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 In a recent paper that appeared in this Bulletin (1), Dontot directed his attention to an 
integral invariant of geometric optics that was pointed out by Hadamard (2) some years 
ago, and he then studied the relationships between that invariant and the transformations 
of lines to lines that are called Malus transformations; i.e., the ones that satisfy the 
condition that they change normal congruences into normal congruences. 
 In the following pages, I shall point out how these questions can be treated quite 
easily when one imagines, in a completely general manner, the propagation of waves in 
an arbitrary medium, instead of the rectilinear propagation of classical optics.  One even 
obtains the most immediate proofs of the existence of the invariants for the case of 
rectilinear rays.  At the same time, one accounts for the true reason for the success of the 
preceding methods that were employed for the study of Malus transformations. 
 The mathematical image of the propagation of waves in a given medium of a fixed 
nature is, as I have shown (3), a one-parameter group of contact transformations.  The 
characteristic function H(x1, x2, x3; p1, p2, p3) of the infinitesimal homogeneous 
transformation of that group characterizes the medium.  If one equates it to unity then one 
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the point (x1, x2, x3) for its origin. 
 The contact elements that the group in question (G) operates on are defined by the 
rectangular coordinates x1, x2, x3 of a point A and the direction coefficients p1, p2, p3 of a 
plane that passes through that point.  Upon subjecting the latter to the condition H = 1, 
one defines a normal vector to the contact element (E) considered, and one calls it the 
index vector, because its length N is the inverse 1 / V of the velocity V of the normal 
displacement at A of the front of any wave that has (E) as a contact element. 

 By definition, any homogeneous contact transformation leaves ω = 
3
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invariant.  One immediately deduces the series of symbolic differential expressions that 
Cartan introduced in his theory of Pfaff expressions (4) by the process of calculation and 

                                                
 (1) Tome XLII, 1914, fasc. 1, pp. 53.  
 (2) C. R. Acad. Sc., 14 March 1898.  
 (3) Bull. Soc. math. France, t. XXXIV, 1906; Ann. Éc. Norm. sup. (3), t. XXVI, 1909. 
 (4) Ann. de l’Éc. Norm. sup. (3), t. XVI, 1899, pp. 239. – This mode of deduction was employed by De 
Donder in an article in this volume of the Bulletin de la Société mathématique, but in a form that is much 
more complicated.  See pp. 91. 
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symbolic differentiation that he used in order to deduce some beautiful results.  They are, 
in turn, along with the expression ω itself, the differential elements of a sequence of 
integral invariants whose form is common to all contact transformations.  All that is left 
is to interpret them in order to obtain, in particular, integral invariants for any mode of 
wave propagation. 
 That interpretation is done effortlessly by means of the index vector: The first 
invariants J1 and J2 , which are of order 1 and 2, resp., are simply the work and the flux of 
that index vector. 
 Each contact element (E) defines a ray (R), which is curvilinear, in general, along 
which the point of that element displaces during the propagation of any wave that has (E) 
for one its elements, and in such a way that, conversely, any point A of a ray (R) is 
associated with the index vector (N) of the element (E), which then displaces along the 
ray (R).  We say that (E) and (R) are pseudo-orthogonal.  The rays (R) that are pseudo-
orthogonal to the wave elements are called the pseudo-normals to that wave. 
 The invariants J1 and J2 are thus related to the curves that are situated in the surfaces 
that are coupled to the rays and to the surfaces that are transverse to the ray congruences.  
However, one confirms that J1 is a relative invariant for the infinitesimal transformations 
ϕ(H f), where the factor ϕ is arbitrary.  These transformations slide the elements (E) 
along the rays (R) according to an arbitrary law, so it results that J1 is an invariant for a 
tube of rays and J2 is an invariant for a congruence of rays.  The condition for a 
congruence of rays to be a congruence of pseudo-normals is expressed by the vanishing 
of these invariants (1). 
 The invariant J3 (as a relative invariant) and the invariant J4 possess the same 
invariance property for the transformations ϕ(H f), and are thus attached to closed 
families of ∞3 rays and systems of ∞4 rays.  One deduces an interpretation for J4 from this 
that generalizes the one that Hadamard gave for the rectilinear rays of the optics of 
homogeneous and isotropic media. 
 The study of ray transformations results very simply from the reduction of any group 
(G) to the canonical form of a group of translations by a contact transformation.  The 
Malus transformations are divided into two classes according to whether they are or are 
not compatible with the conservation of the elastic properties of the medium considered. 
 The one and the other can be realized by subjecting the family of waves to contact 
transformations.  One then has the ones that leave the characteristic function H invariant 
and the ones that leave invariant the differential system that defines the trajectories of 
propagation. 
 Since any contact transformation can be obtained by means of an infinitesimal contact 
transformation, and it corresponds to the propagation of waves in a conveniently-chosen 
medium, it seems legitimate to conclude that all of the Malus transformations can be 
obtained by making a layer of a convenient auxiliary medium pass through the rays that 
are produced in the given medium, such that when the layer leaves that medium, it re-
enters the given medium or a second medium with wave surfaces that are homothetic to 
the first ones (according to whether one is dealing with transformations of the first or 
second class).  However, the rigorous proof of that result will necessitate a new 
investigation. 
                                                
 (1) This result was pointed out by Cartan for rectilinear rays and normal congruences [Bull. Soc. math. 
France 25 (1898), pp. 140].  
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I. – INTEGRAL INVARIANTS.  
 

 1.  First, recall some principles of the propagation of waves in a given plane (1). 
 At each instant t0, any point A of the medium is capable of emitting a wave that is a 
certain surface S at any later instant t0 + t, from the geometric viewpoint.  The homothetic 
image of that surface S, when taken with respect to A, and with a homothety ratio 1 / t, 
tends to a limiting surface Σ when t tends to zero.  If the medium is stationary then that 
limiting surface Σ will depend upon only the point A; i.e., independently of time, which is 
what we assumed.  One calls it the wave surface that has A for its origin. 
 The mode of propagation is characterized entirely by the family of ∞3 wave surfaces 
that have various points of space for their origins.  One defines it analytically in the 
following manner: 
 Let (x1, x2, x3) be the rectangular coordinates of a point A; write down the general 
equation of a plane in the form: 
 
(1)    p1 (X1 – x1) + p2 (X2 – x2) + p3 (X3 – x3) = 1. 
 
The wave surface whose origin is A will be represented by the equation that expresses the 
idea that the plane (1) is tangent to it, and one suppose that this tangential equation is 
presented in the form: 
(2)      H(x1, x2, x3 ; p1, p2, p3) = 1, 
 
in which H is a homogeneous function of first degree in p1, p2, p3 . 
 The corresponding mode of propagation then has its geometric expression in the one-
parameter group (G) of homogeneous contact transformations that is generated by the 
infinitesimal homogeneous contact transformation (2) that has H for its characteristic 
function; i.e., its symbol is the Poisson-Jacobi bracket: 
 

(3)     (H f) = 
3

1i i i i i

H f H f

p x x p=

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
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 Here is what we mean by that: The general transformation of the group (H f) is given 
by the formulas: 
(4)    xi = 0 0 0 0 0 0

1 2 3 1 2 3 0( , , ; , , | )if x x x p p p t t−   (i = 1, 2, 3), 

 
(5)    pi = 0 0 0 0 0 0

1 2 3 1 2 3 0( , , ; , , | )ig x x x p p p t t−   (i = 1, 2, 3) 

 
that one gets by integrating the canonical system: 
 

(6)     idx

dt
 =   

i

H

p

∂
∂

  (i = 1, 2, 3), 

 
                                                
 (1) Das Eikonal, Abh. der. k. sächsischen Ges. der Wiss., 1895. 
 (2) S. LIE and F. ENGEL, Theorie der Transformationsgruppen, t.  I, pp. 262-264. 
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(7)     idp

dt
 = −
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x

∂
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  (i = 1, 2, 3), 

with the initial conditions: 
 
(8)   xi = 0

ix , pi = 0
ip , (i = 1, 2, 3),  for t = t0 . 

 
 The parameter of the group is: 
(9)      θ = t – t0 . 
 
 The functions fi and the quotients of the function gi are homogeneous of degree zero 
in p1, p2, p3 .  One can consider the group as operating upon the variables x1, x2, x3 , and 
the ratios of the variables p1, p2, p3 , which define a contact element that is composed of 
the point whose coordinates are x1, x2, x3 and the plane that passes through that point that 
is normal to the direction whose direction coefficients are p1, p2, p3 . 
 The functions fi and the quotients of the functions gi are homogeneous of degree zero 
in p1, p2, p3 .  One can consider the group as operating in the variables x1, x2, x3 , and the 
ratios of the variables p1, p2, p3 that define a contact element that is composed of a point 
whose coordinates are x1, x2, x3 , and the plane that passes through that point that is 
normal to the direction whose directions coefficients are p1, p2, p3 . 
 Having said that, the wave that one gets after a time θ from an arbitrary original wave 
that is given at time t0 is deduced precisely from that original wave by applying the 
transformation (4), (5) to its contact elements.  The principle of enveloping waves – or 
Huygens’s principle – is equivalent to the fact that this transformation is a contact 
transformation; i.e., the fact that the propagation of wave involves contact elements. 
 Equations (4) define ∞4 curves that are the rays of propagation.  Under the 
displacement of a contact element that is defined by the equations of propagation (4), (5), 
the point of that element will describe a ray, and the plane of that element will take on an 
orientation at each point of the ray that is determined by formulas (6). 
 These formulas, which can be written: 
 

(10)    1

1

dx
H

p

∂
∂

 = 2
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H
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are solved for p1, p2, p3 , and give: 
 

(11)    pi = 
idx

∂Ω
∂

  (i = 1, 2, 3), 

 
upon introducing the point-like equation of the wave surface with origin (x1, x2, x3) in the 
form: 
(12)   Ω(x1, x2, x3 ; X1 − x1, X2 − x2, X3 − x3) = 1, 
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where Ω(x1, x2, x3; ξ1, ξ2, ξ 3) is homogeneous of degree one in ξ1, ξ2, ξ 3 and upon 
setting, to abbreviate the notation: 
 
(13)    Ω = Ω(x1, x2, x3 ; dx1, dx2, dx3). 
 
 One can consider these formulas as establishing a correspondence at each point (x1, 
x2, x3) between the directions (dx1, dx2, dx3) of the linear elements of that point and the 
orientations (p1, p2, p3) of the contact elements of that plane, which reduces to 
orthogonality in the case of a homogeneous and isotropic medium.  We call it pseudo-
orthogonality and we say, in turn, that the rays that serve to transport the contact 
elements of a surface are the pseudo-normals to that surface.  Moreover, it is the pseudo-
normals to the ∞1 surfaces that are the successive states of a wave that has the surface in 
question for its initial position.  This is the generalization of Malus’s theorem. 
 The set of such a family of ∞1 surfaces – or wave family – is represented by an 
equation: 
(14)     f(x1, x2, x3) = t, 
 
where f is a solution of equation (2), when considered to be a partial differential equation; 
i.e., in which one has set: 

(15)     pi = 
i

t

x

∂
∂

  (i = 1, 2, 3). 

 
 Conversely, any solution of that partial differential equation will provide the equation 
(14) of a family of waves. 
 
 
 2.  For every contact element that is defined by x1, x2, x3 , and the ratios of the p1, p2, 
p3 , we adopt definite values for the p1, p2, p3 that satisfy equation (2).  This is possible 
because H is an invariant of the group (G), and consequently equation (2) remains 
invariant under that group.  Let A be the point (x1, x2, x3).  Each contact element of that 
point will thus correspond to a vector N that is perpendicular to that element and has A 
for its origin and components that equal the values of p1, p2, p3 that satisfy equation (2). 
 In order to interpret the vector N, imagine an arbitrary wave that contains the contact 
element (E) in question at the instant t.  The values of p1, p2, p3 are then given by 
formulas (15), so the wave belongs to the family of waves that is represented by equation 
(14) and the vector N is measured by the normal derivative dt / dn along the normal to the 
contact element (E); i.e., the inverse N = 1 / V of the velocity V = dn / dt of the normal 
displacement of the front to any wave that contains (E), when evaluated at the point A.  
One can call that vector N the index of the medium relative to the contact element E. 
 If one introduces the wave surface that has A for its origin then the tangent plane (P) 
that is parallel to that contact element (E) has precisely equation (1) for its equation, with 
the values that were adopted for p1, p2, p3 .  If one lets M denote the contact point of that 
plane (P) and lets K denote the foot of the perpendicular that is based at A on (P) then the 
vector AK is the vector V, which is the velocity of the wave front, and that vector AM is 
the velocity vector v under the motion of the point A along the ray that is the pseudo-
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normal to the element (E).  This gives, in particular, the geometric definition of pseudo-
orthogonality (1). 
 One agrees to observe that the function H has, in general, only positive homogeneity.  
This amounts to saying that for each contact element (E), one must take into account the 
sense of propagation of the wave that one regards it as belonging to; the vectors V and N 
will be directed in that sense of propagation.  One can say that one considers each contact 
element as doubling into two of them, each of which have a definite face, and correspond 
to the edge of the space towards which that element begins to displace. 
 
 
 3.  The introduction of the index vector N permits one to interpret the integral 
invariants that are common to all homogeneous contact transformations from the 
viewpoint of the propagation of waves; i.e., all infinitesimal transformations of the form 
(3). 
 The simplest case of these invariants results from saying that these homogeneous 
contact transformations are defined entirely (2) by the property that they leave the Pfaff 
expression: 

(16)     ω = 
3

1
i i

i

p dx
=
∑  

 
invariant, which gives the integral invariant that is characteristic of the propagation of 
waves: It is the work done by the index vector: 
 

(17)    J1 = ω∫  = N∫  cos(N, ds) ds, 

 
which applies to any one-dimensional continuum that is composed of contact elements 
(x1, x2, x3 ; p1 : p2 : p3). 
 This continuum (K) is an arc of a curve CD that carries a contact element (E) at each 
of its points A.  Each of these contact elements corresponds to a ray.  If these rays all 
coincide then the arc CD is pseudo-orthogonal to all of the elements (E) considered, and 
one has, from equations (6) and (2): 
 

(18)    ω = 
3

1
i i

i

p dx
=
∑  = 

3

1
i

i i

H
p dt

p=

∂
∂∑  = H dt = dt. 

 
 Upon supposing, for the sake of neatness, that ω remains positive when one displaces 
from C to D, J1 will then be, in this case, the time that an arbitrary wave that is pseudo-
orthogonal to CD at C takes to propagate to D.  During its evolution, the wave will then 
sweep out the ray CD while constantly remaining pseudo-orthogonal to it. 
 As we will see, the general case gives an analogous interpretation.  The rays that are 
pseudo-normal to the elements (E) of the continuum (K) generate a surface (s).  At each 

                                                
 (1) This results from the fact that the parametric equations of the wave surface are: Xi – xi = ∂H / ∂pi  (i 
= 1, 2, 3).  See Ann. Éc. Norm. sup. (3) 26 (1909) pp. 403 and 436. 
 (2) S. LIE and F. ENGEL, Theorie der Transformationsgruppen, v. II, pp 260.  



Vessiot – Integral invariants of the propagation of waves.                                  7 

point M of that surface (s), is tangent plane contains a linear element that belongs to the 
contact element that is pseudo-orthogonal to the ray that passes through M.  We say that 
the linear element is pseudo-orthogonal to the ray.  Upon uniting these linear elements, 
one obtains a family of curves in (s) that are pseudo-orthogonal to the rays that generate 
(s), and consequently, to some bands of contact elements that have the rays considered 
for pseudo-normals.  The bands, in turn, belong to an infinitude of wave families.  In 
order to define one of these families, one can give an arbitrary initial wave, provided that 
it contains, for example, those of the bands of contact elements in question that contain 
the element (E) that is carried by the point C.  We thus have a well-defined family (14). 
 At each of the points of the arc CD, the values (15) of the derivatives of the function f 
coincide with the values that are given at that point for the coordinates of the vector N, 
because these derivatives, like the given pi, must satisfy the pseudo-orthogonality 
conditions for the rays considered and the condition equation (2).  One thus has: 
 

(19)     ω = 
3

1
i

i i

t
dx

x=

∂
∂∑  = dt. 

 
 Upon further supposing that ω remains positive when one displaces from C to D, one 
sees, moreover, that J1 is the time that it takes for a wave to sweep out the curve CD from 
C to D, that wave being such that at each point A of CD it is tangent to the given contact 
element (E). 
 In a previous paper, we showed that this duration for the transmission of a 
disturbance from C to D is maximal when one requires the wave to remain constantly 
pseudo-orthogonal to the curve CD (1).  This curve is then a sort of edge of regression for 
the surface (s) because it is the envelope of the rays that generate that surface. 
 In any case, that duration of transmission depends upon only the family of waves and 
points of C and D, and not upon the particular choice of curve CD. 
 
 
 4.  The last remark exhibits an essential property of the invariant J1 , and in turn, of 
the ones that we shall deduce later on.  In order to arrive at it, it suffices to abstract from 
contact elements and consider only the rays.  To that effect, one can consider each index 
vector N as being attached, not to the contact element (E) that it is referred to by its 
original definition, but to the linear element of the ray (dx1, dx2, dx3) that is pseudo-
orthogonal to that contact element (E).  In other words, it will be formulas (11) that 
define the components of the index vector analytically.  As a result, each ray (R) is 
attached to an index vector N at each of its points that is defined by the direction of the 
ray at that point. 
 In the foregoing, one can, moreover, start with ∞1 rays (R) that generate a surface (s), 
and consider an arc of the curve CD that is traced on that surface.  That arc suffices to 
define the integral J1 if one agrees to takes the index vector N at each point of (s) to be 
the one that corresponds to the ray (R) that generates the surface (s) that passes through 

                                                
 (1) Ann. Éc. Norm. sup. (3) 26 (1909), 440-443. – That maximum is what we have called the duration 
of propagation along CD; it assumes the concavity of the wave surfaces.  Its analytic expression is the 

curvilinear integral J = ∫ Ω, when it is taken along CD.  This is the generalization of the optical path length.  
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that point.  If ξ1, ξ2, ξ3 denote the direction coefficients of that ray and Ωξ denotes the 
function Ω( x1, x2, x3 ; ξ1, ξ2, ξ3) then J1 will be the following curvilinear integral, which 
is taken along a curve that is traced in (s): 
 

(19)     J1 = 
3

1

i

i i

dxξ

ξ=

∂Ω
∂∑∫ . 

 
 Having said that, the stated property is that under these conditions the integral J1 will 
depend upon only the extremities of the integration arc, on the condition that the variation 
of that arc CD be done in a continuous manner and in a region of (s) such that one can 
apply the geometric construction of the preceding paragraph to it.  It results immediately 
from that fact that the wave family that results from that construction depends upon only 
upon the surface (s), and not upon the curve CD on that surface that is being considered. 
 
 
 5.  We obtain a more general result directly by calculating the variation of J1 under 
the hypothesis that one varies the contact elements (x, p) along the trajectories of 
propagation, but while leaving the manner by which they describe these trajectories 
arbitrary.   The variables x1, x2, x3, p1, p2, p3 are then subject to variations of the form: 
 

(20)    δxi =    
i

H
u

p
ϕ δ∂

∂
  (i = 1, 2, 3), 

 

(21)    δpi = − 
i

H
u

x
ϕ δ∂

∂
  (i = 1, 2, 3), 

 
in which ϕ is an arbitrary factor.  For example, if one wishes to consider the variation as 
an infinitesimal transformation then one supposes that it is an arbitrary function of x1, x2, 
x3, p1, p2, p3 .  Since it results from these formulas that δH is zero, the index vectors N 
will be exchanged amongst themselves, because the condition (1) remains invariant. 
 One then has, in turn: 
 
(22) δω = δ ∑ pi dxi = d ∑ pi δxi + ∑ δpi dxi − ∑ δxi dpi , 
   = d(ϕ H) δu – ϕ dH δu = H δu dϕ . 
 
 Therefore, if one takes condition (2) into account then one will obtain: 
 
(23)    δω = dϕ δu , 
i.e., the desired formula: 

(24)    δJ1 = [ ]D

C
uϕ δ . 
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 In particular, if one supposes that C and D remain fixed then one will fall within the 
condition of the preceding paragraph, and one indeed recovers the result that J1 then 
remains constant (1). 
 
 
 6.  On the other hand, δJ1 is also zero when the points C and D coincide; i.e., if δJ1 is 
taken along a closed contour. 
 In other words, J1 is a relative invariant for infinitesimal transformations ϕ(H, f), 
where ϕ is arbitrary, on the condition that it be taken along a (closed) line that is traced 
on the multiplicity H = const. 
 It is therefore an invariant from the standpoint of propagation for the closed cylinder 
that is composed of rays, which is then composed of the surface (s) that proves the closed 
continuum considered (no. 3). 
 In order to interpret this, we imagine a tube (s) of rays, and on that tube, the pseudo-
orthogonal trajectories to the rays, and we remark that the integral J1, when taken on (s) 
along an arc of such a trajectory, is always zero, since cos(N, ds) is then zero all along the 
arc.  A pseudo-orthogonal trajectory that starts from a point A of one of the rays (R) that 
the tube is comprised of amounts to cutting the same ray at a point A′ after having made a 
circuit of the tube, and one then returns from A′ to A by following the ray (R).  The 
integral J1 , when taken along the closed path thus constituted, will reduce to the duration 
of the propagation from A′ to A along the ray (R).  It has the same value no matter what 
point A is considered, and it is equal to the integral J1 , when taken on the tube along any 
closed curve that makes a single circuit of the tube (2). 
 It is zero if the pseudo-orthogonal trajectory considered is closed, and all of these 
trajectories are then closed at the same time.  This is the case when the tube of rays is 
composed of all the rays that are pseudo-orthogonal to the same wave at various points of 
a simple closed contour that is taken on that wave. 
 That invariant will play the role of a period if one proposes to find the general value 
for the integral J1 for all of the arcs that are traced on (s) between two given points, and 
one will get a simple generalization by taking (s) to be some closed cylinders that are 
composed of rays and have a more complicated nature than the simple tubes that were 
considered previously. 
 
 
 7.  One deduces a series of invariant constructions from the linear differential form 
(16) that are given by multiple integral invariants of increasing order by the symbolic 

                                                
 (1) If one supposes that a given arc (CD) lies entirely within a region such that one and only one ray 
passes through two points of that region then one can construct a surface (s) such that one ray will be the 
ray [CD] that joins C to D, and the other rays join the points of the arc (CD) pair-wise.  The preceding 
result then proves that the integral (19), when taken along the ray [CD] – i.e., the integral J = [ ]CD∫ Ω  − is 

equal to the integral J1, when taken along the arc (CD) on that surface (s).  Now, this is less than the 
integral J = ( )CD∫ Ω , as we explained at the end of no. 3.  One thus proves, in a very simple manner, the 

minimum property of rays relative to the integral J = ∫ Ω.  Cf., Ann. Éc. Norm. sup. (3) 26 (1909), 447-448. 
 (2) Cartan has developed these considerations for ruled tubes and the orthogonal trajectories of 
generators, as well as the ones that result for normal congruences, in an article “Sur les intégrales de 
l’espace réglé,” Bull. Soc. math. France 24 (1898), 160-165. 



Vessiot – Integral invariants of the propagation of waves.                                  10 

calculations that were employed by Cartan in his study of the Pfaff problem (1).  They 
are, with the same Cartan notations: 
 

(25) ω′ = 
3

1
i i

i

dp dx
=
∑ , 

 
(26) ω″ = ωω′  = (p3 dp2 – p2 dp3) dx2 dx3 + (p1 dp3 – p3 dp1) dx3 dx1 
     + (p2 dp1 – p1 dp2) dx1 dx2 , 
 
(27) ω′″ = 21

2 ω′  = dp3 dp2 dx2 dx3 + dp1 dp3 dx3 dx1 + dp2 dp1 dx1 dx2 , 

 
(28) ωIV  = ωω″′ = (p1 dp3 dp2 + p2 dp1 dp3 + p3 dp1 dp2) dx1 dx2 dx3 , 
 
(29) ωV = 31

6 ω′  = − dp1 dp2 dp3 dx1 dx2 dx3 . 

 
 The last one is zero identically, since we have required the variables x1, x2, x3, p1, p2, 
p3 to verify the relation (2).  The forms ω′ and ω′″ are the most interesting, because they 
are invariant under the transformations ϕ(H, f), and as a result they correspond to 
geometric properties of systems of ∞2 and ∞4 rays.  For ω′, which is the bilinear covariant 
of ω, that invariance amounts to the fact that, by virtue of the Stokes formula, the 
integral: 

(30)     J2 = ω′∫∫  

 
will be equal to the integral J1 when taken around a closed contour (no. 6).  The equality 
ω′″ = 21

2 ω′  then results from this. 

 The interpretation of J2 is, in fact, immediate: One must associate each point A of a 
portion of the surface (σ) with a contact element (E) according to an arbitrary law.  One 
can then consider the ∞2 rays (R) that are pseudo-orthogonal to the contact element (E) 
considered, and the ∞3 index vectors that are associated with these rays at their various 
points.  J2 is the vorticity flux of the vector field thus defined upon crossing the surface 
(σ), and its value is the same as J1 when taken around the contour of (s) on the tube of 
rays that serves as the frontier of the closed continuum of ∞2 rays (R) considered. 
 Conversely, one can give a congruence (C) of rays and remove an arbitrary brush that 
is limited by a tube of rays of that congruence, and cut that brush with an arbitrary 
surface that gives the area (σ) that was considered above. 
 In order for the integral J2 to be zero, no matter what the brush was that was removed 
from (C) – i.e., in order for J1 to be zero around a closed contour that encircles an 

                                                
 (1) E. CARTAN, Ann. Éc. Norm. sup. (3) 16 (1899), 244-253.  See the introduction of that article (pp. 
241-242).  Compare, as well, the article already cited by E. CARTAN, Bull. Soc. math. France 25 (1896), 
140-177.  A systematic exposition of the calculus of multilinear differential expressions is given, along 
with some less condensed notations, by De Donder in a recent publication: Bull. Acad. royale Belgique, cl. 
sciences, 12 (1913), 1043-1073. – See also the proofs that were given by De Donder in this volume (viz., 
XLII) of the Bulletin de la Société mathématique, pp. 91, relative to the Hadamard invariant. 
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arbitrary tube of rays that belongs to the congruence (C), it is necessary and sufficient 
that the components p1, p2, p3 of the index vectors (N) that comprise the field that is 

associated with the congruence (C) be functions of x1, x2, x3  such that ω =
3

1
i i

i

p dx
=
∑ is the 

exact total differential ω = dt of a function t = f(x1, x2, x3). 
 This is equivalent to saying that there is a family of waves (14) whose pseudo-
normals coincide with the rays of the congruence (C), since they satisfy the same 
differential system (10). 
 In other words, the condition that J2 be zero for any brush (or that J1 be zero for any 
tube) of the congruence is necessary and sufficient for that congruence to be a 
congruence of pseudo-normals (1). 
 
 
 8.  In order to interpret the integral invariant: 
 

(31)   J4 = − ω′′′∫∫∫ ∫ , 

 
one must introduce a continuum (γ) of ∞1 contact elements, and in turn, a bounded four-
dimensional portion of the system of ∞4 rays in space.  From the preceding, the 
continuum (γ) can be chosen arbitrarily, provided that it contains a contact element that is 
pseudo-orthogonal to each of the ∞4 rays (R) that define the four-dimensional brush 
considered, one can suppose that it is defined by cutting that brush with an arbitrary 
auxiliary surface (2) on which it determines an area (σ): ∞2 rays (R) of the brush pass 
through point A of that area, each of which corresponds to the pseudo-orthogonal contact 
element (E) and the index vector N that relates to that element (no. 2). 
 The coordinates x1, x2, x3 are then functions of two variables u1, u2 that vary over a 
field (U), and p1, p2, p3 are functions of four variables u1, u2, v1, v2, where the variables v1, 
v2 vary over a corresponding field V(u) for each system of values u1, u2 , and one has: 
 

(32) − ω′″ =  2 3 2 3
1 2 1 2

1 2 1 2

( , ) ( , )

( , ) ( , )

x x p p
du du dv dv

u u v v

∂ ∂
∂ ∂

 

  + 3 1 3 1
1 2 1 2

1 2 1 2

( , ) ( , )

( , ) ( , )

x x p p
du du dv dv

u u v v

∂ ∂
∂ ∂

 

  + 1 2 1 2
1 2 1 2

1 2 1 2

( , ) ( , )

( , ) ( , )

x x p p
du du dv dv

u u v v

∂ ∂
∂ ∂

; 

 

                                                
 (1) Analogous facts have been pointed out by E. Cartan for rectilinear rays and normal congruences.  
[Bull. Soc. math. France 24 (1896), 162.] 
 (2) Here, we apply the mode of interpretation that was imagined by Hadamard for rectilinear rays to the 
general case.  [J. HADAMARD, C. R. Acad. Sc., 14 March 1898. – Cf., the article of DONTOT, Bull. Soc. 
math. France 42 (1914), 72-78.] 
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i.e., the differential element of J4 is the scalar geometric product of the two vectors that 
figure in the elementary areas of the surface (σ) at the point A and the figuratrix surface 
(1) that is swept out by the extremity of the vector N when A remains fixed. 
 Now, the normal to that figuratrix surface, whose equation is equation (2), in which 

one considers p1, p2, p3 to be point-like coordinates, has the direction coefficients 
1

H

p

∂
∂

, 

2

H

p

∂
∂

,
3

H

p

∂
∂

.  Its direction is therefore that of the ray (R) that the index vector N (no. 4) is 

attached to.  Therefore, if one denotes the measure of the elementary area on the surface 
σ by dσ, that of the elementary area in the figuratrix surface by dν, the direction of the 
normal to the surface (σ) by n, and that of the ray R then one can write: 
 
(33)     − ω″′ = cos(R¸ n) dσ dν. 
 
 However, one can also replace dν with its value (2): 
 

(34)     dν = N2 
cos( , )

d

R N

α
, 

 
upon replacing the solid angle dα that is swept out by the extremity of the direction 
vector of N, and one arrives at the definitive formula for J4 : 
 

(35)    J4 = 2 cos( , )

cos( , )

R n
N d d

R N
σ α∫∫∫ ∫ , 

 
which generalizes the formula that was given by Hadamard (3) for the case of rectilinear 
propagation in an isotropic medium: 
 

[N = const.; cos(R, N) = 1]. 
 
 

 9.  Since ω′″ provides 1
2 ω′′  by symbolic differentiation, the integral J4 is equal to 

one-half the integral: 

                                                
 (1) We employ the term that was used by Hadamard in his Leçons sur le calcul des variations, t. I, pp. 
90. 
 (2) This formula, which is often considered to be obvious, is easily established by the symbolic calculus.  
Upon denoting the direction cosines of N by α1 , α2 , α3 , one has: 
  

pi = N αi 
and 
   cos(R, N) dν = α1  dp2 dp3 + … = α1  dN α2  dN α3  + .. 
    = α1 [N dN (α2 dα3 − α3 dα2) + N2 dα2 dα3] + … = N2 (α1 dα2 dα3 + …) = N2 dα . 
 
 (3) C. R. Acad. Sc., 14 March 1898.  
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(36)     J3 = − ω′′∫∫∫ , 

 
taken along the closed, three-dimensional multiplicity that serves as the frontier of the 
continuum (γ) considered in the preceding paragraph.  Under these conditions, the 
integral J3 will possess the same invariance character as J4 .  It thus corresponds to the 
closed continuum of ∞3 rays. 
 At each point of the area s, one will have to consider index vectors N whose 
extremities will describe a closed curve (c) on the figuratrix surface. 
 Let dε denote the angle between one of these vectors and an infinitely close vector, 
and consider the vector whose components: 
 
(37)   p2 dp3 – p3 dp2 , p3 dp1 – p1 dp3 , p1 dp2 – p2 dp1 
figure in ω″. 
 One can consider the characteristic d as being that of the displacement on the curve 
(c), because x1, x2, x3 depend upon just two variables u1, u2 , while p1, p2, p3 depend upon 
u1, u2 , and another variable v that corresponds to the displacement on (c).  The length of 
that vector is N2 dε, in such a way that one has the interpretation: 
 
(38)     − ω″ = N2 cos(n′, n) dσ dε, 
 
in which n′ denotes the normal direction to both the index vector N and an infinitely close 
index vector. 
 
 
 10.  As for the integral: 

(39)     J5 = − IVω∫∫∫ ∫ , 

 
one can consider it only when it is taken over an open multiplicity; otherwise, it would be 

zero, since it would be equal to − 
V Vω∫ if it were taken over a closed multiplicity. 

 It is therefore invariant only for the propagation that is being considered, and it is no 
longer an invariant that is attached to a system of rays.  Its element ωIV is, up to a 
numerical factor, the product: 
(40)     N3 dw dα, 
 
in which the solid angle that is swept out by the index vector appears, along with the 
volume element dw of space, because the factor of dx1 dx2 dx3 in ωIV is three times the 
elementary volume that is swept out by the index vector. 
 This is the result that was found by Hadamard along a totally different path in the 
case of homogeneous, isotropic media (1). 
 
 
 

                                                
 (1) C. R. Acad. Sc., 14 March 1898. – Cf., DONTOT, Bull. Soc. math. France 42 (1914), 72-75.  
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II. – RAY TRANSFORMATIONS  
 

 11.  The differential expressions ω, ω′, ω″, ω″′, ωIV, ωV are invariant for any 
homogeneous contact transformation, in such a way that the integral invariants that we 
studied previously that relate to the mode of propagation that is defined by a particular 
function: 

H(x1, x2, x3 ; p1, p2, p3) 
 

are also preserved by all of the homogeneous contact transformations that leave equation 
(2) unaltered.  Since that equation is not homogeneous in p1, p2, p3, these transformations 
are the ones that leave the function H itself invariant (1).  They form a group (Γ) in which 
the group (G) of the propagation is invariant.  Its infinitesimal transformations have 
characteristic functions that are the integrals, which are homogeneous of first degree in 
p1, p2, p3, of the equation: 
(41)     (H f) = 0. 
 
 In order to study this group, we convert it into a canonical form by reducing H itself 
to the canonical form p3 by using a homogeneous contact transformation. 
 We write one of these canonical transformations as: 
 

(42)   
1 2 3 1 2 3

1 2 3 1 2 3

3 1 2 3 1 2 3

( , , ; , , ) ( 1,2,3),

( , , ; , , ) ( 1,2),

( , , ; , , ),

i i

i i

y G x x x p p p i

q H x x x p p p i

q H x x x p p p

= =
 = =
 =

 

 
upon denoting the transformed variables by y1, y2, y3 ; q1, q2, q3 .  Under it, the 
propagation group becomes the group (g) of translations: 
 
(43)  y1 = 0

1y , y2 = 0
2y , y3 = 0

3y  + θ, qi = 0
iq , (i = 1, 2, 3), 

 
which is equivalent to the fact that the group (G) itself, upon taking condition (2) into 
account, has its ∞4 trajectories defined by the equations: 
 
(44)  G1 = 0

1y , G2 = 0
2y , H1 = 0

1z , H2 = 0
2z , H = 1, 

 
if one considers 0

1y , 0
2y , 0

1z , 0
2z  in these equations to be arbitrary constants.  Upon 

eliminating p1, p2, p3 from these equations, one will have the equations for ∞4 rays, which 
are also characterized by the four arbitrary constants 0

1y , 0
2y , 0

1z , 0
2z . 

                                                
 (1) A contact transformation that changes H into another function H must be regarded as changing the 
given medium M into another one M .  It conserves the integral invariants in question if one takes the 
modification of the medium into account in the expressions for these invariants.  On the contrary, in this 
article, we suppose that one must always apply these invariants to the given medium M. 
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 The canonical transformation (42) converts (Γ) into the group (γ) that is composed of 
the homogeneous contact transformations (y1, y2, y3 ; q1, q2, q3) that leave q3 invariant.  
The finite equations of any one of the contact transformations: 
 
(45) iy′  = Yi(y1, y2, y3 ; q1, q2, q3), iq′  = Qi(y1, y2, y3 ; q1, q2, q3),  (i = 1, 2, 3) 

 
of that group (γ) thus contain the equation  3q′  = q3 .  From the relations of S. Lie (1): 

 
(46)  (Yi Yk) = (Qi Yk) = (Qi Qk) = 0,  (Qi Yi) = 1 (i ≠ k), 
 
one then concludes, due to the fact that Q3 ≡ q3 , that Y1, Y2, Q1, Q2 does not depend upon 
y3 and that Y3 is of the form: 
(47)     Y3 = y3 + Φ( y1 , y2 ; q1 , q2 , q3). 
     
 
 If one takes the degrees of homogeneity into account, and if one sets: 
 

(48)   1

3

q

q
 = z1 , 2

3

q

q
 = z2 , 1

3

q

q

′
′

 = 1z′ , 2

3

q

q

′
′

 = 2z′  

 
then the transformation (45) will be written: 
 

(49)    1 2 1 2

1 2 1 2

( , ; , ) ( 1,2),

( , ; , ) ( 1,2),
i i

i i

y A y y z z i

z B y y z z i

′ = =
 ′ = =

 

with 
(50)    3y′  = y3 – ψ(y1 , y2 ; z1, z2), 3q′ = q3 , 

and the identity: 
3

1
i i

i

q dy
=
∑ = 

3

1
i i

i

q dy
=

′ ′∑  

will reduce to: 
(51)    B1 dA1 + B2 dh2 = z1 dy1 + z2 dy2 + dψ . 
 
 One thus gets the group (γ) by starting with the group of transformations (49) that 
leave the Pfaff expression z1 dy1 + z2 dy2, up to an additive total differential, and by 
extending each of these transformations that are defined by formulas (50) and (48), where 
the function ψ is obtained – up to an additive constant – by means of the quadrature: 
 
(52)    dψ = 1 1 1 2z dy z dy′ ′ ′ ′+  − z1 dy1 − z2 dy2 . 

 

                                                
 (1) S. LIE and F. ENGEL, Theorie der Transformationsgruppen, v. II, pp. 137.  
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 The group (γ0) of transformations (49) that were considered was introduced by S. Lie 
(1).  As Cartan remarked, one can also define it by the invariance of the bilinear 
expression (2): 

dy1 dz1 + dy2 dz2 . 
 
It is a simple group, and its infinitesimal transformations are of the form (K f), where K is 
an arbitrary function of y1, y2 ; z1, z2 (

3). 
 
 
 12.  Each contact transformation of the group (Γ) then corresponds to a 
transformation (49) of the group (γ0).  Its significance results from the form (44) of the 
equations of the trajectories.  Indeed, upon taking degrees of homogeneity into account 
and setting: 

(53)    1

3

p

p
 = l1 , 2

3

p

p
 = l2 , 

one can set: 
(54)  Gi = Yi(x1, x2, x3 ; l1, l2), Hi = Zi(x1, x2, x3 ; l1, l2) (i = 1, 2), 

 
and the equations of the trajectories become: 
 
(55)    Yi = 0

iy , Zi = 0
iz  (i = 1, 2), 

 
in which 0

1y , 0
2y ; 0

1z , 0
2z  are the coordinates of any of these ∞1 trajectories, or of the ∞4 

rays that support them. 
 An arbitrary transformation of (Γ) is defined by the elimination of the y and q 
between equations (42), when one writes the analogous equations with primed letters, and 
equations (48), (49), (50).  It then implies the equations: 
 
(56)  Yi(x′ | l′) = Ai(Y | Z),  Zi(x′ | l′) = Bi(Y | Z)  (i = 1, 2); 

 
i.e., it changes each trajectory (55) into the trajectory whose coordinates 01y , 0

2y ; 0
1z , 0

2z  

are given by the equations: 
 
(57)  0

iy  = Ai(y
0 | z0), 0

iz = Bi(y
0 | z0),  (i = 1, 2), 

 
which are the equations of the transformation (49). 
 Therefore, the transformation (49) gives the law of exchange for the ∞4 trajectories 
under the ∞1 transformations of the group (Γ) that they correspond to by means of the 
quadrature (52), and by the intermediary of the canonical transformation (42). 
 

                                                
 (1) S. LIE and F. ENGEL, Theorie der Transformationsgruppen, v. II, pp. 128, 129, 232, 259, 260. 
 (2) E. CARTAN, C. R. Acad. Sc., 21 May 1907.  
 (3) S. LIE, Leipziger Berichte, 1895, pp. 292. 
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 13.  Since the transformations of the group (Γ) leave the partial differential equation 
(2) of the wave family invariant, they change any family of waves into another family of 
waves.  They therefore exchange the ∞2 trajectories that serve to propagate one family of 
waves into the ∞2 trajectories that are likewise associated with the same family of waves. 
 On the other hand, one can say that they exchange rays of the propagation if one 
agrees to operate on a ray by operating on the contact element that it is pseudo-
orthogonal to (no. 1). 
 Therefore, the transformations of the group (Γ) change the ∞2 rays that are the 
pseudo-normals of one family of waves into ∞2 rays that enjoy the same property, and in 
turn, the transformations (49) that give the law of exchange of the ∞4 rays under the 
homologous transformations of (Γ) in the indicated sense change any congruence of 
pseudo-normals into a congruence of pseudo-normals.  One can say that they are Malus 
transformations. 
 
 
 14.  Conversely, imagine an arbitrary transformation (49) that operates on the 
coordinates of ∞4 rays, and try to express the idea that it changes any congruence of 
pseudo-normals into a congruence of pseudo-normals. 
 In order to do that, one must examine how the coordinates 0

1y , 0
2y ; 0

1z , 0
2z  of the 

trajectories (55) must be chosen as functions of the two parameters u1, u2 in order for 
them to be the trajectories of propagation of a family of waves.  Because of the fact that 
the congruence of rays is given, the trajectories that these rays serve to support are 
deduced by the adjunction to each point of each ray of the contact element that is pseudo-
normal at that point. 
 One passes from equations (55) to equations (44) directly, and upon adjoining the 
auxiliary equation: 
(58)     G3 = u 
 
to them, where u is a third parameter, one will define the coordinates x1, x2, x3 ; p1, p2, p3 
of the contact elements that correspond to the congruence of rays being considered as 
functions of u, u1, u2 .  Moreover, we know that the condition that expresses the idea that 
they belong to the ∞1 waves of the same family is that the expression: 
 

(16)     ω = 
3

1
i i

i

p dx
=
∑  

 
must be an exact total differential in u, u1, u2 (cf., no. 7).  Because this is true, the integral 
t = f(x1, x2, x3) of that differential is an integral of the partial differential equation (2) of 
the family of waves, due to the last of equation (44), and conversely, if the contact 
elements considered are those of a family of waves − viz., t = f(x1, x2, x3) – then the pi are 
proportional to the derivatives ∂t / ∂xi , and as a result they are equal to them, 
respectively, due to the same relation H = 1. 
 Now, the transformation (42) is a homogeneous contact transformation, and one has 
the identity: 
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(59)    H1 dG1 + H2 dG2 + H3 dG3 = 
3

1
i i

i

p dx
=
∑ , 

 
from which, one concludes the identity: 
 

(60)    
3

1
i i

i

p dx
=
∑  = du + 0 0 0 0

1 1 2 2z dy z dy+  

 
for the functions u, u1, u2 considered, if one takes equations (44) and (58) into account. 
 The desired condition is therefore that the Pfaff expression: 
 
(61)     0 0 0 0

1 1 2 2z dy z dy+  

 
must be an exact total differential in u1, u2 . 
 Therefore, in order for a transformation (49) to be a Malus transformation, it is 
necessary and sufficient that it must possess the following property: In order for 

1 1 2 2z dy z dy′ ′ ′ ′+  to be a total differential, it is necessary and sufficient that z1 dy1 + z2 dy2 

also be one.  In other words, the symbolic equation: 
 
(62)     dz1 dy1 + dz2 dy2 = 0 
 
must be invariant.  The equations of the transformation must then lead to an identity: 
 
(63)    1 1 2 2dz dy dz dy′ ′ ′ ′+  = ρ (dz1 dy1 + dz2 dy2) . 

 
Upon differentiating them symbolically, one finds the new identity: 
 
(64)    0 = dρ (dz1 dy1 + dz2 dy2), 
 
from which, one effortlessly concludes that ρ is a constant. 
 The Malus transformations are then the ones that multiply the differential form dz1 
dy1 + dz2 dy2 by a constant; i.e., the ones that give rise to identities of the form: 
 
(65)   1 1 2 2dz dy dz dy′ ′ ′ ′+  − ρ (dz1 dy1 + dz2 dy2) = dψ, 

 
in which ρ denotes a constant, and ψ is a function of yi, zi, iy′ , iz′ . 
 In other words, one is dealing with the transformations in (x, p) of S. Lie (1), and one 
falls back upon the previously-encountered transformations only in the case where the 
constant ρ is equal to unity. 
 
 

                                                
 (1) S. LIE and F. ENGEL, Theorie der Transformationsgruppen, v. II, pp. 131.  
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 15.  One recovers the general Malus transformations by considering the group (Γ ′) 
that is formed from the homogeneous contact transformations that leave the group (G) 
invariant.  Each of them multiplies the characteristic function H by a constant 1 / ρ, 
which is different from 1, in general (1). 
 Operate on the canonical form of (G), as in no. 11.  The only change is in the 
equation 3q′  = q3 , which must be replaced by 3q′  = q3 : ρ here.  As a result, equation (47) 

is replaced with: 
(66)    3y′  = ρ y3 + Φ(y1, y2 ; q1, q2¸ q3) , 

and equations (50) become: 
 

(67)   3y′  = ρ y3 − ψ(y1, y2 ; z1, z2) ,  3q′  = 3

1
q

ρ
 . 

 

As a result, the identity ∑ qi dpi = i iq dy′ ′∑  then gives: 

 
(68)   B1 dA1 + B2 dA2 = ρ (x1 dy1 + x2 dy2) + dψ, 
 
which gives the property that is characterized by the identity (65) for the transformation 
(49) of the rays. 
 Conversely, any transformation (49) that belongs to the group 0( )γ ′  is characterized 

by the form of the identity (65); i.e., any Malus transformation can be extended by means 
of formulas (67) and (48); the function y results from the integration of the total 
differential (65).  It is thus effectively provided by one of the contact transformations that 
leave the group (G) invariant, and even a ∞1 of such transformations. 
 However, if ρ is not equal to one then, in reality, these transformations will modify 
the elastic nature of the medium, since everything happens as if each wave surface were 
replaced by its homothetic transform with respect to its origin, with a homothety ratio 
that is constant and equal to ρ.  Indeed, this is what results from changing H into 1/ρ H in 
the tangential equation (2) of the wave surface. 
 
 
 16.  As far as integral invariants are concerned, the application of the canonical 
transformation (42) exhibits the fact that J2 and J1 are attached to systems of rays, 
because, upon taking the condition q3 = 1 into account, one deduces the expressions: 
 
(69)   ω ′ = dz1 dy1 + dz2 dy2 , ω ′″ = − dz1 dz2  dy1 dy2 , 
 

from ∑ pi dxi =∑ qi dyi , into which only the constant coordinates of each ray enter. 
 Moreover, one verifies that since the transformations of the group (Γ) give rise to the 
identity (52), the invariance of ω ′ then results immediately from symbolic 

                                                
 (1) Ibid., pp. 264 and 267. – The infinitesimal transformations of the group (Γ) are the integrals of the 
equations (H f) = c H, where c is an arbitrary constant.  
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differentiation, and as a result, that of ω ′″ (which was already remarked on no. 11).  The 
invariants J2 and J4 are therefore unaltered by these transformations. 
 On the contrary, the transformations of the group (Γ′) multiply J2 by ρ and J4 by ρ2, 
as symbolic differentiation of the identity (65) shows.  The same is therefore true for the 
Malus transformations, which leave the invariants J2 and J4 invariant only in the special 
case of ρ = 1. 
 
 
 17.  In the case of a homogeneous and isotropic medium, one has: 
 

(70)    H = 2 2 2
1 2 3

1
p p p

n
+ + , 

 
in which n is a constant that is the constant length of the index vector.  Here, one can 
suppose that it is equal to unity. 
 One can then take the canonical transformation to be: 
 

(71)  

2 2 2
1 1 2 2 3 1 2 3

2 2 2 31 2
1 1 3 2 2 3 3 1 2 3

3 3 3

, , ,

, , .

q p q p q p p p

xp p
y x x y x x y p p p

p p p

 = = = + +



= − = − = + +


 

 
 The equations of the ray that is normal to an arbitrary contact element (x1, x2, x3; p1, 
p1, p1) are: 

(72)    1 1

1

X x

p

−
= 2 2

2

X x

p

−
 = 3 3

3

X x

p

−
 

 
here, in which y1 and y2 are the coordinates, in the plane X3 = 0, of the foot of the ray in 
that plane, and our other two coordinates: 
 

(73)  z1 = 1

3

q

q
 = 1

2 2 2
1 2 3

p

p p p+ +
,  z2 = 2

3

q

q
 = 2

2 2 2
1 2 3

p

p p p+ +
 

  
are the two direction cosines of the ray relative to the x1-axis and the x2-axis. 
 One recovers the variables that were introduced by H. Bruns in his theory of the 
eikonal (1). 
 The variable y3 is, moreover, the distance from the foot of the ray to an arbitrary point 
of the ray. 
 One then sees that the success of the Bruns transformation amounts to the fact that it 
changes the group of dilatations into a group of translations. 
 

____________ 

                                                
 (1) Abhandlungen der k.sächs, Gesellschaft. der Wiss, v. XXI, 1895. – Cf., F. HANSDORFF, Leipziger 
Berichte, 1896.  


