b that includes only one of the points  in its interior. Let the 

endpoints of  be a  and b . Now, the conditions on the integral: 

 

(1)   ( )

b

a

z z dx
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that lead to its representation as in [no. 1, (12)] are fulfilled by means of those functions u, (1)

1v , 

(2)

2w , … Thus, if the function z is an arbitrary real function along the interval  that remains finite 

and continuous, along with its first 2n derivatives, and vanishes at a  and b , along with its first n 

– 1 derivatives, but not everywhere, then the integral (1) will have the same sign as ann . 

 Let the endpoints of the interval  in [no. 1, (19)] be denotes by  , in general. (The points a 

or b can also belong to the points  .) The integral [no. 1, (11)] is equal to the sum of the integrals 

between each two successive points   and the integral between a (b, respectively) and the next 

point  . Let the function z in [no. 1, (11)], which is real, finite, and continuous from a to b, but 

not equal to zero everywhere, along with its first 2n derivatives, be equal to zero at the points  , 

along with its first n – 1 derivatives, in addition to the points a and b, but otherwise arbitrary. From 

what was said in no. 1 and in the foregoing, the integral [no. 1, (11)] will then have the same sign 

as ann . 

 

 II. – Once more, exhibit n functions u, (1)

1v , (2)

2w , … by means of the differential equation  

1
( )

n

z
A

 = 0 in [no. 1, (12)] that are single-valued, continuous, and non-zero analytic functions 

that are real when x is real at any point   in I and in a neighborhood of that point. Let   be a 

segment in that region along the real axis between a and b that includes only one of the points   

in its interior. The subintervals   around the various points   shall be taken to lie consecutively. 

Let the endpoint of one interval   be a  and b . 

 Let the z in [no. 1, (11)] be replaced with s + (1 + ) t on the interval  , where  is a real 

constant. The real functions s and t shall be finite and continuous from a  to b , along with their 

first 2n derivatives, t shall vanish at a  and b , along with the same derivatives, but it shall not be 

zero everywhere. That will then give: 

 

(2)   
2

( (1 ) ) ( (1 ) )

( ) (1 ) ( ) (1 ) ( ( ) ( )) .

b

a

b b b

a a a

s t s t dx

s s t t dx s t t s dx

 

 





  

  


+ +  + +



 =  + +  + +  + 





  

 

The integral: 

(3)   ( )

b

a

t t dx





  

 

will again have the same sign as ann then. The expression: 

 

(4)  
2(1 ) ( ) (1 ) ( ( ) ( ))

b b

a a

t t dx s t t s dx 
 

 

+  + +  +    
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will have: 

(5)  2(1 ) ( ) ( ( ) ( ))

b b

a a

t t dx s t t s dx
 

 

+  +  +    

 

for its differential quotient with respect to . That quantity might vanish for  = 1 . For  > 1, 

the change in the expression (4) as  increases will take place in the direction that is determined 

by the sign of ann . For positive values of 1 +  for which 1 +  > 2 (1 + 1), the expression (4) will 

itself have the sign of ann . 

 

 III. – Now let the function z in the integral [no. 1, (11)] be an arbitrary real function that 

remains finite and continuous from x = a to b, along with its first 2n derivatives and is equal to 

zero at a and b, along with its first n – 1 derivatives, but does not vanish everywhere The th(2 1)n +

derivative of z shall be finite and continuous along the interval x = a to b, except for isolated points 

that appear in a finite or infinite number. 

 The points   are the points that were defined in I. When z does not vanish at a point  , along 

with its first n – 1 derivatives, that point will be relocated as follows: By reducing the adjacent 

interval  in I, one can succeed in making that point   lie inside of an interval where z is nowhere-

vanishing and where, at the same time, the (2n + 1)th derivative of z is finite and continuous. Now, 

the interval denoted by   in II is now taken at one such point   such that it also lies inside of 

the aforementioned interval. The endpoints of   were denoted by a  and b  in II. 

 The given function z is set equal to s + t on this interval  . The function s is determined such 

that it is real, finite, and continuous from a  to b , along with its first 2n derivatives (coincides 

with z and its first 2n derivatives at a  and b , respectively), and that s vanishes at the point  , 

along with its first n – 1 derivatives. One such function s for x = a  to b (the corresponding 

situation is true for x  =   to b ) is the following one: 

 

(6)  
2 1 2 1

2 2

0 1 2 2

( ) { ( ) ( ) ( )},

( ) ( ) ( ) ( ) ,

n n

n

n

s x x x a x

x c c x a c x a c x a

  



+ + = − + −


  = + − + − + + −
 

 

in which  (x) is a real function that is finite and continuous from to a  to b , along with its first 

2n derivatives. The constants c0, c1, up to c2n are determined from the following equations in 

succession: 

(7)  

2 1

2 1 2 1

( ) {( ) ( )} ,

( )
( ) ( ) ( ) ,

............................................................................................

n

x a x a

n n

x a x a

z x x

dz d x d
x x x

dx dx dx

 


  

+

 = =

+ +

 = =

 = −

    

 = − + −   
   




 

 

by means of the values of z and its first 2n derivatives at x = a . 
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 The function z = f (x) has the following Taylor series development along the interval from x = 

a  to   with a remainder term in 
2 1( ) nx a +− , and in which one sets 

( )r

r

d f x

dx
 = 

( ) ( )rf x : 

 

(8)  z = 
2 1

(2 1)( ) ( )
( ) ( ) ( ) ( ) ( ( ))

1 2 (2 1)!

n
nx a x a

f a x a f a f a f a x a
n


+

+ − −
       + − + + + + −

 +
, 

 

and 0    1. When the function 2 1( ) ( )nx x +−  is developed in powers of x a− , that will give 

a polynomial in x a−  whose terms up to 2( ) nx a−  coincide with the ones in the development of 

z in (8), which is followed by an expression 2 1( ) ( )nx a x+− . 

 One has: 

(9)   z – s = 
(2 1)

2 1 2 1( ( ))
( ) ( ) ( ) ( )

(2 1)!

n
n nf a x a

x a x x x
n


  

+
+ +  − −

 − − − − 
+ 

. 

 The expression: 

 

(10)  
(2 1)

2 1 ( ( ))
( ) ( )

(2 1)!

n
n f a x a

x a x
n




+
+   − −

− − 
+ 

 = 2 1( ) ( )nz x x +− −  

 

has the same sign as z for x =  . If it is zero along the interval from   to a  then let that first be 

true at x1. Along the interval from x1 to  , the absolute value of: 

 

(11) 
(2 1) ( ( ))

( )
(2 1)!

nf a x a
x

n




+  − −
−

+
 

 

might lie below M.  (x) will then be set equal to a constant C such that for x1 up to a , the absolute 

value of: 

 

(12) 
2 1( ) nx C +−  

 

will lie above a value larger than M, and the sign of: 

 

(13) − 
2 1 2 1( ) ( )n nx a x C+ + − −  

 

inside of the interval x = a  to   will the same as that of z. Now, the difference z – s, which 

vanishes for a , will have the same sign as z along the interval from a  to  , moreover. 

 Now, the function t in z = s + t is real, finite, and continuous along the interval from a  to b , 

along with its first 2n derivatives, and equal to zero at a  and b . t has the same sign as z 

everywhere inside the interval from a  to b . s is non-zero at a  and b  since that is true for z. 
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 IV. – In III, the arbitrary function z was set equal to z = s + t along every interval that was 

called   there. z will now be taken to be the function that is equal s along each of those intervals 

  and equal to the original function z on the remaining intervals between a and b. Let the function 

that is determined in that way be denoted by (z). It is real, finite, and continuous from x = a to b, 

along with the first 2n derivatives, and vanishes at a, b, and the point   (I, III), but is not equal 

to zero everywhere, along with its first n – 1 derivatives. (z) then fulfills the conditions in I. When 

z is replaced with (z), the integral [no. 1, (11)] will then have the same sign as ann . When the 

original z from III occurs in the integral [no. 1, (11)], according to II: 

 

(14) ( ) ( ( ) ( ))

b b

a a

t t dx s t t s dx

 

 

 +  +    

 

will be added to it along each of the intervals  . Now, z = s + t can be replaced with s + (1 + ) t 

along one such interval  , where  is a real constant that is greater than or equal to zero and can 

vary from one interval   to another. The original z applies to the remaining intervals between a 

and b. Let the function thus-obtained be denoted by ((z)). It is real, finite, and continuous from a 

to b, along with its first 2n derivatives, and it vanishes at a and b, along with its first n – 1 

derivatives, but not everywhere. 

 In the integral [no. 1, (11)], in which ((z)) now stands in for z, one takes the positive quantity 

 to be above the value that was denoted by 1 in II on each interval  ,  such that the change in 

the total integral [no. 1, (11)], in which z = ((z)), with increasing  will proceed in the direction 

that corresponds to the sign of ann. According to II, there will then be further values such that the 

integral [no. 1, (11)] will continually have the same sign as ann for z = ((z)) as soon as the positive 

quantity  grows beyond that value along the interval  . 

 The original function z will then take on an increase  t along an interval   that has the same 

sign inside of the interval   that z possesses along that interval. 

 The information about the function z in the integral [no. 1, (11)] that was obtained in I and IV 

produces the generalization of the case that was considered in no. 1, in which z was set equal to 

zero along the individual subintervals between a and b. 

 

 

3. – The isoperimetric problems. (See Section Two of the treatise in Bd. 125). 

 

 The first variation of the integral [no. 1, (1)], in which y is set equal to y +  z, shall vanish for 

 = 0, while at the same time, the first variation of a different integral [treatise in Bd. 125, no. 4, 

(2)] shall vanish for  = 0. From [treatise in Bd. 125, no. 4], the function z can be expressed as: 

 

(1)  z = 
( )x

S


, 

in which ( )x  = d (x) / dx, and: 
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(2)   (x) = 1 1( ) ( )n nx a x b w+ +− − , 

 

while S is the differential expression that was defined in loc. cit, (4). w is a real function from x = 

a to b with derivatives up to order 2n + 1 that are finite and continuous and equal to zero in an 

arbitrary neighborhood of a finite number of points along the interval between a and b. Among 

those points are found the ones for which S = 0 since S is supposed to vanish at only a finite number 

of points along that interval; w is otherwise arbitrary. The vanishing of the first variation of the 

integral [no. 1, (1)] will then lead to the differential equation that was given in loc. cit. (13): 

 

(3)  Q – c S = 0 . 

 

Some assumptions are made about the function y that emerges from the differential equations that 

correspond to the ones that were given in the introduction and were exhibited in [treatise in Bd. 

125, no. 4]. Let the finite number of points between a and b at which S vanishes be 1 to  . Let 

the consecutive subintervals between a and b, each of which includes only one of the points  be: 

 

(4)  1 , 2 , …,  . 

 

They can be chosen to be arbitrarily small, but fixed. w will now be zero equal to zero on those 

subintervals and on the subintervals  in [no. 1, (19)], but it shall not vanish everywhere between 

a and b. The first variation of the two integrals will then vanish for e = 0, and the second variation 

of the integral [no. 1, (1)] will have the same sign as ann . 

 Since  (x) vanishes for x = a and b, ( )x  must go through zero between a and b. The 

generalization of what was said in [treatise in Bd. 125, no. 4] consists of applying the information 

in no. 2, I here. The function w in (2) shall now be real and continuous from x = a to b, and let the 

same thing be true of its derivatives up to order 2n + 1. w shall vanish on the subintervals , and 

it shall be equal to zero at the point   that was defined in no. 2, I, along with its first n derivatives. 

w is otherwise arbitrary, but not equal to zero everywhere between a and b. The integral [no. 1, 

(11)] will then have the same sign as ann . 

 The generalization that was given in [treatise in Bd. 125, no. 5], which replaced the z in z +  

z with z +  Z, where z is the previous function (1), and Z has the behavior that was given in loc. 

cit., will also remain valid. 

 

____________ 

 

 

 


