CONTRIBUTION TO THE THEORY

OF

HUYGENS'S
ENVELOPING-WAVE PRINCIPLE

BY

J. VAN MIEGHEM

TRANSLATED BY

D. H. DELPHENICH

BRUSSELS

PALAIS DES ACADEMIES
RUE DUCAL, 1

1936






TABLE OF CONTENTS

Page
INTRODUCTION . .. et ittt et e e e e e e e e e e e e eenaes 1
FIRST CHAPTER
Integrating the wave equation
1. ThE WAVE EQUALION. .. ...ttt et e e e e e e e e eaeeaaens 3
2. Integrating the wave eqUatioN...........coot it e e e e e 6
3. SPECIAI CASES. ..ttt 10
4. BICNAraCeriStICS. ... ettt it it e e e e e e e e e 12
CHAPTER I
Principle of enveloping waves
5.  Geometric construction of an integral surface fertlave equation............... 14
6. Principle of enveloping WavVesS..........ooiiiiiii i e 16
7.  Rays of the Wav o) .....ovvviiviiiiii i 17
CHAPTER 1lI
Waves and rays
8. Return to the homogeneous wave equation... . 19
9. Homogeneous differential system for the bIChaI’EBﬂESI (or space tlme rays) 20
10. Equation for the elementary HUYgENS WaVe..........cccoiiiiiiiiiiiiiieiie e, 23
CHAPTER IV
Wave transport
11. Metric on geometric space... e 24
12. Differential equations of the rays for A WAVE. ..t et 25
13. Wave transport in gEOMELriC SPACE... ... cuuieiie it it it eie e e eaenns 25
CHAPTER V
Jacobian form of the wave equation and Hamiltonian form of the rayequations
14. Jacobian form of the wave equation.............oooov it 28

15. Hamiltonian form of the ray equation................cooiiiiiiiiiii i 28
16. Case of a homogeneous medium..........coiiiii i e, 30
17, TransSPort VEIOCIY......ce it e e e e e e e e e e 32
18. HYPEer-refriNgeNCe. ... ..ttt e e e 34
19. Elementary Huygens wave in a homogeneous medium wigemetric is
Buclidian. ... ..o e 34



ii Table of Contents

P
CHAPTER VI
Reflection and refraction of waves

20. Incident, reflected, and refracted Waves.........coooviivi i
21. Applying the principle of enveloping waves.............c.ooo i
22. Geometric laws of reflection and refraction..........c..cveiii i

CHAPTER VII
Application of Huygens’s principle to the propagation of electomagnetic waves

23. Review of the general equations.............coooi it
24. Case of an inhomogeneous, anisotropic, non-absorbentrmed...............
25. Definition of an electromagnetiC Wave.............ccoviiiiiiii i e e,
26. Compatibility conditions.. .

27. Consequences of the compatlblllty condltlons

28. Partial differential equations of electromagnem/e\s e
29.  EleCtromagnetiC FaYS. ... e ettt et et s e et e e e e e e e
30. Elementary HUYQENS WAVE.......cciiiii it it e e e e e e
31. Case of a homogeneous medium. Fresnel wave surface....................

CHAPTER VIl
Application to second-order linear equations

A. —Waves and rays.

32, SecoNnd-Order @QUALION. .. ... ..ttt e e e e e e e e e
33, WAV EQUALION. .. et et e e e e et et e e e e e e e e
34. Differential system of the rays..........oo oo

B. —Geodesics of a quadratic differential form.

35, Preliminaries. .. ... o
36. Definitions and Lagrangian equations of the geodesics.............c..cccevvnenne.
37. Hamiltonian equations of the geodesiCS..........c.covviiiiiiiiiiii e
38. Jacobi's theorem.. .

39. General integral of the dlfferentlal equatlons of germde
40. Parametric equations for gEOUESICS. .. ... ..uiuiitiie ittt e e e
41. Differential Parameters. ... .. oot

C. —Elementary Huygens wave that is associated with
a second-order linear equation.

42. Lagrangian form of the bicharacteristic equation...
43. Characteristic Hadamard conoid and elementary Huygems 177= T

age

46
47
48
51

53

54
60
61

67
67
67

68
20
70
72
73
76
77

.81



INTRODUCTION

Chapter | begins with a review of the partial différ@requation forwaves. We then
study the integration of that equation by utilizing a mettiwat is different from the
classical one.

Chapter Il is dedicated to tlemveloping-wave principle of Chr. Huygen#/e show
that this principle results from the rule for integrgtthe partial differential equation for
waves. We will then define theay to be the locus of the point of contact of an
elementary Huygens waweth its envelope.

In Chapter 1ll, we simultaneously study waves and rajykey are nothing but the
bicharacteristics of J. Hadamardvhich are envisioned as one-dimensional manifolds,
either in geometric space or in space-time.

In Chapter 1V, we will define theransport of a wave in geometric spaeéh the aid
of the differential system of the bicharacteristic¥he introduction of the notion of
transport velocity of a wavebliges us to define the metric on geometric space. That
velocity will then be given by amnvariant consequently, it will have an intrinsic
meaning.

In Chapter V, we indicate how one can write thetigldifferential equation for
waves in the form of dacobi equation.The Hamiltonian form of the ray equations will
result from them immediately. When those equatiores applied to the case of
homogeneous physical media, that will permit us to estabbme remarkable results. In
particular, we will show that in the case of a Eueldimetric, the equation for the
elementary Huygens wave will be tpeint-like equation that correlates with the partial
differential equation for waves, when it is considet@ be a tangential equation.

Chapter VI is dedicated to theflection and refractiorof waves. We show that with
the aid of Huygens’s principle, one can construct redtb@nd refracted waves that are
produced by an incident wave, which is assumed to be giWa.then establish the
general geometric laws of reflection and refractionthe case where the separation
surface ignoving. Those laws are nothing but tbempatibility conditionghat relate to
wave functions, which are conditions that must befiedrat the separation surface in
space-time.

We conclude this monograph with two applications of Huygeesveloping-wave
principle. First, in Chapter VII, wapply it to the equations of electromagnetisAfter
recalling some general equations, among which, one findsvi¥lbs equations and the
differential equations of transport for electromagnetiergy, we look for the partial
differential equation for electromagnetic waves ia thse of amhomogeneoumedium.
That equation will lead ta generalization of Fresnel’'s equatiohe then show thahe
rays that are associated with the electromagnetic wave front aredjeetories of the
electromagnetic energyThe partial differential equation of electromagnetavesand
the differential system of electromagnetiays then represent thavave-like and
corpuscularaspects of the equations of electromagnetism. Morerglyn we have seen
(Chap. 1) how one can associate a differential systé mathematical physics with a
partial differential equation fowavesthat is compatible with the equations of that
system. On the other hand (Chaps. Il and Ill), weehs@en how the problem of
integrating that wave equation will necessarily introdiages along which the transport
of the waves takes place. Consequently, the analyaisldads us to statduygens’s
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enveloping-wave principlevill show both thewave-likeand corpuscular aspect of the
equations of physigsvave-corpuscle duality). We conclude that chapter \iighsiearch
for the elementary electromagnetic wave equation icélse of a homogeneous medium.
That equation will include the equation of the Fresnelexsawface as a special case.

Finally, Chapter VIl is dedicated to the study of thaves and rays that are
compatible with a second-order, linear, partial diffeedrgquation, when it is considered
to bethe fundamental equation of mathematical physitsat will lead us to mention
some general results that relate to the geodesicsgafdratic differential form that is
associated with a second-order, linear, partial diftlaerquation. We have obtained
those results by systematically utilizing Jacobi's diad inverse theorems, which will
result when a variational principle is applied to a quaddafferential form.




FIRST CHAPTER

INTEGRATING THE WAVE EQUATION

1. The wave equation— Consider a physical phenomenon whose mathematigal |
is expressed by the differential system of oider

Ho 2 2, G B0 )= 0 (1)

r,s=12....m
a,a,,....a,=12,..n

that is composed ah partial differential equations im unknown functiong’, ..., Z" ofn
independent variableg, ..., X", and in which we have set:

&z’ a,....a,=1,2,..n
Zyy = aa—z o ' (2)
v gx .. 0X r=12...m
Then™ variablex” will represent time; we can then set:
t=x"\ (3)

Suppose that the phenomena envisioned in space-fme..( xX"* ; X" = t) are
bounded by the hypersurfa@ewhose equation is:

Q) Q0 ..., X" =0. (4)

That amounts to assuming tlatthe instant,tall points that are found on one side of
the n — 2-dimensional surface of equation (4) in the 1-dimensionaggeometric space
(<}, ..., X" are under the influence of the phenomena in questionf &k points that
are found on the other side of that surface can havefluence on that instant.

Let | and Il represent the regions thus-definethatinstant in the geometric space

L X" let | denote the region that is swept out (Fig. 1) Then

(x,

Z=2Z (<, .., X" (5)

be the solution to equation (1) that represents the m@lystiate of the medium | at the
instant t The physical state of the medium Il the sameinstant is defined by the
solution:

Z,= 7, (¢, ., X ). (6)
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X (n— 1)-dimensional geometric spe

o3, XY

(n—2)-dimensional
n2  wave front at the
instantt

Figure 1.

Assume that the region | expands at the expensegofird; the (i — 2)-dimensional
variety of equation (4) that bounds the region | thawept out in geometric space,(

., X" at the instant is what one calls thaave frontQ -2 in physics. Then(— 1)-
dimensional surfac€-1) in space-timethat is defined by equation (4) constitutes a
synthesis of the progress of the wave frOg» in the geometric spacéx, ..., X"
when timet = X" varies.

That being the case, suppose that the functions (5)&rahd their spatio-temporal
derivatives up to order inclusive vary continuously when one crosses the warkface
Qn-1). Inthat case, one will have:

7 =7 0z, _ 0z 0z, __ 0%
' ’ X% AxE' X .-0x%E  AXT.-- 09X

[on Q-u)]; (7)

i.e., by virtue ofQ (x,t) = 0. As a result, the two solutiors, ...,z" and z , ...,z} to

equations (1) have contact of oraealong the wave surfad®-1). It then results that
the waveQ-1) is a characteristic Cauchy varietyf system (1) of partial differential
equation in mathematical physics.

Consequentlythe partial differential equation of waves thatasmpatible with the
differential system(1) of physics is nothing but the equation of the chemastic
varieties:

o(x',Q,)=

=0 (8)

n n n aHS
ZZ...Z{aZr JQ%...Q%
m=la,=1 a,=1 a

1" te

(r,s=1, ....m

whose left-hand side is a determinant of orderThe notation:



§ 1. — The wave equation. 5

oH,
07, 4

represents what one will obtain after substituting the:

)ttt Capea, n azr

- a,

with their values in (5) and (6) when one takes (7) agoount. The expressions:

oOH,
0z, .,

are functions of only the independent variabfes.., X" =t then. We have set:

)

Q
7 oxa

(=1, 2,...n). (9)

When the derivatives:
oH

S

0z

- a,

are independent functiorzs of their derivatives, the wave equation (8) will remgig
same for any solution of the differential system (The same thing will then be true for
the equations of mathematical physics that are lingdr respect to the higher-order
derivatives whose coefficients depend upon onlythe

By definition, any functioQ (x“) of the spatio-temporal variables such tfa(x?,
Q,) = 0 is arelative solutionof the wave equation (8). One says that the fun€igr”)
is an absolute solutiomf the wave equation (8) if one obtains an identityin..., x"
when one substitutes that function in the equation.

Any relative or absolute solution of the wave equaf®)rwill define a wave surface
Qn-1) In space-time when it is equated to zero, as well as a wave sWRfag) in
geometric space.

We remark that the left-hand side of the wave equat®)nig§ a homogeneous
polynomial with respect to the partial derivati@sg, Q», ..., Q. ; let i be its degree of
homogeneity. That being the case, solve equation {#)respect td; hence:

Q) t=t (< .., XY (10)
and

_25 (=12, ..n=-1). (11)
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It will then result from the homogeneity of (8) atid aforementioned definition of a
relative solution of the wave equation that the partial diffitied equation:

ot
O(xtaj 0 (12)

X

that one obtains by dividing the left-hand sidé&)fby Q)" will admit the functiort (x)
that is defined by (10) as an (absolute) solutibnequation (12)x represents the spatial
variablesd, ..., X",

Any relative solution to the wave equati@) will define an absolute solution of the
wave equatiorgl2) when it is equated to zero.

2. Integrating the wave equation— That amounts to finding a function:
t O, ..., X" (13)

of the f — 1) geometric variablex( ..., xX"™) such that when one substitutes it into the
wave equation (12), one will obtain an identityhn ..., X" (viz., anabsolute solutiop
Asin (11), we set:

ti=— i=12,..n-1) (11
here.
In the (21 — 1)-dimensional space efementgx’, ..., X", t; t1, ..., 1), We let:

X" bty Lt (14)

be the coordinates of a point-element in the {22)-dimensional variet§n-») of the
equation (12).
Now, let:
K, L, XL Ot Oty ..., Ot (15)

be the components of any elementary displacemahighangent to that varieB,—, at
the point whose coordinates are (14); one will thave:

[} 1 n—
X' = Zao ao 5t+zl—51; = (16)

By virtue of (11), one will have the relation that is called “casttaor “united
elements”:

n-1
A->t0x =0. (17)

i=1
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We then say that (14) representseégmentof an integral of the proposed equation
(12). An element of the integral surface — or wave:

t O, ..., X" (18)

of the equation is then defined by a point on that (1)-dimensional surface in space-
time (¢, ..., X", t =x") whose coordinates arg, ..., X", t = x” and the tangent plane at
that point that is defined Qdy, ..., th-1.

That being the case, we subject the elements of latraay integral of (12) to a
transport along the lines that are determined in the geienspace by the differential
equationsxt, ..., xX"™):

dx :
Tzdu i=12 ..n=-1), (29)

in which the denominatorX'will be specified later, and refers to a parameter. Now,
totally differentiate the function (13), conforming to eqmas (19); hence:

n-1
X _Fxs. (20)
du i=1

Finally, prolong the differential equations (19); herfoem (20):

dxX _ dt

X Zxktk

dt. .
:T_J:du (,j=1,2,...n-1). (21)
i

The functionsX' andT,; :

(=12 ..n-1) (22)

X=X 0, X bt t)
T=T(X,...., X" tt,...,t,)

are defined by the following conditiohe X' and T must be such that if the element
(14) of an integral surfac€18) varies according td21) then the relation$16) and (17)
will persist.

The element envisioned (14) will then continue to yettile proposed equation and,
at the same, remain a contact element when it @isplalong a line (19) of the geometric
space X, ..., X™). In order for that to be true, is it necessary arfficient that one
should have the transport relation:

du

n-1 n-1
d [5t—2ti 5x‘jEAd)* +B[5t—2ti 5x‘j, (23)
i=1 i=1
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in which A andB are undetermined. That identity relationdd, ..., &"*, Jt, oty ...,
Ot,-1 shows that if the contact condition (17) for an eletmaf an integral of (12) is
verified at a point of a line (19) then that will persatitalong that line. Replac®’ in
(23) with its value and invert the order of the operatbfsdu and J; after some easy
calculations, one will get the identity:

n-1 O (] n
Z[‘I}—B;+Aa;) j5X+[Aa£+ EJJHZ[ A‘% XJJJEO (24)
i=1 i=1
in o, ..., &L Ot dt, ..., Otn—1. Hence:
]
BE_AaO |
ot
]
X'= Aao , (i=12 ..n-1). (25)
ot,
O ]
Ta- aQ .90 ¥ E_!dQG
ox ot dx

Finally, replace theX' andT; in (21) with their values (25); we will then get the
differential equations:

dx dt dt, :
= = =dv i=1, 2, ...n-1), 26
00" ”Z‘%IGOD,[ : do’ ( ) (26)
o Zoat ©  dX
in which we have set:
dv=Adu (27)

The differential system (26) defines thkaracteristic Cauchy varietie§) of the
wave equatiornfl2).

Let:
X=XV X,.., %51 0,....L)
t=t(v;%,..., %t 0, 10), (i=1,2,..n-1) (28)
t=t(v%,...,. XL, 0. 1),

represent the general solution of the differemgation (26). The equations (28) are the
ones of the simple infinitude of characteristicnedats that contains the initial element

X, X, ., X7 to, t), ..., t%,. The firstn equations in (28) are those of the

() E. GOURSAT Cours d’Analyse mathématique Il (Paris, Gauthier-Villars, 1925); see pp. 629 and
634, and especially equation (101).
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characteristic Cauchy lin¢hat issues from the point, x°, ..., X) 7, to (in space-time)
to which one associates the contact element, ..., X, to, t7, ..., t°,.

Now, consider ann(— 2)-dimensional variety(,-2) in the 21 — 1-dimensional space
<t X"t b, ... the) that is defined by the parametric equations:

X = Xo( Uy o),
(Vin-2) t, =ty(Uy,...,U ), (29)
=6 Uy Yoo)s
which one supposes is such that:
O (%, ) =0 (30)
and

i{au S ax°j5uk =0 (31)

k=1 i=1

are two identities, the first of which is in, ..., u,—», and the second of which is dui,
..., Q- . Hence:
n-1 i
Oy _S0% =12 n-2) (32)
ou, ou,

i
i=1

The transport of the variei-2) whose parametric equations are (29) in conformity
with equations (26) generates mn 1-dimensional integral surface — or wav@gr1) in
the space-timext, >, ..., X", 1). In order to obtain the parametric equations:

X =X(U,..., U_,), o i
{ t=t (U, U, ), (i=12..n-1) (33)

for the waveQ -1y, it will suffice to replace theg,, to, andt® in the firstn equations (28)

with their values in (29). We have sgt; =vin (33).

Finally, upon solving ¥ the firstn — 1 equations in (33) fouy, ..., U1 and
substituting the values for thethus-obtained as functions gfin the last equation of
(33), one will obtain the required integral in tteem (13). The corresponding integral
surface (or wave) will then be represented by éqnd18) ¢).

Theorem. —If two integral surface€), ,, and Q ,, of the equations:

t=t' (<, .., X" and  t=t7(4 % LX) (34)

() That solution will be possible if the Jacobiansmfkg with respecttothe (i =1, 2, ....,n—1;k=

1,2, ...,n=2) are not all zero.
() The integration method that was developed above is apfsito any first-order partial differential
equation.
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have theslement x5, ..., X0, to, t°, ..., t°, in common in space-tin(&", X, ..., X", 1)
then they will agree all along the characteristic Cauchy line that sduem that
element. That line is defined by the firstequations (28).

Indeed, the differential equations (26) are independent oihéegral of the proposed
equation (12).

3. Special cases-

1. LetSn-) represent then(— 2)-dimensional variety in space-time, (¢, ..., X", t)
that is defined by the first parametric equations in (29). The last{1) equations in
(29) are then deduced from (32) and (30). It will then refsaih the considerations
above that the integral surface of the wave equationtB2)contains the variety,-) is
the locus of characteristic Cauchy lines that issue trenpoints of that variety; hence:

Theorem Il. — The hypersurface in space-time that is generated by the characteristi
Cauchy lines that issue from the points of any given (n — 2)-dimensioretyvaill be a
wave surfac€-1) .

2. We now propose to determine the integral surf@ge;) of (12) that passes
through anif — 2)-dimensional variet)S(On_z) that is taken at the initial instatst= 0 in

the geometric space’(X?, ..., x"™). Let:

t=0
S 35
(n-2) { =g (k. X2 (35)
be the equations of that variety, in which the funcgipis assumed to have been given
explicitly. Adoptx;, ..., ;> as independent variables and set:
U= X} k=1,2,..n=2). (36)

Hence, it will result from (32) that:

tf+t§_law()%"'k"x8_ ) - 0 k=1,2,..n=2). (37)
0%,

Upon replacing the?, ..., t°  in (30) with their values in (37), one will fint}, as a
1

ey Lo

function of x;, ..., X)~?; hence, from (37), one will finally have:

0 = t°0¢,.... X 2) (=12 ..n-1). (38)
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Now, replace the’ that figure in the firsh relations in (28) with their values (38),
and then replace)™ with ¢/(x;,...,X?) and replacé with zero; hence:

i — -2
X =XV %,...,%_2), } (39)
t=t,(V; X500y X7

Now, solve the first{ — 1) equations in (39) fov, X, X, ..., X%, and then

n-2

substitute the values thus-obtained ong, X2, ..., X)
from (18), one will get thequation

into the last relation in (39);

Q-1 t= t(Xl, cees Xn_l) (40)

of the integral surfac€-1) of (12) — i.e., of the wave surfa€®,-1) that is compatible
with (1) —that passes through the initial variesfn_z) that was given in advand®.

Theorem Ill. —The wave surfac@-1) of equation(40) is determined completely by
the following conditions:

1. It satisfies the wave equati¢h?).
2. It passes through the initial varie@fn_z) in equationg35).

Theorem IV. —The wave surfac@ -1y of equation(40) is the locus of characteristic
Cauchy lines that issue from the points of the initial var@iyz) of equationg35).

3. Consider a fixed poir in space-timext, »°, ..., X", t) with coordinates §,
X, ..., X}, to) and a direction at that point that is definedtpy..., t°,. Now, express

I
the idea that the coordinates of the pditand the direction coefficienty, ..., t>,
verify the proposed equation (12); hence, one will h&reeidentity relation (30). One
can then suppose that:

2 = t°(Uy, ..., Uno) (=12 ..n-1), (41)

in which the functiong” are such that when one substitutes them in (30), ohgeatian
identity inug, ..., U2 . Next, replace the’ in the firstn equations (28) with their

aforementioned values. Hence, upon setting = v+, one will getthe parametric
equations:

0

1Y The varietyS’. .. is the initial positionQ? . of the wave surfac@,-» in geometric space. Recall
YSn-2) p (n-2) n-2INg

that, inspace-timgthe waveQ -1y will constitute a synthesis of the advance of theeday ) in geometric
space.
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X =X(W,..os Uy o 51D, . i
E=t (U, U R, X)) } (=12 ..n-1) (42)

of the wave surfac@ -1 that is the integral of (12) that is generated by theacheristic
Cauchy lines that issue from the pofat(x, ..., X, to). Upon solving the first(— 1)
equations (42) fous, ..., u-1 and replacing the in the last of equations (42) with their

values thus-calculated, one will get the equation of ititaigral surface in thexplicit
form:

t=t(ty; X, X0 5 X, ., X0, (43)

That wave surfac@-1) admits the poinP, as a multiple point.

4. Bicharacteristics. — J. Hadamard’s bicharacteristics of the physical whffeal
system (1) are, by definition, the Cauchy characteristicshe corresponding wave
equation (12). Those bicharacteristics are then deatedrby the differential equations
(26) or by their general integral (28). Hence, one hathé®ems

a) The surface in space-time that is generated by the bicharacteristidbe
differential systen{l) that issue of the points of any (n — 2)-dimensional variety that is
given in advance is a wa¥®n-1) that is compatible with that system.

b) Two wave surface€) ,, and Q; ,, in space-time that have a common contact
element will coincide all along the bicharacteristic that issues fitwath element.

The locus of bicharacteristic linéisat issue from the poify (X, ..., X = to) is, by
definition, J. Hadamard’'sharacteristic conoidwhose summit i, . That surface is

given by equation (43). The following proposition will theesult from Theorem | of §
2.

c) The waveQ-1) of equation(40) is the envelope of the characteristic conoids
whose summits are found on the initial vari@fy_z) of equationg35).

d) More generally, the envelope in space-time of the characterigtioids whose
summits are the points of any (n — 2)-dimensional variety that is givadvance is a
waveQ(n_l).

Remark. — Instead of considering the explicit form (10) for tlygiaion of a wave
surface, we return to the implicit form (4). The waguation (12) will then take the
homogeneous form (8), namely:

O (x7, Q) =0. (44)
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Now, thanks to (3) and (11he differential equatiof26) of the bicharacteristicwill
likewise take a homogeneous form, namely:

dx’ dQ -dQ

= = a a fB=1, 2, ...n). 45

00(x*,Q,) Z”:GO(xﬂ,Qﬂ)Q 00(x”,Q ) (@ p - (49)
0Q, & 0, 7 ox”

Note that, thanks to Euler’'s theorem on homogesdanctions, one will have:

n dO(x*,Q
3R <00 (46)
= 0Q,
hence, (45) will become:
dx” _dQ _-dQ, _
0 - o0 0 (=1, 2, ...n), 47
0Q, ox’

when one takes (44) into account. As a resuly bicharacteristic that issues from a
point P that is taken on the wagg,-1) whose equation i&) will be contained entirely
on that wavedsee Fig. 2).

t

Xn—l

Figure 2.



CHAPTER I

PRINCIPLE OF ENVELOPING WAVES

5. Geometric construction of an integral surface for the waveequation. —
Consider ther(— 2)-dimensional variety in space-timé, (¢, ..., X", t) whose equations
are:

0 t= t0
Q-2 { Q°(x',...,x" ") =0. 47

We propose to construct the integral surface to theevemuation (12) that passes
through the variet}(Q?n_z)), which is assumed to be known. We just saw that oné

wave surface in space-time passes through that vaaety;
(Q(n—Z)) Q (Xl, X2, ey Xn_l, t) =0 (48)

be its equation.
The variety(Q‘()n_z)) is the initial positiont(=tp) of the waveQ -, in the geometric

space X', X%, ..., X"™). At the instant; , the waveQ- will occupy the position in
geometric space of tha ¢ 2)-dimensional variety that is defined by the equation:

(Q0-5) Qe LX) =0. (49)

Equation (48) represents an< 1)-dimensional variety in space-time, (¢, ..., X",

t) that constitutes the synthesis of the advancenefwiave (Q?n_z)) in the geometric
space whety varies (see Fig. 3).
The intersectionﬁ%n_z) of the wave surfac&®-1) with the planea,, ,, whose

equation is:
(@) t=t (50)

determines the positio@%n_z) in geometric space of the wave at the instant Indeed,

in order to obtainQ;, ,, , it will suffice to project the varietf;, ,, onto the planez,, ,,
whose equation is:

(w(on—l)) t=t (51)
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and is parallel to the time axis (see Fig. 3) (Let P, be a point onQ?n_z) whose
coordinates areg, ..., X ', to, and letl,_,  denote the intersection of the condig-y)
whose summit i€ with the plane@,, ,,. The conoidl ;1) is tangent to the wave
surfaceQ -1 along the bicharacterist@ that issues fror, . As a resultf",_,, will be
tangent to the varietﬁ%n_z) at the pointP, wherec, pierces the planer;, ,,. When B
describesQ;, ,,, the bicharacteristic cwill generate the desired integral surface (or

wave)Q-1) ; furthermore, at the same time, the conoid whose suisif?, will envelope
the surfaceQ-1), and the pointP, will describe the variet;ﬁ%n_z) that envelopes the

H 1
variety I, _,, -

Figure 3.

() In that figure, geometric space,(..., X") is represented by the plamg ,, in space-time. The

timet is reckoned along an axis perpendicular to that planefigire is therefore only schematic.
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Similarly, project the variety” %n_z) onto the plane,v(on_l) parallel to thet-axis. One
will then obtain a variety, ,, that is tangent taQ , at the pointP; that is the
projection of P onto the planeo, ,,. As a resultthe position of the wave at the instant

t; is nothing but the envelope of the varietiléﬁ_z). We have thus constructed the

position of the wave at any later instant when wet $tam its initial position hich is
assumed to be knoyyrthat will succeed in integrating the wave equation.

6. Principle of enveloping waves— Consider the surfac@?n_z) in geometric space

(X', ..,x"™ to be the initial position of the frof,—) of a disturbance that is governed by
partial differential equations (1) of order In §1, we recalled how that disturbance

propagates in geometric space in such a fashion thatthteoff the disturbance occupies

the position ofQ7 . at the current instartf . We likewise note that in the space-time
p (n-2)

(', .., X" 1), the surface,-1) will give a synthesis of the advance of the fronthaf

disturbance in geometric space.

In particular, whenQy , reduces to the poiri, the front of the disturbance in

geometric space at the instanwill be the surfacd™, ,,. The advance of the front is

exhibited in space-time by the characteristic conoid sghaummit is atPy
Consequently, one will see that the variél}y_z) IS nothing but the position at the instant

t; of theelementary Huygens watleat issues from the geometric poltat (xg, ..., X))
at the initial instant, . The propagation of the elementary Huygens waveiskaes
from the geometric poirf, is then represented in space-time by the charactesestirid
whose summit isPo (X5, ..., X, to). We say that theHadamard conoid is the
elementary Huygens wave in space-time.

Now, assume, with Huygen$)(that each poinP, with coordinatesx, ..., x'™* of

the position Q7 ,  of the waveQ-1) at the initial instantt, in geometric space

communicates its disturbance to the ambient medium.jugfesaw that the propagation
of the disturbance is represented in space-time byhdmacteristic conoid whose summit
is the pointx;, ..., X, to , and that at any instatit > to, the front of that disturbance

1n_2) in geometric space. Therinciple of

will occupy the position of the surfack

enveloping waveis expressed by:

() C.HUYGENS,Traité de la Lumiérécoll. “Les Maitres de la Pensée scientifique”), aBauthier-
Villars, 1920; see pp. 21, second line: “...in such a waytthere is a wave around each particle whose
center is at that particle...” See also, pp. 22, Fig. 6.
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The waveQ , in geometric space, when taken at the instantis the envelope of

the elementary Huygens wavég_z) that issue from the various points of the initial

osition Q° .. of the wave envisioned at the instant t
p (n-2)

Now, we have seen that this is truebf8that principle is therefore only a theorem.

More generally consider an arbitrary(— 2)-dimensional variet§n,-2) in space-time
(<}, ..,X"™, ). We know that such a variety will defiomeintegral surface of the wave
equation (12); i.e., a wave surfa€®,-1) in space-time. Thanks to the last two
propositions in &, one can determine the position of the wave in geomsgece X',

., X" at any instant with the aid of elementary Huygensesavindeed, leP be a
point on the variet§in-2) whose spatio-temporal coordinates are.. &t r. Letl (-2
represent the point in the geometric space at theninstaf the elementary Huygens
wave that issues from the geometric poifit, (.., £™™) at the instanty . Hence, it will
result immediately from the propositions that werentimsed in 84 thatthe position of
the elementary Huygens wave in geometric space at the instartet énvelope of the
elementary Huygens wavEg-») that are taken at the same instant¥e remark thathis
principle is nothing but the rule for integrating first-order partial dréfetial equations
when stated from the viewpoint of wave theory.

7. Rays of the waveQ(2 . — We return to the initial positio®; , of the

waveQn-2 (Fig. 3). At the instant;, the elementary Huygens wa\ﬁ%n_z) that issues

from the pointPy (g, ..., ) of Q;,, at the initial instant, < t; will be tangent to the

wave Q%n_z) at the pointP; . By definition,the ray p of the wave that issues from the

point R is the locus of the point;Rvhen { varies. One then sees that the projections
onto the planem,, ,, of the Hadamard characteristics that issue fronptists (x;, ...,

%, to) of Q7 , are nothing but the things that physicists call rdngs of the wave

Qn-2 . They are then the Hadamard bicharacteristics, wioaisidered to beone
dimensional varieties in geometric space. Those derations show that the raythat
issues from the geometric poiRg is the trajectory of the front of the disturbancet tha
issues from that point at the initial instagnt

n

Theorem. — Two wave surfaces in geometric spa® ,, and Q_, that are

tangent at a geometric point P at a certain instant t will remain tangernhat point
when it traverses a ray.

That being the case, 1€, be the position of the wa@(,) at the instant;, let

F(Zn_z) be the position at the same instant of the elemeiiaygens wave that issues

from the geometric poiri, at the instanty, and letl"’_, be the position at the instapt
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of the elementary Huygens wave that issues from thengeic pointP; at the instant;
(see Fig. 4). The surfacés _, and[l'’_, are tangent to the surfa€® , at the point

P, of the rayr, that issues fror®, and passes throudgh . The wave surfac@(zn_z) IS

the envelope oboth the elementary waveE(Zn_z) and F'(ﬁ_z). In a general fashion, one

will then see thatn order to deduce the positioﬁ?n_z) of a wave frontQ-) that is

known at the instant when it is at a later instant & to, one can first seek the position
Q,, at an intermediate instant {to < t; < t;), and the construct the final position

Q¢ _, at the final instantztwith the aid of that intermediary positiof, ,,. That

proposition (which is an obvious consequence of the plten@ap enveloping waves)
makes the mathematical notiongsbup appear in its most elementary form.

Figure 4.
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WAVES AND RAYS

8. Return to the homogeneous wave equatior- We saw in Chapter | that any
relative solution to the wave equation (8) will corregsptma wave surfac@n-1) .

Theorem. — Any relative solution to the wave equati@) can be associated with an
absolute solution to that equation.

Proof. — Indeed, lef2 (x%) be a relative solution; one will then have:
O (X%, Qp) =0, (52)
by virtue of Q (x°) = 0. Solve the equation of the wave surf@ge:
QK ... X)=0 (53)

for one of the variables— for example, the variable =t ; that will give the equation of
the wave surfac® in its explicit form:

O'(X, t, 1) = 0. (54)
That being the case, set:
Q =t—t(x, ..., xX"™); (55)
hence, one will get the equation:
Q'(x,t)=0 (53

for the wave surfac@-1) envisioned. One deduces from (55) that:

O O
QFEaQ. :—a—t.s—ti and QEEaQ =1 (=12 ..n-1). (56)

ox ox ox"

However, it will then result from (54) that:
O
O*[x‘ ,t,—%}= 0; (57)
hence:

oOx, Q)=0 @=1,2,...n). (58)

The functionQ” that is defined in (55) is ambsolutesolution to the wave equation
(8) in its homogeneous form. Q. E. D.
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Conclusion.— One can then put the equation of a wave surface iftiomasuch that
the left-hand side of the equation is an absolute soltitidhe wave equation (8) in its
homogeneous form. We give the namewaive functionto the left-hand side of the
equation for the wave surface that is defined in that way

9. Homogeneous differential system for the bicharacteristsc (or space-time
rays). — LetQ be an absolute solution of the wave equation (8); heéhaeks to (46),
one will have the identity ir", ..., x"=t:

" 90(X*,Q
ZMQ =0. (59)
ox” v

y=1

Hence, the homogeneous differential system of thealacheristics (or rays in space-
time) is deduced from (45), when one takes (59) into accdunasithe form:

d¥ _dQ_-dQ, _ _
0 =0 = 90 =dg (@=1,2,...n), (60)

0Q, ox’

in which @represents an arbitrary parameter.

One can now repeat the considerations that were ap@eklin Chapter | when we
started with the differential system (26). That isatwve shall now do briefly*).

The general integral of (60) has the form:

X =&, %,...,%,Q7,....Q°),
Q =invariant, (=1, 2,...n). (61)
Q, =W, (8, %,..., %,Q7,....Q°)

As before, set:
X'=t and X =to. (62)
One can then infef as a function of, X, ..., X", to, Q7, ..., Q),, Q°= Q° from
the n™ equation in (61), and upon replacifégwith its value thus-obtained in the other
equations (61), one will get:

X =&, xt,00,....Q0 0%, (63)
Q = Invariant, (64)

() Note that here the space of elemerts}, ..., X"} t, ty, ..., ts) in §2 is replaced with the space of
elementsX, ..., X", Q, Qy, ..., Q).
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o} =Wﬂ(t;%,.--,>€‘l’fo’90""’Qg‘l’Qto)’} (=12 ..n-1). (65

Q, =Wt %,..., X5 1,Q°,....0°. Q0

That being the case, we propose to look for a sol@itmthe wave equation (8):

ox%,Qy) =0 or O(x,t,a—Q 6_Qj: 0, (66)
0ox ot
which will reduce to a functio®® (', ..., X"™) of the spatial variables for:
t=t. (67)

We shall utilize the variableg,, X, ...,x)*for the independent variables. The solution

Q at the point &, ...,x™*) in geometric space at the instanwill then have a valu@®
that is given by:

Q°=Q%(x, ..., x™). (68)
Consequently:
0
Qo= %2 (%) (=12 ..n—1). (69)
0%
Now, replace the®? in:
O(X, Xt 1o, QF, ..., Q2,,Q70) (70)

with their values (69) that are deduced from (6&)ce:
Q)= Q) (%, %, o). (71)

Now return to formulas (63) and (64), in which anest replaceQ’ and Q] with
their values that were calculated above in (69) (@4, resp.; one will find that:

X=X (tto, ¢, ... X)), (72)
Q=0%%, ... x™). (73)

The relation (73) is an immediate consequencéeirtvariance of) with respect to
the differential system (60). As for equations)(7Bey represent theay in geometric

space that issues from the initial poing ( ...,x] ™) at the initial instant, . Upon solving
the relations (72) fox,, one will find the equations:

X(i):Xi (to, t, X, ..., X" ™), (74)
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in which the functiong' are identical to the ones that figured in (72).
Finally, replace the initial coordinateg in (73) with their values in (74); that will
imply the required integral:
Q=0 x, ... x" % 1). (75)

It results from the invariant character®fwith respect to the differential system (60)
that the surface whose equation is:

QO ... X" 1) =0 (76)

will be the position at thimstantt in geometric space; ..., x") of the waveQ - that
coincides with the surface whose equation is:

Q0 ..., X" 1) =0 (77)
at theinitial instant ¢ .

In order to geometrically obtain the wave surf@g,) at an arbitrary instaritwhen

one starts from its initial positio®,, ,, , it will suffice to consider the poirk(x’, ...,

0

x") on the ray (72) that issues from the p&t(X;, ...,x ") on Q7 _,, at the instant

<t that corresponds to the instantThe wave surfac@p-2) will then be the locus of the

point Pat the instant whenP, describes the surfad@,, ,, .

One can recall Theorems |, Il, lll, and IV of 8&nd3 here; it will suffice to replace
the “Cauchy characteristic line” with “bicharacteristar space-time ray).” We confine
ourselves to recalling the following two propositions here

n

1. Two wave surface®,,,, and Q; ,, whose equations are:

Q' ...,xN=0 and Q"¢ ...X")=0, resp, (78)

and have an elemeft’, ..., X", Q, ..., Q,) in common in space-time, ..., x") will
agree along the bicharacteristic (or space-time ray) that issuestiiatrelement.

n

2. Two wave surfaceQ,,, and Q; _, whose equations are:

Q... x"L)=0 and Q" (X, ... xX"11)=0, resp., (78)

and are tangent at a point in geometric spdgk ..., X" at a certain instant will
remain tangent at that point if they traverse a ray in geometric sace

() Seesr.
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10. Equation for the elementary Huygens wave- Consider a fixed poin®g in
geometric spacex{, ..., X" ") whose coordinates arex}, ...,x*) and an arbitrary
direction at that point that is defined by the 2 number$, p1, ..., Pr2 . One will then
have:

Q° = Q7 (py, ...\ Pr2); (80)
hence, from (70) and (71):
Q! = Q7 (P, -+ Pr-2). (80)

Finally, replace theQ’ and Q? in (63) with their values in (80) and (§0resp.; that
will give the parametric equations:

X = x (¢, X o P, ..y Pr2) (=12 ..n-1) (81)

for the position that is occupied at the instamty the elementary Huygens wave that
issues from the poirR, whose coordinates areg(, ...,x)*) at the instanty . In order to
obtain the elementary wave (81) geometrically, it wilffice to consider the poift (x,

., X"™) ononeray (63) that issues from the pols (X, ...,x"™?) at the instant, that

corresponds to the instant t, . The elementary wave will be the locus of the p&in
when the tangent to the rayR varies.

The elimination of the parameteys pz, ..., pn—2 from the 6 — 1) equations (81) will
lead to the finite equation of the elementary Huygengewa

Recall thatan elementary Huygens wawell generatea characteristic Hadamard
conoidin space-time when timevaries. Finally, it will result from the propositithat

were mentioned at the end oB8hat in order to obtain the wa¥®,-) in equation (76)
geometrically when starting from its initial positioﬁ?n_z) in equation (77)one can
always take the envelope at the instant t of the elementary Huygeas that issue from

the points on?n_z) at the initial instantd <t (recall the principle of enveloping waves).
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WAVE TRANSPORT

11. Metric on geometric space— By definition, the metric on geometric spag® (
..., X" at the instant— i.e., when:
a=0, (82)

is determined by the differential quadratic form:

LN
=}

1

' B,oXoX  (,j=1,2 ..n—1), (83)

n-

(99)*

1
=

1
.y

i=1j

which is assumed to be invariant under an arbitrary chahgpatial variables, ...,

n

X", By hypothesis, one will have:
By (X, t) =Bj (x, 1), (84)

in whichx represents the geometric or spatial variakles., X",
Let B' the minor of the { — 1)-order determinant By || that corresponds to the
elementB; , divided by |B; ||:

j _ minor of B,
Bls ———. (85)
1By 1l

Hence, theB; (x, t) and theB' (x, t) are the covariant and contravariant components,
resp. —under an arbitrary change of variable$, x.., X" — of second-order symmetric
tensor.

Set:

na=5Seaaq. (80)

i=1 j=1

The covariant and contravariant components of theveaitorN that is normal to the
waveQ-2) are, in turn, given by:

Q. oo _
N; = L N'= > B'N i=1,2,..n=-1), 81
-5 ,Zl‘ , (i ) (81)

respectively, when the equation for the w&g.,) is given by (4).

Recall that the Lamé differential parameie® is invariant under an arbitrary change
of variablesx', ..., X", in which the wave functio2(x, t) is considered to be an
invariant in the broader sense.
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12. Differential equations of the rays of a wave- Let:
Q=Q (x 1) (88)

be a wave function (see8. One will then have the identity xnandt:

O(x,t,a—Q,a—Qj =0. (89)
ox ot

It will then result from the differential systemQ(6that the rays of the wave equation:
Qxt=0 (90)

are given by the differential equatior (

dx __ dt _g (=12 ..n—1) (91)
90 (90
00, | |,
with:
dQ
== =0. 92
1 (92)

The notation 90 and 90 signify that one has replaced feandQ; in 90
0Q, 0Q, 0Q

and 90 with the first partial derivatives of the wave faioo (88). Recall that:

t

QiEa—g Qt=aQ

) - T . 93
ox ot ©3)

The identity relation (92) expresses the idea "t wave functiorQ(x, t) is an
invariant of the differential system of the rays.

13. Wave transport in geometric spac€’). — Now, set:

Wizwi(x,t)E(%j:(ggj (=12 ..n-1). (94)

() Upon replacing in 9Q / ax* with the wave function (88), the lastequations of the differential
system (60) will be satisfied identically.

() J. VAN MIEGHEM, Etude sur la théorie des ondéRaris, Gauthier-Villars, 1934); see pp. @9,
seq.
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The transport of the wav@ ) of equation (90) in geometric space, (..., X" is
defined by the differential system:

X _ g (=12 ..n—1). (95)
w

The identity (92) becomes:
dQ 0Q &&0Q
— =" +y = w =0, 96
dt ot g‘ax (%6)

which is an identity inc', ..., x"* andt.

Theorem. — Any wave function is an invariant of the differahtsystem of wave
transport that is defined by that function.

Definition. — The velocity of transport T of the wagg,-») is the component w
normal to the wav&,-» of the velocity vector w whose components dre.wy W™,
One will then have:

T=w,. 97)

It will then result from the identity (96) and faulas (87) that:

n-

1 n-: '
WN = Q
1

1
wN =-—_, (98)
1 AQ

in whichw!, ..., W™ are the contravariant components of the veloacitgtar w whose
covariant components are representeddy.., Wy-1 ; hence:

W.EEB-Wj, V\/EZB“W. (99)

J
i=1 i
However, one obviously has:

n-

1
WN' . (100)
1

Wy = EW‘ N =
i=1

It then results from (98) th#the component ywof the velocity w that is normal to the
waveQ is an invariant.

Finally, by virtue of the definition (97), thatuvariant is nothing buthe transport
velocity T of the wav@ - ; hence:
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—0Q(x 1)/ 0t

\ AQ(X, 1)

T(x1t)= (101)
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JACOBIAN FORM OF THE WAVE EQUATION AND
HAMILTONIAN FORM OF THE RAY EQUATIONS

14. Jacobian form of the wave equation- The homogeneity of the wave equation

(8) permits one to write it in the form:

O(X*, Q) =Py (Qn)* + Py Q) + ... +Pc Q)™ + ... +P, =0, (102)

in which Pg, Py, ..., Py, ..., Py, are homogeneous polynomials(i, ..., Qn-1 that have

degree 0, 1, ..k, ..., i, respectivelyy is the degree of the homogeneityQ(k®, Q,).
We shall always denote the temporal variableyrt. Let:

%) -t (00 22 (103)

be ther (< 1) distinct roots of equation (102) @, or Q; =0Q (x, t) / ot. The functions
(103) are homogeneous and of degreein Q;, ..., Q,1. Recall thadQ / ox represents
the partial derivatives d® with respect to the spatial variables..., X" ™.

Each of the Jacobian equations:

a—Q+Hp(x,t

Q) _ )
ot j-o P=1,2 ...0) (104)

" ox

is the equation of &amily of wave surfacethen We let Q® denote a wave of that
family.

15. Hamiltonian form of the ray equations.— The Cauchy characteristics of the
wave equation (104) are defined by Hemiltonian equations:

£
t i i=1,2 ..n=1).

dq, | H, (106)
dt X

Equations (105) admit any solution:

QP (x, 1)
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of the wave equation (104) as imwvariant, because if one takes the homogeneitif pf
into account then one will have, in turn:

m ™ n1300® gH (p) (p)
dQ" _ 0™  1oQ » _ 00 +Hp(x’t’a§2 j 0. (107)

d ot 4 ox QP ot X

The differential equations (105) indeed define the tramsyfoa waveQ® then;the
lines along which that transport takes place és we saw abovehe rays of the wave

whose equation in geometric spdgg ..., X" ) is:

QP (x, 1) = 0. (108)
Theorem I. —1| say that the Pfaff form:

n-1 .

> QP ox (109)

i=1

is an absolute differential invariant of the Hamiltonian systefh05) and (106). The
symboldrepresents a “truncated” variation; i.&.= 0.

Proof. — Indeed, thanks to (105) and (106), one will have:

d n-1 ) n-1 aH a
— QP X ==Y —Lox +> QPs—L2 | 110
dt; ' ,Z:;‘ ox’ z aQ“’) (110)

However, due to the homogeneitytdd, it will result that:

n-— (p)
z QP 2 H, xt, 22" |, (111)
— oQ(” X

hence, from (110):

iﬂf QP ox s—ni My 5+ Z Q‘p) B —f sl xF, (112)
dtiz ox 0Q® 0Q”

i=1 i=1 i=1

or rather:

oH
z QP OX' =— Hp + 5[2 QP —P2_ j (113)

dt “ = aQ(p)

Hence, upon taking (111) into account, one will finallydiav
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n-1
E(z Q 5x‘j -o. (114)
dt\=
Q.E.D.
Theorem Il. —When the Hamiltonian His independent of time t, that function
will be an invariant of the Hamiltonian equatio(i®5)and(106).
Proof. — Indeed, it is easy to verify that the identity:
dH, 6 oH
b= ___F (115)
dt ot

is a consequence of the differential equations (105) B0®) ( As a result, the relation:

M, _ 0 (116)
ot
will imply that:
dH
P =0. (117)
dt

Q. E.D.

Remark. — WhenH, does not depend explicitly upon tihehe wave functio® ®(x,
t) will have the form:
QP = - ht+ ¢P(x), (118)

in whichh is a constant, and® is a function of the spatial variables that is aisoh to
the partial differential equation:
09 ) _
H, (x—j =h. (119)

1)

16. Case of a homogeneous medium.When the coefficients of the wave equation
(104) are constant, one will have:

oH

p

ox'

oH
0 and atp 0. (120)

In that case, the Hamiltonian differential syst¢h®5) and (106) is integrated
immediately; one will have:
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Q =Q° (121)

SN CLA
X =% 0Q. 0( b, (122)

. : i . . _OH
in which QY and x, are integration constants, and the notaﬁ%ng—pj represents what
0

oH
one will get after replacin@; with Q° in a_Qp
We then see thahe rays are straight linedere. That situation will be produced
whenever the coefficients of the highest-order wdgives that appear in the physical
equations (1) reduce to constants. In that casesays?) that the physical medium that
is governed by those equationd)@nogeneous.

Theorem I. — In a homogeneous medium, the space-time (Ryas well as the rays
in geometric space, will be straight lines.

Corollaries:
1) The Hadamard conoid in a homogeneous medium h#mear generators.

2) The elementary Huygens waves that issue from @ pbanhomogeneous medium
are mutually homothetic; their locus in space-tisid. Hadamard’s characteristic cone.

oH
We remark thaE anj is homogeneous of degree zerddfy, ..., Q2. It will then
0

results that the coeﬁicient%?}ipj of equations (122) depend upon only £ 2)
/0

parameters, namely, the £ 2) relationships between the-{ 1) constant€2?, ..., Q°,

and any one of them. The elimination of those-(2) parameters from equations (122)

leads to the equation of the surface that occupeposition of the elementary Huygens

wave that issues from the poipt;, ..., ;') at the initial instant, <t when the current

instant ist.

In order to obtain the present positi@nof a wave when one starts from its initial
positionQo , draw the line through the poif (X, ..., X3 ) of Qo that is defined by
equations (122) and consider the pdngd, ..., X"™) on it that is taken at the current
instantt. Q will then be the locus of the poiRtwhenP, describe€),. Recall thaQ is

() T. LEVI-CIVITA, Caratteristiche dei sistemi differenziali e propagazione ond@sogna, N.
Zanichelli, 1931); see pps. 54 and 55.
(® OrJ. Hadamard's bicharacteristics.
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also the envelope at the current instawitthe elementary Huygens waves that issue from
the points ofQ, at the initial instanty <t.

We just saw that the points @fare deduced from the points@§ by translation we
remark that this translation is not the same for eyet of Qo, except wherf)g is a
planein geometric space.

Theorem Il. — A plane wave in a homogeneous medium will remain a plane wave as
time varies.

Corollary. — No matter what phenomenon is envisioned in a homogeneous medium,
the propagation of plane waves will always be possible.

Theorem lll. — The transport of a point on a wave in a homogeneous medium is a
uniform, rectilinear motion.

That transport will be the same for all points ofaveronly when it is a plane.

Corollary. — In a homogeneous medium, the transport velocity of a wave depends
upon only the direction of propagation.

17. Transport velocity. — The metric on geometric space, (..., X" ) is defined by
the invariant differential quadratic form (83). The cdaar componentsN® and

contravariant onesN,, of the unit vectoN® that is normal to the wav@® whose
equation is:
QP (x, 1) =0 (123)

are given by formulas (87), and the transport veloTityf the waveQ® is given by
formula (101). Having recalled that, divide equation (104)1/@19“’) , in which the

Lamé parametep,Q® is defined by (86); hence, theansport velocity T of the wave
QP will be:

T, =H, (xt, NP, (124)

Remark. — Suppose that the Hamiltonian functidds and Hq are independent of
timet; i.e., that:

oH oH
P =0, 1=, (125)
ot ot
and that one has the identity:
0Q 0Q
Hpo | X,— | +Hq| X,— | =0 126
o (%52 +ha (x50 ] (126)

in X andQ;, moreover. Hence, the two Jacobian equations:
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9 ih, (X,a_Qj =0 (127)
ot 0X

and
29 (XG_QJ -0 (128)
ot 0X

will represent thsamefamily of waves that propagate in the contraryseenindeed, any
solution:
QP = _ ht + @ (X) (129)

to the wave equation (127) can be associated hatlsalution:
QP =+ ht+ ¢ (X) (130)
to the wave equation (128). Recall thatepresents an arbitrary constant. Now, thanks

to (125) and (126), the differential equations tfee transport of the wave3® andQ©@
can be written:

o _a (=12 ..n-1), (131)
oH (ij *
ox
09,
in which:
H=Hp=—Hq. (132)

Equations (131) exhibit the fact that the transpdrthe waveQ® and Q@ takes
place in the contrary sense along the same ragslgaalong the lines:

dX _ _ dx
09, 09,4

in geometric spacex{, ..., X"%). Now, note that by virtue of (124) and (126)e th
transport velocitie3, andT, of that wave are coupled by the relation:

T, + Ty =0. (134)

The families of wave@® and Q@ are identical, but they propagate in the opposite
sense along the same lines or rays with the satoeitye

We shall assume in what follows that this situatgresents itselp times; i.e., that
among tha families of waves (104), there gogairs of wave families such that the two
families of the same pair will propagate in opp®sienses along the same lines or space-
time rays.
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18. Hyper-refringence.— Let:
Qt+Hl(x,t,a—Qj:O, ...,Qt+Hr_p(x,t,a—Qj:O (135)
0X 0X

be the Jacobian equations of the o distinct families of waves that propagate alongsra
that are all different and given by the differenéiquations:

o on, C @30
dt 09, dt 0Q, i=1,2 ..n-1),

ﬁ =- aHl dQ' =- aHr._p (137)
dt  ox dt 0x

respectively.

It will then result from equations (135) and (13Bat at any point¢, ..., X" of
geometric space there will be € o) propagation velocities for the wave anmd—(p)
distinct rays that correspond to each directidp (.., N,-1) that is given in advance and
issues from the poink{, ..., x"™).

We will then say thathe physical medium that occupies the geometricespd, ...,
X" is (r — p)-times refringent.

19. Elementary Huygens wave in a homogeneous medium when thetnt is
Euclidian. — In that case, the wave equation has the form:

LI (a_gj: 0, (138)
ot 0x
in which H is a homogeneous function of degree one with wtspe the partial
derivativesdQ / dx%, ..., dQ / ax", and the notatio@Q / dx represents all of those
derivatives.

The direction cosinely, ..., N,-; of the normal to the wave are given by (87):

N=N'= 2 , (139)
JAQ

and the transport velocitly of the wave is given by (101):

T=—"~—, (140)

with
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AQ = E(Qi)2 . (141)

It then results from equation (138) and the homedg ofH, from (124):

| T=H(N), | (142)

in which N takes the place of the direction cosihgs..., Nn-1.
The rays that issue from the orighof the coordinates at the initial instage O are

defined by equations (122):

o (%Qj

X=X (143)
0Q.

or rather, thanks to the homogeneityHyfoy the equations:

)(i :M[ﬂ, (144)
oN.

in which, by virtue of (121), th@; and theN, are constants, respectively. Note that the

constants$\; are normalized by:
n-1

D(N)? =1 (145)

i=1

That being the case, [Ptbe a point that is taken at the instartO on the elementary
Huygens wave that issues from the ori@iat the instanty = 0. The distancA from the
point O to the tangent plane Btto the elementary wave that is envisioned is aefiby
the well-known formula:

n-1
A=> N X, (146)
i=1
so, thanks to (144):
n-1
A:ZNim[ﬂ, (147)
= ' ON

or rather, if one takes into account the homoggroéiH and the relation (142):

A=TO. (148)

As a resultthe elementary Huygens wave that issues from tlgend® at the instant
to = Ois, at the instant & 0,the envelope of the plane waves of the equation:
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n-1
DN X-Tt=0, (149)

i=1

whose coefficientsiNNy, ..., Ny-1, T verify the relation(142).

The elementary Huygens wave is then the envelopedmeic spacext, ..., X"
of an f — 2)-parameter family of planes.

We finally remark thathe equation of the elementary Huygens wave is the point-like
equation in x, ..., X" that correlates with the tangent equatid2)in Ni, Ny, ..., No-1 .



CHAPTER VI

REFLECTION AND REFRACTION OF WAVES

20. Incident, reflected, and refracted waves- Consider two physical medlaand2
in geometric spaced, ..., X"%) that are separated at each instasnt a moving surfac8
whose equation is:

S(x 1) = 0. (150)
Let:
O{x,t,%—g,%—?j =0,
X (151)
Oz(x,t,a—Q 6_(2) =0
ox ot

be the partial differential equations of waves that amepatible with the equations of
physics that govern the mediaand2, resp. Lefs and/s be the degrees of homogeneity
of 0! andO?, resp., with respect to the partial derivativeQofFrom (103), let:

(152)

0Q
—H? t,—
S‘(X axj [§=1,2,...,vls,ulj

~H? (x,t,a—Qj S,=12,.. V,S 1
g [0)4

denote thes (v, resp.) roots of equation (151) [(IpXesp.] (which have degregs and
b In 0Q | dt, respectively), which correspond to the familidsmaves that propagate
along the various rays &).

The Jacobian equations:

(152)

%—?+ H;(x,t,%—gj:o, (153)
50 a;z =12 ..V, %=1,2, ...v)
E+ Hi(x,t,&j:o, (153)

are then those of the andv, families of distinct waves that are compatiblehatihe
physical equations that relate to the meldand2, resp. One then sees that medium
vi-times refringent, and mediuiis vo-times refringent.

Let Q%(x,t) denote a solution to one of the Jacobian equafitb®), so:

Q%(x1) =0 (154)
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will be the equation of a wave in medidmby definition, it will be ancident wave.The
surfacesS and Q%(x,t) intersect in space-timed( ..., X", X" = t) along an 1t — 2)-
dimensional variet¥n-2) . It results from Theorem Il of 8 that theincident wavewill
give rise tov, reflected waveandv, refracted waveshat pass throug¥i,-— . Let:

Qi(xt) =0 and Q%(x,t)=0 (155)

be the equations of @flected waveQ", which is a solution of one of equations (153),
and arefracted waveQ®>, which is a solution of one of equations ()53espectively.
The wavesQ" and Q> are determined completely in space-time by the demandhinat
must be contained in the variefy-») .

21. Applying the principle of enveloping waves— Let &, ..., ", 1 be the
coordinates of a point on the variéfy» in space-time. In geometric space, (...,
X", let:

(1) ()
Mol and Y,

represent the positioat the instant tin medial and2, respectively, of the elementary
Huygens waves that issue from the point whose coordirae €*, ..., £"%) at the
instantz. The elementary waves’, and I, are integral surfaces of the equations:

n-

a—Q+H}(x,t,a—Qj =0 and a—Q+H2(x,t,
ot ' ox ot

Q) _
&j =0, (156)

respectively.
Hence, it results from the principle of envelopimgves that’j the reflected wave

Q™ in geometric space at the instant t is the envelopthe elementary Wavl'egrnllz)

when the point&?, ..., "%, 1) describes the variety V) in space-time.Similarly, the

refracted waveQ at the same instant t is the envelope of the elemewaver .

22. Geometric laws of reflection and refraction. 9. — By hypothesis, the wave

functions Q™ (x, t), Q™ (x, t), and Q™ (x, t) are differentiable on the surfaén space-
time; hence, from (154) and (155):

() J. HADAMARD, Lecons sur la Propagation des ondes et les équations de I'Hydrodyrearis,
Hermann, 1903); see, pp. 295.
() J. VAN MIEGHEM, Wis- en Naturkundig TijdschrifGent); deel VII, 1934; see pp. 15 and 18.
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130 (2
0Q —OX + 0Q ot=0,
= OX ot
n-1 (ry) . (ry)
6;2i OX + ag;t ot=0, (157)
i1 OX
130 (2)
0Q —OX + 0Q ot=0,
= oX ot

in which thedx' and & verify thesinglecondition:

n-1
za—siax‘ +955=0. (158)
= OX ot

The differential relations (157) and (158) say that in sgane the wave surfaces
Q% Q™ andQ®, and the surfacs have antf — 2)-dimensional variety in common,
namely, the variety(-) .

One deduces immediately from the relations (157) and (h&8) t

() (s1) (r) (sp
6§2l _6(2' _ 16_3, Q™ 0Q :Ala_s (1509)
ox oX ox ot ot ot
and
() () (3) (9
6(2. _6(2' _ 26_3’ 0Q"*  0Q :AZG_S, (159)
ox oX ox ot ot ot
in which A; andA; are two arbitrary functions:
AM=EAL(XT) and A=A (X 1) (160)

of the spatio-temporal variablgs ..., X", andt.

The compatibility condition€l59) and (159) that relate to the function®®, Q™
and Q™ on the separation surfac express the geometric laws of reflection and
refraction.

We propose to put the relations (159) and (L%®0 a form that is close to the
classical form of the laws of reflection and refrawct(viz., Descartes’s laws To fix
ideas, suppose that 4, and set:

oS aQ(SL) aQ(ﬁ) aQ(Sz)

NEOX | N®=_ X nw=_ X Ne =X (147

(i=1,23),
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in whichN; , N® | N®  N® are the covariant components of the unit vectorsatet

normal to the surface§ Q®, Q™ Q) resp. Their transport velocitids T*, T",
T in geometric spaced( X, X°) are given by:

oS aQ(SL) aQ(ﬁ) aQ(Sz)

t, ore=O0L_ e OX 0 7e=__ 0L (167)

respectively.

By convention, the positive normal ®is directed from the mediurh towards
medium2. As for the positive normals to the wave surfa@¥, Q™ Q) they point
in the direction of their propagation.

By virtue of (162) and (124), one will have:

—
1]

T3 =H; (%t N®),
T =H(xt NW), (163)
T =H, (xt, N®),

Thanks to the definitions (161) and (162), it is easydnstiorm formulas (159) and
(159); one will find that:

N (8,07 - NS 2.0 = ANB,S
T A0 - [A0® = AT /A5

Ni(sg\/m_,\t(%)\/m:)lm\/fls
T(%)M—T(%)\/WZAZT\/ES

EliminateA; andA, from relations (164) and (184respectively; that will give:

} (i=1,2,3), (164)
and

(164)

Ni(rl)\/m_ N(sl) /AlQ(sl) - T \V Alg(rl) ;TSl\] Alg(SD Ni (165)

and

T2 /AQ® TS /AQ?
Ni(Sz) /AlQ(%) - N(%) /AIQ( 9 = 1 = 1 N i=1273). (169

Now multiply formulas (165) and (165by the contravariant componerts of the
unit vectorN that is normal t¢&; hence:



8 22. — Geometric laws of reflection and refraction. 41

3 n 3 S
(Z NN _-I‘-I' /AlQm) _(Z N N© _T?j AQ® =0 (166)
i=1

i=1

and

, S
\ N(g)_T?j AQ® =0. (166)

(i Ni Ni(Sz) _‘|:r_52 [AlQ(Sz) _(
i=1

However, one has:

3
i=1

3 . 3 ) 3 )
Y N'N®=cosg®, D N'N®=cosg:, D N'N®=cosg>, (167)
i=1 i=1 i=1

in which ¢%, ¢", ¢> represent the angles in geometric spatext, X°) between the

pairs of surfacesy Q®), (S, Q™) , and § Q) (see Fig. 5).
Hence, (166) and (166will give:

T"-Tcosp" _ [AQ®
TS -Tcosp® |\ AQ® (168)

and
T>-Tcosp> _ |[AQW 168
TS -Tcosps | AQ® (168)
Q(Sl)
incident wave
—
Q(ﬁ) 2 S
reflected wave -
N(Sl)

refracted wave N

Figure 5.
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That being the case, 16f', % ©° be the contravariant components of the unit vector
that is tangent to the line of intersection of thefacesS and Q' in space X, X4, )
(i.e., the intersection of the separation surfae@d the wave surfac®® , both of which
are taken at the same instgnt One will then have the identity:

iei N, = 0. (169)

Now multiply (165) and (185by @' ; that will give:

3
Z O'N™ O N&)
i () i (s)
= A2 = [A2% (170)
3. AQW '’ ) A Q)
Z (e} Ni(sl) 1 e} Ni(sl) 1
i=1

However, one has:

DMED e

!
[y

3 3 3
Y ON® =sing®, Y ON"=singt, > AN =sing>; (171)
i=1 i=1 i=1
hence, from (170):
(s1) i n (s) i $
AlQ(r) _ S|r1¢ | AlQ( = S|r.1¢ . (172)
AQ™ sin® A,Q™ sin*

Finally, one deducethe laws of reflection and refraction in a remarlatand
general formfrom formulas (168), (168), and (172):

sing” _ sing™ _ sinp>

= = , 173
T"-Tcosg" T*-Tco®™ T2-T cog®> (173)

or rather, from (163):

sing" - sing* _ sing™
= = . (174)
Ho (% t,N*)-Tcosp" H, (x,t,N* )~ Tcog® H &t N ¥ Tcop*

Upon settingT = 0 in (173) — i.e., upon supposing that the semaraturfaceS
between the physical mediaand 2 is fixed — one will, in fact, recover Descartes’s
classical laws:
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sing"™ _ sing® _ sing>
Trl TSL Tsz

Finally, when mediun is isotropic, in addition, one will have:

T3=TH,
and as a result, from (175)
sin ¢% = sin ¢",

or
g+ =m
and
sing®> T2
sings T3

43

(175)

(176)

(177)

(178)



CHAPTER VII

APPLICATION OF HUYGENS'’S PRINCIPLE TO THE
PROPAGATION OF ELECTROMAGNETIC WAVES

23. Review of the general equations: The most general electromagnetic field is
determined by four vectors, namely:

The electrical force: H (Hi, Hz, Hs),
The magnetic force: H (H1, Ha, Ha),
The electrical induction: B (Bs, By, B3),
The magnetic induction: B (B, B>, B3).

The componentsdi , Hi, B, Bi (i = 1, 2, 3) generally depend upon the spatio-
temporal variables', »?, x°, andt.

At any point of the geometric spacé, (0¢, x°) that is the seat of the electromagnetic
field that one imagines, and at every instatlere exist the following vectorial Maxwell
equations between the aforementioned physical quaritities

divB =47p,

179
divB =0, (179)

and

rotH =108

c ot

ot =+ 198 AT
cot ¢

(180)

in which the scalar:
P=EpP(X1)

represents theealized density of electricityhe vector:
C=C(xt)

is the electric currenbf convection and conduction, aads nothing but the well-known
constant 3 10'° cm / sec in the Gaussian system of units.
One knows?) that the electromagnetic energy is given by:

() TH. DE DONDER,Théorie mathématique de I'Electriciténtroduction aux Equations du Maxwell
(Paris, Gauthier-Villars, 1925), see Book llI.
() Ibidem see pp. 170 and 171, form. (608) and (509
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E_{(B H) + (B - H)}, (181)

andPoynting’s radiation vectoby:
S=— (H H). (182)

Recall here thatA - B) and @ x B) represent the scalar and vectorial product,
respectively, of the vectoss andB.

Thanks to the definitions (181) and (182)e balance of electromagnetic ene(dy
can be written:

-2 [wov=[ Asv+§5,5°S (183)
\ v S

in whichv is an arbitrary volume of the geometric space thdtounded by the closed
surfaceS and in which:

e B )0 e

The symbolSy represents the component of the Poynting veSttnat is evaluated

on along the exterior normal to the surf&ce

The balance equation (183) expresses the idedhdaeduction per unit time in the
electromagnetic energy that is contained in theun@ v is equal to the power that is
dissipated by the Joule effect and electromagnbyisteresis inside the volume v,
augmented by power that is radiated across the dagnsurface S of that volume.

From TH. DE DONDER?), the transport of electromagnetic enengydefined by

the vector:
Soo (3 (185)
W 3(BMH)+3(BMH)

u

The differential equations of that transport dwent

dx

u

= dt, (186)

with:

() Ibidem:See, pp. 171, form. (609).
(®) TH. DE DONDER, Interprétation cinématique du théoréme de PoyntiBg R. Acad. Scil58
(1914), pp. 687, see equation (2).
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U =c Hi:;rlH+2_ Hi+27_4+1 (i=1,2,3). (187)
1> (BH, +BH,)
k=1

By convention, the indicasi + 1,i + 2 (fori = 1, 2, 3) that differ by three units must
be considered to be identical. Along the energy trajas (186), one will have, in turn:

%.\[WJVE.[((L—VtV+Wdivuj5VE%'\[ \A/J\#J;(div W)3 v
(188)
s%.[w5v+.[(div8)5\l,

or rather:
d 0
— |Wov=—|WOovV+pS,0S; 189
dt? 6t~[ 92 " (189)

hence, when one takes the balance equation (183) intardacooe will finally have:

d _
a.V[W5v=—.[A5V, (190)
or rather:
dw 3 ad
—+W)) —=-A 190
dt ' 0X (190)

Theorem. — When there is neither Joule effect nor electromtgrgy/steresis in the
physical medium that is envisioned:

j W v (191)

will be an integral invariant of the differentialgaations (186) of the transport of
electromagnetic energy.

24. Case of an inhomogeneous, anisotropic, non-absorbent mediumConsider,
for example a transparent crystal referred to its principal ages?, x%; one will then
have:

B =® (xtH,), } (192)
B, = u(x,tYH,,
and
C

0,
N } (193)
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Set:

oD,
= & (X t; Hy). 194
oH, i ( K (194)

In this case, Maxwell's equations (179) and (180) will become

i &+g% =0
| axk TF gxk '

(195)
S(oimugt]-o
=1\ OX
and
R )
X (196)
aH'i+2 _aHi+1 - 1( 7_4 ’uaH j
Xt 9xX*? ot ot
Remarks. —

1. It results from the first equation (193) that theraa Joule effect in a transparent
crystalline medium.

2. Set:
O (Xt H) =@ (X t; Hy) - Hg. (197)

There will be no electromagnetic hysteresis in thestal considered whegy is
independent of the electric field, and¢x and are independent of tinte

25. Definition of an electromagnetic wave— Suppose that the first derivatives of
the components of the electric foreeand the magnetic forcgl with respect to the
spatio-temporal variables', %, X3, andt are continuous functions at any point of the
geometric spaced, X4, X°), except at any instah&nd every point of the surfa€ewhose
equation is:

Q (x, 1) =0. (198)

That discontinuity surface displaces and deforms vuitle t in the geometric space
(x}, X4, X°); it constitutes avave the Hugoniot sense. We say thiae surface is an
electromagnetic wave.
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26. Compatibility conditions. — The geometric and kinematic compatibility
conditionsof J. Hadamard'} have the following form here:

_aHik_ =100,

L X |

and i )
oA, =A°Q,

| ot |

in which:

Q= a—Q and

ox

o]
L ox

om,]

= A" Q,

=AM Q,

L at |

0Q

t

ot

(199)

(200)

(201)

and in which the symbolF represents the jump of the functiBhupon crossing the

surfaceQ.

One knows j) that the quantities(A®,A5?,4%) and (A‘™,A™,AL{") can be

considered to be the components of two vect§tandA™ in geometric space.

It will then result from the relations (192) and (194tth

2
ox | ¥ ax

=}z

and

e
’ | ot |

roB,

Lot |

a2

ot

_ | 9H, .
—,u[at} (i,k=1, 2, 3),

while assuming the continuity of the derivatives:

when one crossd3; hence:
0B,
| ox |
and
0B,
ot |

with [(199) and (200)]:

GlON

ox

GlON
ot

= g®
= Wy Qi’

— (e)
- (Dk Qt )

@ =6,
@ = A",

u
ox’

|

=™ Q,,

ou
ot

— (m)
- (Dk Qt )

(202)

(203)

(204)

(205)

(206)

() J. HADAMARD, Lecons sur la Propagation des ondes et les équations de I'HydrodyreaRaris,

Hermann, 1903); see pp. &4,seq.

() J. VAN MIEGHEM, Etude sur la théorie des ondgsc. cit); see pp. 31.
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Similarly, (@®,@!?,@!°) and (@™,@\" ,@\") are the components of the two

vectorsa® and ™.
That being the case, one will have:

H, =H, +A0Q+..., } B, =B +@OQ+- -, } (207)

H, =", +AMQ +-, B, =5 +@™MQ +---,

in which H, ‘H,, By, B, andHy, Hy, By, By are the values of the electric force, the
magnetic force, the electric induction, and the magnatuction, respectively, in the
two well-defined media | and Il at the instdrin the geometric space(x?, X°) () on
the discontinuity surface — or waveQ: If Q is a front then it will propagate into the
region |, and one will have:

H=H =B =85 =0. (208)

We now return to equations (195) and (196) of electromaymetve will deduce
immediately that:

“ron (209)
2 axk}_o’

and

aH'i+2 _—aHi+1 - —_
6X|+1 ax+2

i

| C
) [74).
C

axi +1 -

5
&

on Q. We then replace the brackets in (209) and (210) with vh&es in (199), (200),
(204), and (205); hence, when we take (206) into account, iéave thedynamical
compatibility conditions:

(=123 (210)

a)<'+2

(Di(e) Qi =0,
(211)

Mo 10

(Di(m) Qi =0,

a
NN

and

() Here, one assumes implicitly that the vectoriald§ H,, ,, B, B;, andH,, H,, By, B, exist
analytically in all of space, but have a physical samdy in the media | and ltespectively.
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- (+9)2 '+2:_(D|(m&’
¢ (212)
(9%
C

(e)
Ai+2 Qi +1

(m) _(m - _
Ai+2 Qi+1 +2 Q+2_ (Dl

Now, introduce the unit vectad¥ that is normal to the wav@ and the transport
velocity T of that wave; in the case of a Euclidian metric, @7 (101), one will have:

N=N'= 2 (213)
AQ
and
7=-_% , (214)
AQ
with
3
AQ =) (Q). (215)
i=1

Thanks to the definitions (213) and (214), the adgical compatibility conditions
(211) and (212) will take the followingectorial form:

(e) -
(a0*® IN) =0, (216)
(@™ IN) =0,
and {):
(N x/](e)) - +Iw(m)’
c (217)
T
(NxAM™)=——'9,
c
Upon scalar-multiplying the conditions (217) By one will recover the conditions
(216); as a resulgnly the condition§216)are distinct.
Finally, we remark that in the case envisionedykehave:
™ =A™, (218)
Replacerd™ with its value (218) in the first relation (21 Rgnce:
(219)

A0 =+ St (% 1),
T u

() The relations (216) and (217) will persist no matter wheddtions exist between the electric
induction and magnetic induction, on the one hand, anddk#rielforce and magnetic force, on the other.

They are thereforeompletely general.
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and then replacé™ in the second relation (217) with its aforementionediezalHence,
one will have the single vectorial condition:

(Nx(NxA®)) = —,u(%j @, (220)

or rather:

2
N(NRA®) - = —y(lj @', (221)
Cc

27. Consequences of the compatibility conditions.

1. The vectorsad® and @™ that determine the sharp variations in the first
derivatives of the electric inductioB and magnetic inductiolB at any point of the

discontinuity surface — or waveQ-is found in the tangent plane @at that point.
That proposition is a consequence of the relations (216).

2. The vectorsad™ and A™ that determine the sharp variations in the first
derivatives of the electric inductioB® and magnetic forceH have the same line of
application.

That proposition is a consequence of (218).

3. The vectorsA™ and A™ that determine the sharp variations in the first
derivatives of the electric force and magnetic force, reape, perpendicular to the
vectors ™ and A™ that determine the sharp variations in the first derivatives of the

magnetic inductio and the electric inductiof8 (*), respectively.

That proposition is a consequence of the relations (217).

4. CONCLUSION. -The trihedron that is composed of the three vectd?s ™,
N — or the vectors?®, A™, N —is right-handed and tri-rectangulaf); moreover, the
vectorsA®, @, andN are coplanar (see fig. 6).

5. As a result of the relations (207) and (208), and theientioned propositions,
one will have thdundamental theorem:

() The propositions that are stated in 1 and 3 are complgteleral. (See the footnote on the previous
page.)
() Here, one implicitly assumes thatx, t) > 0.
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At a point of the electromagnetic field that immediately folldves gassage of the
electromagnetic wave front, the electric induct®nthe magnetic inductio#8, and the
unit vectorN that is normal to the wave front form a right-handed, tri-rectangular
trinedron; moreover, the magnetic inductisand the magnetic forcg have the same

line of application. The electric forde, the electric inductiorB, and the normal vector
N are three coplanar vectors.

(N)
T
oM m
2©
Ii o®

Figure 6.

6. Finally, the components (187) of the vectoat any point of thdront of the
electromagnetic wav@ are given by:

i Ai(fl) 4(:721) - Afze («L? (on Q) (222)

3
3@ A L)
k=1

Hence, one has thkeorems:

a) The vectorsi®, @, u, and N are found in a plane that is perpendicular to the
line of application of the vecto™, ™.

b) The trihedron that is defined by the vectdf, A™, u — or {A®, &™, u} — is
right-handed and tri-rectangular.

c) At a point in the electromagnetic field that is iediately behind the
electromagnetic wave front, the electric fokldethe electric inductiorB, the velocityu
of the transport of the electromagnetic energy, tHredunit vectoN that is normal to the
wave front are found in a plane that perpendicularthe line of application of the

magnetic forceH and the magnetic inductids.



§ 27. Consequences of the compatibility conditions. 53

d) At a point in an electromagnetic field that is immediately behind the
electromagnetic wave front, the electric foildethe magnetic forcg{, and the velocity

u of the transport of electromagnetic energy constitute a right-hande@diamgular
trinedron.

28. Partial differential equations of electromagnetic waves: We have reduced the
dynamical compatibility conditions to the single ve@brelation (221); hence:

2
(N A®) N =A@ = —u[lj @®, (223)
Cc

with (206):
@®= A9 (=12 3). (223

Upon replacing® with its value (223 in (223), one will get a system of three

linear homogeneous equations in the three unknodfis A, A®. In order for that
system to be compatible, it is necessary and suffitien its determinant should be zero.
Upon annulling the determinant of that system, one vilthim a relation between the
derivativesQi, Q,, Qs, andQ; that is nothing but the wave equation that is corbjmati
with Maxwell's equations (195) and (196).

One then eliminates the componedf8, ¥, A® of the vectorl® from (223) and
(223). To that effect, one first sety:(

2= © (=12 3), (224)
& U
SO
2
(N A@) N, =)@ (1—T—2j, (225)
or rather:
(e)
A® - (NLAT) N.. (226)

)

But then, one will deduce from (22&nd (226) that:

(NA®)

A¥= ¢ N,, (227)

() Theg are functions of the andt and the components of the electric field [see form. {194)
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or rather (224):

2 (e)
@ =-SdNET) (228)
H T°—¢q
so (216):
3 N-Z
L_=0. (229)
;TZ _ CIZ

Finally, upon replacingy; andT with their values (213) and (214), resp., in (228)e
will get the partial differential equation for electromagnetic waves:

3 QZ
> —F—>——=0. (230)
i=1 Qt _CI AlQ

The followingtheoremresults from equation (229):

At any point in the electromagnetic field, any direct{®, N», N3) in space will
correspond to two propagation speeds T that are defined by equé?p9).
Consequently, the crystalline medium envisioned bb@birefringent.

29. Electromagnetic rays.— Electromagnetic rays are defined by the diffeagn
system:

dx .
—=dt |:1,2,3, 231
w ( ) (231)
in which:
w=[99).[99] (232)
0Q, 0Q,
with
3 QZ
o=y ——" 233
;Qtz_qulQ ( )

Recall thaQ (x, t) represents a wave function&g
One easily obtains:
IS L
Q; qmﬂ =ACHT )
3 :
k

EquAQ)Q

w

(234)

However, one deduces from (230) that:
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3 A2(A2 _ A2 3 2 3 2 2
DGR oy a0y S =0, (239)
o (Q7—¢°A Q) = (Qf —¢°A Q) = (Q°—G6°A Q)

when one takes into account tkaE Q (x, t) is a wave function; hence (234):

1
(=1,273), (236)

) [ 2
W EE[TZ LK j (237)
in which one has set:
A=——— (238)

3 Nk 2

Formula (237) permits one to complete the propositiahwhas stated at the end of §
2T

At any point in the electromagnetic field, any spatial directibi, N2, N3) will
correspond to two velocities of wave propagation T and two rays w.

Theorem |. — The normal component of the wave vegtor (w;, W,, W) is equal to
the velocity of transport T of the wave.

Indeed, if results from (237) that:

3 .
(N-w)=> NW=T, (239)
i=1
when one takes (229) into account.
Theorem Il. —The vectorsi® and A™ are perpendicular to the vectar.

Indeed, one has, from (237):

(@ =N 1/ 3@ @ . = N A
w- A => WA =T(N - A )+ZT2I——IC|2’ (240)
i=1 i=1

or rather:
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szl“*) (T—%Zf (T'Z\'Zf;) j(N A9 (241)

However, it results from (229) that:

hence, from (238) and (241):

i=1

(w - A®) = imi‘e) = (T ——G;—EJ(N . A®) =0. (243)
Q. E. D.

If one takes into account the first relation (217) amchida (218) then one will have:

WA =+ S (N xA9)). (244)
T u

Now, calculate the components of the vectdx(A®); one easily finds that from (226):

(N x A9 =N, 49 =N ,,A49= (N - 1) Nua Nis - . (245)

or rather:

2 2
(N X A@); = (N - A€) Nips N Ga~Geo (246)
T (T - )

and in turn, from (244) and (237):

WINXA®) = 3 W (NxA®),

i=1

. A2 (247)
=T Nm(e) Ni 4N, |+1 Q+2 {T2+ j,
(NEP2 NN mi | T r g
or rather:
(WINXA®)) =
P (248)

() Cou = G
TETINM, NS{Z(T SENT ) (T O(T= (= Z-ll( " q”)}

However:
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DR P SR ! {TZS 2 =)D (¢am &}.(249)
;(TZ_qil)(TZ_ (Fiz) (TZ_QLZ)(TZ_ sz)(TZ_ (3,2) ;(QH (i:+2) IZ];((;-%—]_ é2)|

One easily sees that the sums that appear in thiehagld sides of (248) and (249) are
identically zero; hence, from (244):

w - AM)=0. (250)
Q. E.D.
Corollaries:

1. u andw will have the same line of application and the same axis at any point of
the wave front.

2. The trihedron that is defined by the vectdf®, A™, andw is a right-hand tri-
rectangular trihedron.

3. At any point of a electromagnetic field that immediately folldbwspassage of a
wave front, the electric forcel, the magnetic forcé4, and the velocity vectow that

defines the transport of the front along the rays forms a right-handedctasgular
trinedron.

The angle that the vectod€) and@® subtend is equal to the angle betweeandN.
Set:
a=angle 4©, @) = angle W, N); (251)
hence:

T =|w|cosr , (252)

in which |w | represents the algebraic value of the veestor

(N)
T u=w
oo
/](e)
e o 7
¥ o
/](m)

n

Figure 7.
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Corollary. —The vectorsi®, @, w, u, N are in a plane that is perpendicular to the
line of application of the vectord™ and «@™; moreoverthe vectorsv and u have the
same axigFig. 7).

Theorem 1ll. — | say that at any point of the wave front, one will have the
equipollence:

usw. (253)

Indeed, if we return to the definition (222):

1@ x y(m
RAETYRYE ((m) (?n TNE (254)
3[(A7 ™) +(A7 o )]
hence, thanks to (217):
/](e) /](m)
RELTYEYC) ((m)>< )(m (o’ (255)
=3 [(A INXA)) +(A7 [N xA*7))]
or rather {):
© 5 3(m
u=7 A XA7) (256)
(N Eq/](e) x/](m)))

However, one has:
e other hands (A® x AM)) = | 1@ x A™) | cosa. (257)
On the other hand:
(/](e) x/](m))
A9 xA™)]|

is, by virtue of the preceding theorem, the unittge on the axis that coincides with the
line of application of the vectav; hence:

(@) % y(m
= (258)
[(AZxA) [ |w
Finally, one has:
w 1
u=T—0G5——, (259)
|w | cosx
and consequently, from (252):
Uusw.

Q. E.D.
Remarks. —

1. One deduces from (237) that:

() The relation (256) is general (see the remark abdttem of page 7). In any case, one will have:

Uy, =w,=T.
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2 \NZ 3 \N| ) 3 AZ N 2
Wl =w= = TN+——- : 260
jweve= Sy= 3TN (260)
or rather, from (229):
2 3 2
Ww=T2+2 ZNi , (261)
T i=1 T _q2
and as a result, from (238):
2
V\F:T2+$. (262)

Thanks to (252), one will then have:

A =T*(W-T? = T*ana. (263)

2. Return to formula (237); if one takes (262piatcount then one will get:

. 2 - 2 - 2
wi= N[z, W -T) ) W (264)
T T°-¢ T°-q
Hence, upon setting: _ .
T'=TN'=TN, (265)

one will find the followingremarkable relation:

wo o T
W@ T (266)

Conclusion. — The rays that are associated with the electromagngave frontQ
are the trajectories of the electromagnetic energys a result, the analogy between the
raysof the mathematiciango which one is led by the problem of integratthg wave
equation, on the one hand, and the rays that asd®redby the physiciston the other
hand, is complete.

The partial differential equation:

3 QZ
> ——+——=0 (267)
i=1 Q _Ci AlQ

represents theave aspectand the differential system:

i 2
dx'_Tw2 G

Flbr N, (268)
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with
(X )
3%
represents theorpuscular aspeodf Maxwell's system of equations (195) and (196) for
the electromagnetic field in a crystalline medium.
Particular case.— When the medium envisionedsstropic, one will have:
E=EH=EHEE. (269)

In this case, the partial differential equation foz thave and the differential system
for the rays reduce to:

Q> -c’AQ=0 (267
and
% =TN' (i=1,2,3), (269
respectively, in which:
2
2 —_ C
= — 270
C e (270)
and
T=usw=c-. (271)

Equations (268 show that the rays will be normal to the wave in ismtropic
medium.

30. Elementary Huygens wave— We saw in (810) that the equation for an
elementary Huygens wave is deduced from the general ih{édja

i — i . 0 0

X =X (1; %, to,fjx,fjt ), (272)
t=t(7;%,,t,Q°,Q7),

Q = Qo = invariant,

Q =Q (1:%,,t.,Q°,Q°
i |(T’X0’ 0’ )(()’ to)’ (273)

Qt = Qt(T; Xoato1Qx’Qt )

of the differential system for the bicharacteris(i68):
dx _ dt _dQ_-dQ _-do _ . (i=1,273) (274)

90 90 o 90 00
Q, 00, K ot
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with
3 QZ
0=) 55— (274)

Conforming to what we said in®), consider all of the rays that issue from the prjrat
the instant, . These rays are defined by equations (272), in whiclftheepresent any

direction that emanates from the pditand thanks to the wave equation (262, is a
known function of theQ?. One can then assume that ¢ are normal. Then set:

Al=w, Q°=9 (275)
with

Zaf =1. (276)

Furthermore, the problem of the search for the equatidHuggens’s elementary

wave reduces to the problem of eliminatingu, w, as, and@from the relations (272),
(276), and:

3

277)
S
in which we have set:

Coi =Ci (X, to; H?)  with  H°=H (o, to). (278)

31. Case of a homogeneous medium. Fresnel's wave surfaeeThe crystalline
medium envisioned is homogeneous whagns,, &, andy are constants. In that case,
one will have:

B =g H and Bi=uH;; (279)
hence, from (194) and (224):
G = constant i(=1, 2, 3). (280)

As a result, the wave equation (267) will have constaefficients, and from (235),
the differential system of the bicharacteristics (27d)reduce to:

dx _ dt _dQ_ dQ; _dQ (i=1,23). (281)
1 -Q 0 0 0
QZ_CZA Q + Qtz QZ
3 Q? AQ[T
2 1
-, Q

Hence, one will have the invariants:
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Q=0Q° Qi=Q?, Q= Q?, (282)
and in turn:
N =N’ and T=T° (283)
That will lead us to set:
N=a, T=9 (284)
with
3
dat= 1, (285)

in which thea; , a» , a3 , and @ are constants Furthermore, it is natural (86) to
envision the propagation pfane waves.Therefore, consider the wave function:

3 .
Q=D ax -6t (286)
i=1
whose coefficients are coupled by the relation (229), hame

3 aZ
—=0. 287
.Z:‘ F-c (287)

It will then result from (281) and the definition (234patlhe equations of the rays
are:

X =% + W (t-1) (=12 3) (288)

in which the constant coefficients are given by (237):

o|R
)
+
I
~—
)
s
238
5

(i=1,2 3) (289)

That being the case, in order to obttia equation of elementary Huygens waase
we just saw (80), it will suffice to eliminateai, a», as, and @ from the five equations
(288), (287), and (285).

To fix ideas, suppose that the pomtcoincides with the origi® of the coordinates;
hence:

to=0. (290)

Equations (288) will then become:

X =wt. (291)
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At the instant, let P be any point of the elementary Huygens wave that idsoes0 at
the initial instant = 0. The coordinates, X, X° of the pointP are given by (291), and
the normal to the wave surface at that point is detexthby the direction cosines, a>,

as. As a result, the distance from the originto the tangent plane to the elementary

wave atP will be defined by:
3 3

dax=)awt, (292)
i=1 i=1
so, thanks to (287) and (289):
3 .
Dax =6t (292)
i=1

That distance is then equal &1. As a consequence, at the instiarthe elementary
Huygens wave that issues from the origin O atriteal instant t= O will be the envelope
of the wave planes of the equation:

3
dax-6t=0 (293)
i=1

whose coefficientsn, a», as, and @ verify both the relations (285) and (287). One will
then see that the elimination problem that was posedealbaequivalent to the problem
of searching for the equation of the envelope of a tworpetier family of planes. The
equation of that envelope — i.e., the elementary Huygane w is nothing but theoint-
like equation in % x4, x that corresponds to the tangential equat{2B7) ina, az, as.

We are then led to seek that equation of the envelofhe gflanes (293) that depend
upon two parameters. To that effect, St (

1& a?
== i 294
¢ 22T (294)
and
09 a
| = — = ' ) 295
# = ST (295)
0¢ Py
=—L==0) ¢°. 296
P 36 Z:,¢ (296)
We now differentiate the relations (293), (285), and (28 fcére
3 .
> X da, -t dd=0, (297)
i=1
3
> ada; =0, (298)

() Here, we are inspired by a calculation of LEVI-CI¥Tloc. cit, see, pp. 9Ct seq.
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3
> ¢ da; + ¢, d6=0. (299)
i=1

Replaced@in (299) with its value that one infers from (297); onentlbtains:
3 Xi
Z(ﬂ +T¢4jdai =0, (300)
i=1

in which theda; are linked by the relation (298); as a result:

) +XTi¢4 = xa (i=1,273), (301)

in which y is a parameter. In order to calculate the valug ohultiply (301) bya; and
sum over the indeX hence:

>ad+08i=x (302)

when one takes (293) and (285) into account. However, $hani287), one will have
the identity:

> a =0, (303)
i=1
and consequently:
X=E0¢s, (304)
or rather, from (296):
3
X==6 ¢ (305)
i=1

Having achieved that, we proceed to eliminatedhear,, as . In order to do that, we
return to the relation (301) and replagewith its value as a function @ that we infer
from (295); we will have:

XT¢4:¢i(X(32— ) —1) f=123) (306)
hence:
b X
¢| t 1_)(32 +XC'|2 ’ (307)

We then eliminate?; to that end, we calculate 1x-82 It results from the relation
(301) that:
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X g yap (o8)

Next, square both sides of (308) and sum over the inde&nce, thanks to (303) and
(285):

¢ @ =x*+ Y02, (309)
with:
r? si(xi)2 . (310)

3
Now, replace2¢i2 with its value that one infers from (296); if otakes (304) into
i=1
account then one will get:

(1Y 2y pge_ P ey g
¢4(tj =x0¢, 2 8 e -1), (311)
or rather, from (304):

1-y62=-¢, HGJ = —XG) . (312)

Finally, replace 1 x 82 in (307) with its value (312); hence:

_¢ x*/t

oyt (=12 3). (313)

We now return to theangentialequation (287); one first deduces that:

s at a6 =) e a )¢ ag )
0= 2 @ 27 =6 Y = | 314
or rather, from (295):
5’22¢ Z¢ G*=0, (315)
and then, from (285):
3 '2 3 '2 2 3 2 62) 3 a qz
0= g a’ a6 a’(¢’ ¢ o1 (316
EHZ_CIZ ;HZ_CIZ ; HZ_QZ ;ez_qg ( )

or rather, from (295):
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iai ¢ c*+1=0. (317)

Now, replacea; in (317) with its value in (319)the equation of the elementary
Huygens’s wavevill then become:

3 (Xi /t)zqz B
Z;, - =0. (320)

Upon setting = 1 in (320), one will recover the classical equat

(Xa)” _g (321)
r~—c

of theFresnel wave surface.



CHAPTER VI

APPLICATION TO SECOND-ORDER
LINEAR EQUATIONS

A. — Waves and rays.

32. Second-order equation— The second-order, linear, partial differential equation

& 0%z N 0z
B +) C*—+Dz= 322
Z{Z{ ox“ox? ; oxX E (322)

whose coefficient8%, C? D, E depend upon only spatio-temporal variables, pkys

very important role in mathematical physics. #oaseems indispensible to us to dedicate

this chapter to the study of waves and rays tletampatible with that equation.
By hypothesis, one will have:

B% =B~ (323)

33. Wave equation.— Return to the general equation (8); it reduceshe Lamé
equation:

L& 0Q 0Q
QEE 2 B¥ 2" =0 324
Ell g:]_ﬂ:l axa aXﬂ ( )

here, or rather, thanks to (10) and (11):

L& i Ot ot n, .0z
B“—.—._Z Bm—.+ Bqn:O. 325
,Z:;‘,Z; ox ox Z‘l oXx (32)
Recall that:

t=x"

34. Differential system of the rays.— The Cauchy characteristics of the wave
equation (324) — i.e., the Hadamard bicharactesistf equation (322) of mathematical

physics — are defined by the differential system:

dx’ _ dQ _ -dQ,
oo0Q o d0Q
0Q, ox’

(a=1,2,...n). (326)

As for theraysthat are associated with the wave function:
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Q=0 (x 1), (327)

they are determined by the differential system:

2 =t (=12 ..n-1), (328)

with

W {aqnj : [amlgj | (328)
Q. 0Q,

in which the parentheses serve to recall that onedmacedQ with the wave function
(327).

We have seen (80) how one can, in a general fashion, deduce the genezgtal of
the differential system (326) from tl@ementary Huygens wave-dowever, before we
pursue the study of waves and rays that are compatible tgtrequation (322) of
physics, we propose to present some generalities abogetkesics that are associated
with anarbitrary quadratic differential form (see B). We will then sh¢see C) how
those considerations can be utilized in the theory obsia

B. — Geodesics of a quadratic differential form.

35. Preliminaries.— Let:

n n

(d9®=> "> B, dX df (329)

a=1 =1

be the quadratic differential equation that defittes metric on spaced( ..., X"™). By
hypothesis, that form is invariant with respectitoarbitrary change of the variables
into the variablesx“ :

X7 =x"(x%,...,X") or XT=XO0¢, L XY (@=1,2,..n). (330)
n(n+1) : .
The ——= functionsB :
12 aﬁ()

Bos=Bos (X', ..., X" ™) = Bgs (X, ..., X" (331)
define the covariant components of a second-organtric tensor. Set:

B=|Basl| (332)

() The functionsB,;5 are supposed to satisfy all of the regularity conditittrat are necessary to justify
the argument and calculations that will follow.
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and

minor of B
B% = T"ﬂ (a,B=1,2,...n). (333)

Recall that\/B has the variance of a multiplier, and that thecfioms B* are the

contravariant components of the tensor that idefiby the coefficients of the invariant
differential form (329). One then has the variarelations:

ANNLNY; v 67( _
B 334
a8 = ;;ax P Bao: (334)
N ax? oxP —
B = , 335
Z;;axaﬁ (335)

a(x,.
JB= a(xl ( (336)

Introduce the notation:

n n

L? (x dX) =D >"B,, dx" d¥, (337)
a=1 =1
and set:
yo= X @=1,2 ...n) (338)
ds

One will then get the identity i, ..., X"

L (x, u) = Zz B, uU=1. (339)

a=1 =1

The covariant components of the vector that isinddf by the contravariant
components (338) are given by:

Uz= Y B U (a=1,2, ..n). (340)
£=1

It results from (337), (338), and (339) that:

L?= > u7y, = (341)
a=1
and
u= >y B%u,. (342)
5=1

Hence, one has the identity »?, ..., x":
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Zn:i B u, u,= 1. (343)

a=1 =1

The quadratic form (343) is the form that is adjoint389). We remark that:

Zn:i B.s uwf = Zn‘i: B” u, U,. (344)

36. Definition and Lagrangian equations of the geodesics. The geodesics of the
line element (329) are the extremals of the integral:

L(x,dx) = j L(x, u) ds. (345)

S ey X

They represent the length of an arc of a curvejtas the point to the pointx; in
the n-dimensional non-Euclidian space whose metric isindd by the quadratic
differential form (329). The first variation dfs given by:

0§ o o S oo o

Hence, one has thegrangian differential equations:

oL _dL d JL _
oxX X _dsdd _

(a=1,2,...n) (347)

for the geodesics of the line elemr9).

37. Hamiltonian equations of the geodesics: One knows that equations (347)
admit the relative integral invariant:

n

j= Z (348)
Indeed, one easily verifies the identity:
d_y4 (349)
ds

by virtue of (347).
That being the case, introduce the canonical Boigariables:
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Ug = al‘g (a=1,2,...n), (350)
ou
so, from (339):
Uy = zBaﬂ uf . (351)
B=1

The canonical Poisson variables are then the caowacamponents (340) of the
vector that is defined by the contravariant compone388)( The vector is nothing but
the unit vector that is tangent to the arc of the geodbat joins the point, to the point
X1 .

From the notation (338) and the identity (349), it wiénihresult that:

z(d”" OX + u,,cfu"jz a, (352)
oo\ ds
or rather:
Z(%éx”—u”éunj Eé[L—Zu,, u"j. (353)
a=1 ds a=1
Now set:
Hxu=-L+>uu,; (354)
a=1

hence, thanks to (339) and (350):

H (x, u)E—1+Zn:u” £ = Zn:zn:Baﬂ e -1, (355)

~ 2\/iisaﬂ U’

or rather:

H (x,u) = \/Zn:i B¥ u,u, - 1. (356)
ﬂ:

From (353), (354), and (356), and taking (338) into account, dhéhem deducehe
canonical Hamiltonian equations of the geodesnesnely:

a@’_ oH (357)
ds oY, (=1, 2, ...n).

dy, __OH (358)
ds oX

We remark that, thanks to (343), one will have the itieittix', x2, ..., x":
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H(x u)= \/iis"ﬂ uu, —-1=0. (359)

B=1 p=1

LY

Recall the well-known invariance property of the functié (x, u) with respect to the
differential system (357) and (358).

Let:

360
{ X' =X(s %,.--Jg lﬁv-"ﬁ)’ (=1,2,...n ( )
U, =u,(S % £, 0o ), (361)

be the general integral of the Hamiltonian equations (3&f)258). Equations (360) are
those of a geodesic that issues from the pair@nd is tangent at that point to the line
whose unit vector is defined by the covariant congmsu,, u’

n .

38. Jacobi's theorem— Now consider'j the function that is defined by:

X, S

S= j L(x,u) ds,
%%

(362)

in whichthe integral is taken along a geode&360). Along such a curve, one will then
have:

ds =L (x, u). (363)
ds
That being the case, the identity (349) will give:
d( A
—[Z u,0%x —53} =0; (364)
ds\ 72
hence:
n a S _ n 0
> u,,Jx”— ox ——5 ——5§=2u,,5>q§’. (365)
a=1 Xé' s a=1

Upon identifying the coefficients ofx®, dx{, J&, and & in (365), one will get
Jacobi’s theorem:

:Sa = u, (366)
X —

3s e (a=1,2,...n)

e Tl (367)

() J. VAN MIEGHEM, Wis. en Natuurkundig TijdschrifGent, 1932), deel VI); see pp. 80, no. 4.



8 38. — Jacobi’s theorem. 73

as well as the relations:
S_o and B=o (368)
0s 05,

It results from the latter equations that the funct®that is defined by (362) is
independent of ands, ; it will then depend upon only the coordinates ofdkeremities
of the arc of the geodesic envisioned. We then set:

S=S( %, L X R, K, L, X, (369)
Finally, note that by virtue of (366) and (358)e function §x, Xo) is an integral with
n arbitrary constants<, X7, ..., X of the Jacobi partial differential equation:
> > BY asaa_f_l: 0. (370)
a1 51 ox? ox

The functionS that is defined by (362) represents the distamtesden the points
andxo in then-dimensional space whose metric is defined by (328% say tha&is the
geodesic distandeetween the pointsandx, .

Remark. — The arc of the geodesic curve can be considerbd a parametric variety
or as a function of the coordinates of the extresiof the arc. Indeed, it will result from
(339) and (363) that:

as_y (371)
ds
along a geodesic (360); hence:
S=s5, (372)
when one sets:
S =0. (373)

39. General integral of the differential equations of geodes. — One knows that
the general integral (360) and (361) is given kg Jacobian equations (366) and (367)
when one can solve them with respect toxhandu, — i.e., when the integr&@ hasn
integration constants that are defined by (362n isomplete integral of the Jacobi
equation (370). Inthe case that we are concewridhere, the relations (366) will give

theu, immediately as functions of the andu? if one can solve equations (367) for the
x?. We shall show that this is impossible.

Theorem I. —1 say that:

2
H S | <o, (374)

0xS 0x°
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Proof. — Indeed, since the? are invariants of the differential equations (357) and
(358), one will have the identities:

d( 0S
—|—1=0 a=1,2,...n 375
ds[a%’j (s ) (375)
in x*and xJ . Hence:
n 2
> 2Sﬂuﬂ50 @=1,2,..n), (376)
= 0%, OX
and as a result:
2
OS |- (377)
oxS 0x°
since theu” are not all zero at once.
Q. E. D.

Conclusion.— Since the functional determinant of the functio®&d X, ...,0S/9%
with respect to the variabled, x?, ..., X" is zero, it ismpossibleto solve the equations:

X

S

for thex?. It will then result that the functio®that is defined by (362) is notcamplete
integral of the Jacobi equation (370).
That being the case, séx: (

FOE X, o, X)) =[SO, X ), e, X5 (377)

in which " (X; Xo) represents the square of the geodesic distance f@moihtx to the
pointx, . Hence, (366) and (367) will give:

9ir

v = su, (378)
)1( (a=1,2,...n

9T s, (379)
24

when one takes (372) into account. The relations (378) &%) €hows thas u, and
su are functions of the andx, ; one can then write:

() Ibidem see pp. 83, form. (41).
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su, =U,(X,...,X; %,..., §) (380)
s =U2(X,..., X; %0, %) (382)

Equations (381) show thaeodesics are straight lines in the system of covariant
variables(U?, ...,U°) ().

Theorem Il. —1 say that:
21
H Ay P (382)
0X; OX
Proof. — Indeed, one has:
M: ul (=1, 2, ...n), (383)

ds

by virtue of (357) and (358). However, from (379):

d(sy)__ dajr
ds ds X (384)

and as a result:

n 23
> aazrﬂ u=-u; (385)
5= 0%, OX
hence:
21
0°3ir £0,
oxS 0x°

because the system (385) admits a solutfon.., u" .
Q. E.D.

Conclusion. — The functional determinant of the functiodgl /dx;, ...,01 /9x]

with respect to the variables, ..., X" is non-zero. Upon substituting the values thus-
obtained for thex” in (378), one will find a remarkable formula fdret general integral
(360) and (361) of the Hamiltonian differential atjans for the geodesics, namely, (

() The contravariant variables:

Ul =3 B [in which B*= B% (x..., )]
B=1
generalize theLipschitz normal variableson that subject, see: G. DARBOUXgcons sur la théorie
générale des surfacess Il (Paris, Gauthier-Villars, 1915); see pp. 422 and 423.
() J. HADAMARD, Le probléme de Cauchy et les équations aux dérivées partlgiesires
hyperboliquegParis, Hermann, 1932); see pp. 120, form. (29).
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X¥ = X(%,...,%; s4,..., si), B (386)
{ su, =U, (%,..., % sU...., s, (@=1.2..n) (387)

The Jacobian relations (366) and (367) show that this integmaains unchanged
when one permuteg’ with x{ andu, with — u in it. Furthermore, that amounts to

replacings with —s; that is what equations (378) and (379) show blear

40. Parametric equations of geodesics. Introduce the direction coefficients:

Aa

uO
u—g (@=1,2,..n) (388)

W= n)l" | (389)
T3
y=19=1
with
An=1 (390)
and
B¥= B¥ (x,...X) (a,B=1,2,...n). (391)

We remark that the? that are defined by (389) verify the identity tea:
Y B U =1 (392)

As a result, (359) is verified at the pogt 0 (orxp) of the geodesic considered. It
will then result from the invariant character okthkamiltonian functionH that this
relation will be verified all along the geodesiatlissues from the poimt and is tangent
at that point to the line whose direction coefiintgeareds, ..., An-1 .

Replace thal® in (386) with their values (389) as functions lod #; one will get:

XHZX”(){);SL?),
=X Ry eSS L (393)
[, [S3a 53w
a=1p=1 a=18=1 a=15-1
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hence, one will havithe parametric equations for geodesics:

X =K% s XA A 1,9 (a=1,2, ..., 3). (394)
Theorem.—1 say that:
3z 00 X) Ly (395)
o(A,...,A,,S)

Proof. — Indeed, in order to show that O, it will suffice to show that is it possible

to solve equations (394) fok, ..., An-1 , S. To that end, we return to equations (386),
which are deduced from the parametric equations (394). Bpleing equations (386)

for the su’, one will get equations (381). Hence, thanks to (388), (390)322):

_=Ui0(x;)%) = ok~ ap 0 0 - 3
AI_—Ur?(x;xo)’ S \/;;Bo )UIx %) Us(%x %)  (=1,2 ...,n—1). (396)

That is the result of solving equations (394)tfe Ay, ..., A1, S.
Q.E.D.

Remark. — It results from (372), (377), and (396) that Hmpare of the geodesic
distance from the pointto the pointx, is given by:

n n

F(x%) =D B7 (%) U(x x) U(x¥). (397)

a=1 =1

41. Differential parameters. — Now introduce the Lamé and Beltrami differential
parameters, namely:

=y y g U U
Ou _;;B Fvarwl (398)
| S
O,U = = Z; ﬂ;( ~ , (399)

in whichU is a function of the:

Usu K ..., x"). (400)

Recall that the parameteiU and[O,U are invariant with respect to any change of
variables (330); one will then have the invariareations:
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{ U =0u, (401)

O,U =0U,
in which:

. n n T T . 4
Ou = 22§”ﬂ 6U6_U, OuU= 1 Z £ ox , (402)

and
UsuK, ... xX")=UX,....x")=U, (403)

by virtue of (330). The symbolB” and B were defined before [see form. (334), (335),
and (336)].

Theorem I. —| say that(*):

Or =4r. (404)

Proof. — Indeed, it results from (370) and (377) that:

ar=y3er TN (405)

Upon replacing 6\/? in (405) with its valuei or , one will get (404)
ox“ 2T ox°
immediately.
Theorem Il. —1 say that(*):
dlog(J,/ B
Or=2/ 1+ SM . (406)
ds
Proof. — Indeed, by definition, one will have:
1 &0 . 68
= — B B”ﬂ 407
Bgax"\/— =1 (407)
in which:
s=T. (408)

However, thanks to (366) and (342), one will have:

() J. HADAMARD, loc. cit, see pp. 124, form. (32).
() Ibidem see pp. 127, form. (27).
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7=y BY — 68 (a=1,2,..n), (409)
ﬂ:
so (407) will become:
410
(2 ax (410)
We now remark that if we take (338) into accounetnt
d n 9, Bu’
—({BdX,...,oX|= K. XK 411
VBot.ov)= (S @i
and as a result, from (410)
d _ 1
d—s(ﬁaxl ..... 5)@)—\/§D286( Lo, (412)
o)
DstdiS(log(ﬁM...M)). (413)

By virtue of the invariance of the Beltrami paraereunder an arbitrary change of
variablesx, one will have:

= dis(mg(J B°5%...5X53). (414)
in which, from (336):
1
\/?: a(x,..., X") \/— (415)
o(A,..., A 1,8)
However, by definition, thel are functions of the invariants’, ..., ul of the

Hamiltonian equations for the geodesics; hence:

a4 _ o (=12 ..n-1), (416)
ds
and consequently:

0,S= dislog\/ B”, (417)

or rather, thanks to (415) and (395):

_d
S= dslog(J\/_B). (418)
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One will then have, in turn:

_ f
0,S=0,
ke PR
NI R (419)
1 d,/B B ar o B oI or B” 07
_NE\/?;;I ox” azlﬁzlwﬁaxaaf azwzlzfa%af

or rather, from (404):

0,yr= (420)
7T T
Hence, from (418), (420), and (372), one will finally have:
d
Oo,r = 2(1+ sd—S Iog(J\/_B)j.
Corollary. —1 say that:
n-1 d ﬁ
0s=0,.)r=—-+—Ilog~— 421
5 ) s T 3e%9 (421)
and
or=2 n+sdiogyB | (422)
ds A
in which:
21
A= 1 (423)
ox” ox¢
Indeed, the identity:
e} <N <l %"
a(x',....x") _ a(x\,. )Da(x1 X)) (424)

o(A,.... A ,S) a(x1 X") 0(A,,..., A ,,S)
and the equality (336) will imply the invariancéat#n:

JJ/B =3B, (425)

when one takes the notation (395) into account.
In particular, set:
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s  (@=12 ..n) (426)

Recall that theu are then given as functions of the(i = 1, 2, ...,n — 1) by (389).
Hence, a simple calculation will show that:

J= () (427)

TR

and
n| 0%ir
0 "axé”

: (428)

a(x1

hence, from (423) and (336):

JB =1y %. (429)

Finally, upon replacing the produd\/_B in (418) and (406) with its valugﬁ, in

which, j and+/B are given by (427) and (429), resp., one will fgemulas (422) and
(421).

C. — Elementary Huygens wave that is associated with
a second-order linear equation.
42. Lagrangian form of the bicharacteristic equations—
Theorem. — The bicharacteristic lines of the second-order dmum(322) are the
null-length lines of the quadratic differential for(329) that is associated with that

eguation.

Proof. — It will suffice to show that:

ii B 00,Q 00,Q _ 0, (430)

n n

a=1p=1 a B a=1p=1 y=106=1 y=1 6=1

by virtue of (324).
Q.E.D.



82 Chapter VIl — Application to the second-order, linegragion.

The bicharacteristics of J. Hadamard are defined by #m®mnical Hamiltonian
differential system (326), which we write in the follomg manner:

oc_1o00
d6 200, @=1,2, ..n) (431)
do, _ 1000
doe 2 00X

in which @is an arbitrary parameter. That system will adhet invariant:

n n

0,Q =) > BYB*Q,Q;. (432)

y=1 o=1

Set:
g 1000
Q7= B¥Q,== a=1,2,..n 433
; 5= 200, ( ) (433)
and

MQ =D DB, Q707 (434)

a=1 =1

hence, thanks to (333) and (433), one will have:

AQ=0Q (435)
and
4 10A.Q
Q,= B Qf=z=-—"1-% a=1,2,...n). 436
a ; aB 2 aQa ( ) ( )
We then remark that:
oA\, Q n& 6BKy 5
= QQ°, 437
ox’ ;52:1 ox” (437)
but:
oB n n oB*
|z
=- B B, ——. 438
axa ;; W —ov axg ( )
Hence, from (437) and (438):
N, Q = _96,Q (=1, 2, ...,n). (439)
ox“ ox?

Finally, it results from (433), (435), and (43&pat theHamiltonianequations (431)
can take théagrangianform:
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onNQ d (6/\(2

=0 a=1, 2, ...n). 440
ox“ d6’ an”j ( ) ( )

However, one will have:

NQ daw//\Q 1 (a/\g d(d/\QD’ (441)

o  do 0Q°  2JAQ do\ aQ°

when
N1 Q =constant 0 or [O0Q = constant 0. (442)

In that case, equations (440) will be equivalent td_ttgrangianequations:

3 AQ 3 AQ
L2 d AR @=1,2, ... (443)
ox“ dg o0Q“

We note that equations (443) will remain unchanged wimenreplaces? in them
with an arbitrary function o&; the choice of the parameté@will then remain arbitrary
here.

Equations (443) are identical to the Lagrangian equati®#g) (of the geodesics.

Indeed, it will suffice to substituts for & (s being defined byds / dd = /A, Q =

constant) andu”\/ A,Q for Q“ in (443) in order to obtain equations (347) identically.

We remark that we have made a choice of paransatethe geodesic equations (347)
that has a well-defined geometric sense. Finally, equ&a({i43), along with those (347)
of the geodesics, will lose all meaning when:

N Q=0 or 0Q =0. (444)

As a result, one can consider the Lagrangian equad@®y to be more general than the
equations of the same type (443) and (347).

It will likewise result from those considerationsathithe null-length lines that are
associated withd9)? in (329), despite being extremals of the integral (345nail@ppear
among the geodesics that are define by equations (360) and (J®iht essentially
comes from the fact that in the course of integrativey differential equations for the

geodesics, one has supposed thad B, u“uf =1 (i.e., 0Q# 0 orA; Q # 0). That
a=1 =1

restrictive condition is imposed by the nature itseff the geodesic problem.

Consequently, the null-length lines of a quadratic diffead form are not geodesics of

that form,properly speaking.

43. Characteristic Hadamard conoid and elementary Huygens wave. It results
from the theorem in 82 and the general definition in&gthatthe null-length lines of the
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quadratic differential form(329) that is associated with the partial differential equation
(322) of physics that issue from a point in space-time generate the chisacte
Hadamard conoid that has that point as its sumniRecall that one can consider the
characteristic conoid to be the elementary Huygen& wasgpace-time (see.

Theorem.—1 say that:
F=T (Xt X, t) =0 (445)

is the equation of the characteristic conoid whose sumrf),i&).

Proof. — Indeed, we first remark that the surface whose equatiehl5) is indeed a
wave surface, because, thanks to (404), one will have:

ar =o,
by virtue ofl” = 0.

Now let Py be the point whose coordinates &€, X2,..., X, t,= X)), and letP be
an arbitrary point of the characteristic conoid whesemit isP, . Onenull-length line
in space-time will pass through the poitand P, . That line is an extremal of the
integral (345); as a result, the geodesic distance batarg two of its points will be
zero. Now, we have seen that the square of the gealistsioce between the poirfes
and Py is given byl [see formulas (362) and (377)]. Consequently, equation (445)
indeed defines the characteristic Hadamard conoid.

Q. E.D.
That being the case, solve equation (445};fbence:

t=t(to; X, X0).
Now set:

Q" (X, ) =t—t(to; X Xo).

It will then result from the theorem in&that the functior” that was just defined is
a solution of the wave equation (324), namé&lQ = 0.

The elementary Huygens wave that issues from the pamigeometric space at the
instant  occupies the position of the surface whose equation is:

t(to; X, X0) =t
or
I (t, X; to, X0) =0

at the instant &ty , in which timet is considered to be a parameter here.

Finally, it will result from formula (397) thahe characteristic Hadamard conoid in
space(U;.,U?,...,U?) is a cone of degree two.




