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On the integral invariants of wave propagation

By E. VESSIOT

Translated by D. H. Delphenich

In a recent paper that appeared in this Bullé)inontot directed his attention to an
integral invariant of geometric optics that was pointed mutiadamard?j some years
ago, and he then studied the relationships betweemtraiant and the transformations
of lines to lines that are calledlalus transformationsi.e., the ones that satisfy the
condition that they change normal congruences into alocangruences.

In the following pages, | shall point out how these quoestican be treated quite
easily when one imagines, in a completely general matimempropagation of waves in
an arbitrary medium, instead of the rectilinear propagatioclassical optics. One even
obtains the most immediate proofs of the existencehefinvariants for the case of
rectilinear rays. At the same time, one accountshiertrue reason for the success of the
preceding methods that were employed for the studyadfigAransformations.

The mathematical image of the propagation of wavesgiven medium of a fixed
nature is, as | have showr),(a one-parameter group of contact transformationse Th
characteristic functionH(x;, X, Xs; p1, P2, ps) of the infinitesimal homogeneous
transformation of that group characterizes the medilfrane equates it to unity then one

3

will get the condition for the plang‘ p. (X —x) = 1to contact the wave surface that has
i=1

the point k1, X2, X3) for its origin.

The contact elements that the group in quest@nofperates on are defined by the
rectangular coordinates, x,, X3 of a pointA and the direction coefficients, p., ps of a
plane that passes through that point. Upon subgethe latter to the conditiod = 1,
one defines a normal vector to the contact eler{fEntonsidered, and one calls it the
index vector because its lengtN is the inverse 1 ¥ of the velocityV of the normal
displacement aA of the front of any wave that hds)(as a contact element.

3
By definition, any homogeneous contact transfoionatleaves w = z p. dx
i=1
invariant. One immediately deduces the seriesyoibslic differential expressions that
Cartan introduced in his theory of Pfaff expressi@i by the process of calculation and

() Tome XLII, 1914, fasc. 1, pp. 53.

() C.R.Acad. Sc., 14 March 1898.

() Bull. Soc. math. France, t. XXXIV, 1906; Ann. Ec. Norsuap. (3), t. XXVI, 1909.

() Ann. de I'Ec. Norm. sup. (3), t. XVI, 1899, pp. 239. — This mofideduction was employed by De
Donder in an article in this volume of tBailletin de la Société mathématigumit in a form that is much
more complicated Seepp. 91.
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symbolic differentiation that he used in order to dedigree beautiful results. They are,
in turn, along with the expressiom itself, the differential elements of a sequence of
integral invariants whose form is common to all conteantsformations. All that is left

is to interpret them in order to obtain, in particulategral invariants for any mode of
wave propagation.

That interpretation is done effortlessly by meansthedf index vector: The first
invariantsJ; andJ, , which are of order 1 and 2, resp., are simply th&kwaad the flux of
that index vector.

Each contact elemenE) defines a rayR), which is curvilinear, in general, along
which the point of that element displaces during the mati@n of any wave that hak)(
for one its elements, and in such a way that, converaaly,pointA of a ray R) is
associated with the index vectd)(of the elementH), which then displaces along the
ray R). We say thatK) and R) arepseudo-orthogonal The raysR) that are pseudo-
orthogonal to the wave elements are callegodedo-normalso that wave.

The invariantsl; andJ; are thus related to the curves that are situated isutiaces
that are coupled to the rays and to the surfaces thatagsverse to the ray congruences.
However, one confirms thadt is a relative invariant for the infinitesimal transfations
#(H ), where the factop is arbitrary. These transformations slide the elesét
along the raysR) according to an arbitrary law, so it results thais an invariant for a
tube of rays andl, is an invariant for a congruence of rays. The comdlitior a
congruence of rays to be a congruence of pseudo-norsnaigpiessed by the vanishing
of these invariants'),

The invariantJ; (as a relative invariant) and the invariaht possess the same
invariance property for the transformatiog¢H f), and are thus attached to closed
families ofeo® rays and systems of rays. One deduces an interpretationJforom this
that generalizes the one that Hadamard gave for théinear rays of the optics of
homogeneous and isotropic media.

The study of ray transformations results very sinipgyn the reduction of any group
(G) to the canonical form of a group of translations bgoatact transformation. The
Malus transformations are divided into two classe®miog to whether they are or are
not compatible with the conservation of the elastigpprbes of the medium considered.

The one and the other can be realized by subjectingathgyfof waves to contact
transformations. One then has the ones that ldgveharacteristic functioHd invariant
and the ones that leave invariant the differentialesysthat defines the trajectories of
propagation.

Since any contact transformation can be obtaineddgnmof an infinitesimal contact
transformation, and it corresponds to the propagation gésvan a conveniently-chosen
medium, it seems legitimate to conclude that all ef Malus transformations can be
obtained by making a layer of a convenient auxiliary medaass through the rays that
are produced in the given medium, such that when the legees that medium, it re-
enters the given medium or a second medium with vgaviaces that are homothetic to
the first ones (according to whether one is dealingy wiansformations of the first or
second class). However, the rigorous proof of thatlresill necessitate a new
investigation.

() This result was pointed out by Cartan for rectilinegsrand normal congruences [Bull. Soc. math.
France?5 (1898), pp. 140].
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|. — INTEGRAL INVARIANTS.

1. First, recall some principles of the propagation a¥@s in a given plané)(

At each instanty, any pointA of the medium is capable of emitting a wave that is a
certain surfac& at any later instartp + t, from the geometric viewpoint. The homothetic
image of that surfacg when taken with respect #§ and with a homothety ratio 1t/
tends to a limiting surfacé whent tends to zero. If the medium is stationary tHheat t
limiting surfaceZz will depend upon only the poi; i.e., independently of time, which is
what we assumed. One calls it thave surfaceéhat hasA for its origin.

The mode of propagation is characterized entirely byahgly of * wave surfaces
that have various points of space for their originsne @efines it analytically in the
following manner:

Let (x1, X2, X3) be the rectangular coordinates of a pdntwrite down the general
equation of a plane in the form:

(1) Pr (X1 —X1) + P2 (Xo —X2) + ps (Xs —x3) = 1.

The wave surface whose originAswill be represented by the equation that expresses the
idea that the plane (1) is tangent to it, and one supp@aseltis tangential equation is
presented in the form;

(2) H(x1, X2, X3; P1, P2y P3) = 1,

in whichH is a homogeneous function of first degree:inp., ps .

The corresponding mode of propagation then has its gaoragpression in the one-
parameter groupQ) of homogeneous contact transformations that is gewelgtehe
infinitesimal homogeneous contact transformati®ntfiat hasH for its characteristic
function; i.e., its symbol is the Poisson-Jacobcked:

© 6022 on ox " ox o

i=1

3 [GH of oH afj

Here is what we mean by that: The general transtawmaf the groupH f) is given
by the formulas:

(4) x=f0¢,6, % 1, B, Bl t) i=1,273),
(5) =000 %% i 8 Bt ) (i=123)
that one gets by integrating the canonical system:

dx oH ,
6 — = — =1, 2, 3),
(6) at ~ ap (i )

() Das Eikona) Abh. der. k. séchsischen Ges. der Wiss., 1895.
() S. LIE and F. ENGELTheorie der Transformationsgruppen |, pp. 262-264.
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dp oH ,
7 — = i=1, 2, 3),
(7) - ( )
with the initial conditions:
(8) X=X, pi=p°, (i=1,23), fot =t .

The parameter of the group is:
(9) 6=t —to.

The functiond; and the quotients of the functignare homogeneous of degree zero
in p1, P2, Ps . One can consider the group as operating upon the emabk,, X3, and
the ratios of the variablgs, pz, ps, which define a contact element that is composed of
the point whose coordinates a&e Xz, X3 and the plane that passes through that point that
is normal to the direction whose direction coefintgearep;, p2, ps -

The functiond; and the quotients of the functiogsare homogeneous of degree zero
in p1, P2, p3 . One can consider the group as operating in the vasiabbe, x3, and the
ratios of the variablep,, p2, ps that define a contact element that is composed ofra poi
whose coordinates arg, Xz, X3, and the plane that passes through that point that is
normal to the direction whose directions coefficieares, p2, ps .

Having said that, the wave that one gets after a 8fnem an arbitrary original wave
that is given at timdy is deduced precisely from that original wave by applying the
transformation (4), (5) to its contact elements. Pphaciple of enveloping waves — or
Huygens’s principle — is equivalent to the fact that thesgformation is a contact
transformation; i.e., the fact that the propagatiowa¥e involves contact elements.

Equations (4) defineo* curves that are theays of propagation. Under the
displacement of a contact element that is defined égtjuations of propagation (4), (5),
the point of that element will describe a ray, andpiame of that element will take on an
orientation at each point of the ray that is deteealihy formulas (6).

These formulas, which can be written:

dx _ dx, _ dx
(10) aH TOH oH
op, O0p, Op;

are solved fops, p2, ps, and give:

_ o
(11) pi = 2 dx (i=1,223),

upon introducing the point-like equation of the wave surfaitle origin (x1, X2, X3) in the
form:
(12) Q(X1, X2, X3 ; Xy = X1, X2 = X2, X3 = Xa3) = 1,
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where Q(x1, X, X3; &1, &, € 3) iIs homogeneous of degree oneéin &, &3 and upon
setting, to abbreviate the notation:

(13) Q =Q(Xg, X2, X3 ; Uxq, dX%, dXs).

One can consider these formulas as establishing aspondence at each point,(
X2, X3) between the directionslX;, dx, dxs) of the linear elements of that point and the
orientations 1, p2, ps) of the contact elements of that plane, which reduces
orthogonality in the case of a homogeneous and isotrapatium. We call ipseudo-
orthogonality and we say, in turn, that the rays that serve tosp@m the contact
elements of a surface are fheeudo-normal$o that surface. Moreover, it is theeudo-
normalsto thewo! surfaces that are the successive states of a wavieathshe surface in
guestion for its initial position. This is the generafian ofMalus’s theorem

The set of such a family eb' surfaces — owave family— is represented by an
equation:
(14) f(x, X2, Xa) =,

wheref is a solution of equation (2), when considered to batapdifferential equation;
i.e., in which one has set:

(15) pi=— (i=1,2,3).

Conversely, any solution of that partial differenggluation will provide the equation
(14) of a family of waves.

2. For every contact element that is definedkfyz, X3 , and the ratios of they, p.,
ps, we adopt definite values for thwe, p», ps that satisfy equation (2). This is possible
becauseH is an invariant of the groupG, and consequently equation (2) remains
invariant under that group. L@&tbe the pointXi, X2, X3). Each contact element of that
point will thus correspond to a vecthirthat is perpendicular to that element and Aas
for its origin and components that equal the valugs,qk, ps that satisfy equation (2).

In order to interpret the vectdl, imagine an arbitrary wave that contains the contact
element E) in question at the instatt The values ofpi, p2, ps are then given by
formulas (15), so the wave belongs to the family ofegathat is represented by equation
(14) and the vectaX is measured by the normal derivatdte dn along the normal to the
contact elementH); i.e., the inversé\ = 1 /V of the velocityV = dn/ dt of the normal
displacement of the front to any wave that contéiif)s when evaluated at the poiat
One can call that vectdt theindex of the medium relative to the contact elerient

If one introduces the wave surface that Adsr its origin then the tangent plan@) (
that is parallel to that contact elemel} bas precisely equation (1) for its equation, with
the values that were adopted far p,, ps . If one letdM denote the contact point of that
plane P) and letK denote the foot of the perpendicular that is basédoat (P) then the
vectorAK is the vectolV, which is the velocity of the wave front, and thattee AM is
the velocity vectov under the motion of the poi# along the ray that is the pseudo-
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normal to the elemeng&j. This gives, in particular, the geometric definitmihpseudo-
orthogonality ).

One agrees to observe that the functibhas, in general, onlyositivehomogeneity.
This amounts to saying that for each contact elent&ntofe must take into account the
sense of propagation of the wave that one regards#tlasging to; the vectond andN
will be directed in that sense of propagation. Onesegrthat one considers each contact
element as doubling into two of them, each of which lzagefinite face, and correspond
to the edge of the space towards which that element begdisplace.

3. The introduction of thendex vector Npermits one to interpret the integral
invariants that are common to all homogeneous contactsformations from the
viewpoint of the propagation of waves; i.e., all infisiteal transformations of the form
3).

The simplest case of these invariants results fraying that these homogeneous
contact transformations are defined entirélytly the property that they leave the Pfaff
expression:

(16) w= ) pdx

invariant, which gives the integral invariant that is eleégristic of the propagation of
waves: It is thavork done by the index vector:

(17) Ji=[w=[N cosq,ds ds

which applies to any one-dimensional continuum that mpased of contact elements
(X1, X2, X3 5 P1 - P2 - P3).

This continuumK) is an arc of a curv€D that carries a contact elemeB) @t each
of its pointsA. Each of these contact elements corresponds to. alfaihese rays all
coincide then the ar€D is pseudo-orthogonal to all of the elemeiis ¢onsidered, and
one has, from equations (6) and (2):

3 3
(18) w=3 px ZZpig—Sdt:Hdt:dt.
i=1 i=1 i

Upon supposing, for the sake of neatness, dhr@mains positive wheane displaces
from C to D, J; will then be, in this case, the time that an arbitkaaye that is pseudo-
orthogonal toCD at C takes to propagate . During its evolution, the wave will then
sweep out the ra@D while constantly remaining pseudo-orthogonal to it.

As we will see, the general case gives an analogoerpietation. The rays that are
pseudo-normal to the elemenE Ef the continuumK) generate a surface)( At each

() This results from the fact that the parametric éqoatof the wave surface abg:—x =0H /dp (i
=1, 2, 3). See Ann. Ec. Norm. sup. 28)(1909) pp. 403 and 436.
() S. LIE and F. ENGELTheorie der Transformationsgruppen Il, pp 260.
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point M of that surfaceg), is tangent plane contains a linear element thiange to the
contact element that is pseudo-orthogonal to thehatygasses througil. We say that

the linear element ipseudo-orthogonato the ray. Upomniting these linear elements,
one obtains a family of curves ig) {hat are pseudo-orthogonal to the rays that generate
(s), and consequently, to sorhandsof contact elements that have the rays considered
for pseudo-normals. The bands, in turn, belong to anitinde of wave families. In
order to define one of these families, one can givarhtrary initial wave, provided that

it contains, for example, those of the bands otacinelements in question that contain
the elementK) that is carried by the poi@. We thus have a well-defined family (14).

At each of the points of the a@D, the values (15) of the derivatives of the funcfion
coincide with the values that are given at that pfmntthe coordinates of the vectbl
because these derivatives, like the giygn must satisfy the pseudo-orthogonality
conditions for the rays considered and the conditgpragon (2). One thus has:

(19) w= Z:—tdx = dt.

3
i=1 1

Upon further supposing thatremains positive when one displaces fréro D, one
sees, moreover, tha is the time that it takes for a wave to sweep outtimegeCD from
C to D, that wave being such that at each pdimtf CD it is tangent to the given contact
element E).

In a previous paper, we showed that this duration for ttheasmission of a
disturbance fronC to D is maximal when one requires the wave to remain comgtant
pseudo-orthogonal to the cur@® (%). This curve is then a sort of edge of regression for
the surfaceq) because it is the envelope of the rays that gengattsurface.

In any case, that duration of transmission depends uplgrhe family of waves and
points ofC andD, and not upon the particular choice of cuBIe.

4. The last remark exhibits an essential property ofrilaariantJ; , and in turn, of
the ones that we shall deduce later on. In order ieeaat it, it suffices to abstract from
contact elements and consider only the rays. Toeffett, one can consider each index
vector N as being attached, not to the contact elemEntHat it is referred to by its
original definition, but to the linear element of theey r(dx, dx, dxs) that is pseudo-
orthogonal to that contact elemeti).( In other words, it will be formulas (11) that
define the components of the index vector analyticalAs a result, each rayr) is
attached to an index vectbrat each of its points that is defined by the directibthe
ray at that point.

In the foregoing, one can, moreover, start withrays R) that generate a surfacs),(
and consider an arc of the cur@® that is traced on that surface. That arc suffioes t
define the integral; if one agrees to takes the index vedtioat each point ofgf to be
the one that corresponds to the rRy that generates the surfac that passes through

() Ann. Ec. Norm. sup. (336 (1909), 440-443. — That maximum is what we have calledtin&tion
of propagation along CDit assumes the concavity of the wave surfaces. niaytic expression is the

curvilinear integrall =IQ, when it is taken alonGD. This is the generalization of tptical path length.
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that point. Ifé, &, & denote the direction coefficients of that ray &gdenotes the
function Q( xq, X2, X3; &1, &, &) thendy will be the following curvilinear integral, which
is taken along a curve that is tracedgn (

(19) J= jig—%d%.

Having said that, the stated property is that under tleewitons the integral; will
depend upon only the extremities of the integration ar¢he condition that the variation
of that arcCD be done in a continuous manner and in a regios)afuch that one can
apply the geometric construction of the preceding paragmaph It results immediately
from that fact that the wave family that results frtbrat construction depends upon only
upon the surfaces), and not upon the curg@D on that surface that is being considered.

5. We obtain a more general result directly by catmdathe variation ofl; under
the hypothesis that one varies the contact elemeqtp) (along the trajectories of
propagation, but while leaving the manner by which they desthibgse trajectories
arbitrary. The variables, X2, X3, p1, P2, ps are then subject to variations of the form:

(20) & = ¢3—H5u (=12 3),

(21) & =- ¢ 5 (=12 23),
ox

in which ¢ is an arbitrary factor. For example, if one wisteesonsider the variation as
an infinitesimal transformation then one supposes thsitaih arbitrary function ofy, xo,

X3, P1, P2, P3 - Since it results from these formulas tidlt is zero, the index vectois
will be exchanged amongst themselves, because the condijiremains invariant.
One then has, in turn:

(22) Ow=0Y pdx=dXp o+2 dpidx—2 dp,
—d(fH) A—pdH AI=H & db .

Therefore, if one takes condition (2) into accounhtbee will obtain:

(23) ow=d¢ a,
i.e., the desired formula:

(24) &, = [¢]. du.
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In particular, if one supposes tlatandD remain fixed then one will fall within the
condition of the preceding paragraph, and one indeed eexdkie result thal, then
remains constant)(

6. On the other hand}; is also zero when the poir@sandD coincide; i.e., ifdJ; is
taken along a closed contour.

In other wordsJ, is a relative invariant for infinitesimal transformation®gH, f),
where ¢ is arbitrary, on the condition that it be taken along a (closed) lineithaticed
on the multiplicity H= const.

It is therefore an invariant from the standpoint ofgagation for the closed cylinder
that is composed of rays, which is then composed dfutface §) that proves the closed
continuum considered (no. 3).

In order to interpret this, we imagine a tubedf rays, and on that tube, the pseudo-
orthogonal trajectories to the rays, and we remaak tite integrall;, when taken ons|
along an arc of such a trajectory, is always zengescosk, d9 is then zero all along the
arc. A pseudo-orthogonal trajectory that starts fropoiat A of one of the raysR) that
the tube is comprised of amounts to cutting the sagnatra pointA’ after having made a
circuit of the tube, and one then returns frémto A by following the ray R). The
integralJd: , when taken along the closed path thus constituteladilce to the duration
of the propagation frorA’ to A along the rayR). It has the same value no matter what
point A is considered, and it is equal to the intedralwhen taken on the tube along any
closed curve that makes a single circuit of the tépe (

It is zero if the pseudo-orthogonal trajectory congdes closed, and all of these
trajectories are then closed at the same time. i$hise case when the tube of rays is
composed of all the rays that are pseudo-orthogonhéteadme wave at various points of
a simple closed contour that is taken on that wave.

That invariant will play the role of period if one proposes to find the general value
for the integrall; for all of the arcs that are traced @h ljetween two given points, and
one will get a simple generalization by takirgy {0 be some closed cylinders that are
composed of rays and have a more complicated naturetbagimple tubes that were
considered previously.

7. One deduces a series of invariant constructions frentitbar differential form
(16) that are given by multiple integral invariants of @aging order by the symbolic

() If one supposes that a given a@Dj lies entirely within a region such that one and only me
passes through two points of that region then one @astreict a surfaces) such that one ray will be the
ray [CD] that joinsC to D, and the other rays join the points of the &) pair-wise. The preceding
result then proves that the integral (19), when taken dtengay D] — i.e., the integral = J[CD] Q -is

equal to the integral;, when taken along the ar€[D) on that surfaces|. Now, this is less than the
integralJ = J(CD)Q, as we explained at the end of no. 3. One thus pravesyery simple manner, the

minimum property of rays relative to the integial | Q. Cf., Ann. Ec. Norm. sup. (26 (1909), 447-448.

(® Cartan has developed these considerations for ruled tabd the orthogonal trajectories of
generators, as well as the ones that result for docoregruences, in an article “Sur les intégrales de
I'espace réglé,” Bull. Soc. math. Frar(1898), 160-165.
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calculations that were employed by Cartan in his studhefPfaff problem?. They
are, with the same Cartan notations:

(25) W = idp dx,

i=1

(26) & =wd = (psdpz—p2dps) dx dxs + (P dps —ps dpy) dxs dxg
+ (2 dpr —p1 dp2) dxg dxe

(27) " =31c?=dp; dp, dx dxs + dpy dps dxs dxg + dp. dpr dx dx |

(28) &’ =" = (L dps dpz + p2dpy dps + psdpy dp) dx dxe dxs,
(29) ' =1a® =-dp dp dps dx dx dxs.

The last one is zero identically, since we have ireduthe variables, Xz, X3, p1, P2,
ps to verify the relation (2). The form® and " are the most interesting, because they
are invariant under the transformatiopéH, f), and as a result they correspond to
geometric properties of systemseeffandeo” rays. Fored, which is the bilinear covariant
of @ that invariance amounts to the fact that, by virtiehe Stokes formula, the
integral:

(30) bzﬂw

will be equal to the integrah when taken around a closed contour (no. 6). The equality
" = 1a? then results from this.

The interpretation od; is, in fact, imnmediate: One must associate each pouoita
portion of the surfaced) with a contact elemenEj according to an arbitrary law. One
can then consider the? rays R) that are pseudo-orthogonal to the contact elenint (
considered, and the® index vectors that are associated with these ragiseatvarious
points. J; is the vorticity flux of the vector field thus defined uponessing the surface
(0), and its value is the same &swhen taken around the contour ef ¢n the tube of
rays that serves as the frontier of the closed eouth ofe? rays R) considered.

Conversely, one can give a congruer@edf rays and remove an arbitrary brush that
is limited by a tube of rays of that congruence, andtlat brush with an arbitrary

surface that gives the areg@) (hat was considered above.
In order for the integral, to be zero, no matter what the brush was that erasved
from (C) — i.e., in order forJ; to be zero around a closed contour that encircles an

() E. CARTAN, Ann. Ec. Norm. sup. (36 (1899), 244-253.Seethe introduction of that article (pp.
241-242). Compare as well, the article already cited by E. CARTAN, Bdbc. math. Franc@5 (1896),
140-177. A systematic exposition of the calculus of multlindifferential expressions is given, along
with some less condensed notations, by De Donderanemt publication: Bull. Acad. royale Belgique, cl.
sciences]12 (1913), 1043-1073. Seealso the proofs that were given by De Donder in tblame (viz.,
XLII) of the Bulletin de la Société mathématique, pp. @lative to the Hadamard invariant.
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arbitrary tube of rays that belongs to the congrue@eil is necessary and sufficient
that the components;, pz, ps of the index vectorsN) that comprise the field that is

3
associated with the congruen€® pe functions ok;, xo, X3 such thata):z pdx is the
i=1
exact total differentiatu= dt of a functiont = f(x1, X2, X3).

This is equivalent to saying that there is a familywa@ves (14) whose pseudo-
normals coincide with the rays of the congruen€®, Since they satisfy the same
differential system (10).

In other words, the condition that be zero for any brush (or thait be zero for any
tube) of the congruence is necessary and sufficienttdiat congruence to be a
congruence of pseudo-normat (

8. In order to interpret the integral invariant:

@ s=-fffor

one must introduce a continuurp 6f ' contact elements, and in turn, a bounded four-
dimensional portion of the system of' rays in space. From the preceding, the
continuum §) can be chosen arbitrarily, provided that it containgrdact element that is
pseudo-orthogonal to each of thé rays R) that define the four-dimensional brush
considered, one can suppose that it is defined by cuttingbthah with an arbitrary
auxiliary surface 9 on which it determines an area):( «® rays R) of the brush pass
through pointA of that area, each of which corresponds to the pseutogamal contact
element E) and the index vectd\ that relates to that element (no. 2).

The coordinateg;, X, X3 are then functions of two variableg u, that vary over a
field (U), andps, p2, ps are functions of four variables, u, vi, V2, where the variables,
v, vary over a corresponding fie\{u) for each system of values, u, , and one has:

e 30%%) o 0(Dy P
(32) “ 30 y) M 3y ) M
0(X%;, %) a(p, p)
o) ™ oy v
0(X, %) a(p, p)
o) M oy )

v dy

v dy;

() Analogous facts have been pointed out by E. Cartanefiiilinear rays and normal congruences.
[Bull. Soc. math. Franc24 (1896), 162.]

(®) Here, we apply the mode of interpretation that waagined by Hadamard for rectilinear rays to the
general case. [J. HADAMARD, C. R. Acad. Sc., 14 M&8h8. —Cf., the article of DONTOT, Bull. Soc.
math. Francd?2 (1914), 72-78.]
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i.e., the differential element g4 is the scalar geometric product of the two vectors that
figure in the elementary areas of the surfageat the pointA and thefiguratrix surface
(%) that is swept out by the extremity of the vedtovhenA remains fixed.

Now, the normal to that figuratrix surface, whose eiquais equation (2), in which

one considerg;, P2, ps to be point-like coordinates, has the direction COE‘ﬁﬂﬁtSZ—H,

P
oH oH o . .
——,— . lts direction is therefore that of the rdg) that the index vectaX (no. 4) is

op, ' p,

attached to. Therefore, if one denotes the measute dlementary area on the surface
o by dg, that of the elementary area in the figuratrix swefagdvy, the direction of the
normal to the surfacegf by n, and that of the ralg then one can write:

(33) - ' = cosR, n) dodv.
However, one can also replatewith its value ?):

da

(34) dv=N? ——,
cosR,N)

upon replacing the solid angtir that is swept out by the extremity of the direatio
vector ofN, and one arrives at the definitive formula Jor.

_ 2 CoOsR,n)
(35) 3= [[[[N %ﬁl)dada,

which generalizes the formula that was given byataard {) for the case of rectilinear
propagation in an isotropic medium:

[N = const.; cosg, N) = 1].

9. Sincea" provides$a/ by symbolic differentiation, the integrdl is equal to
one-half the integral:

() We employ the term that was used by Hadamard ihdtgsns sur le calcul des variatigris|, pp.
90.

(® This formula, which is often considered to be obvidigasily established by the symbolic calculus.
Upon denoting the direction cosines\oby a1, a», a3, one has:

p=Na
and
cosR N)dv=a dpdpz+ ... =1 N, dN a3 + ..
=a; [NdN(a das - as dap) + NP das dag] + ... =N? (o dap das + ...) =NP dar .

() C.R.Acad. Sc., 14 March 1898.
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(36) == |[[a,

taken along the closed, three-dimensional multiplititat serves as the frontier of the
continuum §) considered in the preceding paragraph. Under these cmwjitihe
integralJ; will possess the same invariance charactel; aslt thus corresponds to the
closed continuum of® rays.

At each point of the areg one will have to consider index vectos whose
extremities will describe a closed cure® ¢n the figuratrix surface.

Let d¢ denote the angle between one of these vectors amdiitely close vector,
and consider the vector whose components:

(37) P2 dps —ps dpz, Ps dp. —p1 dps, P1 dpz —p2 dp:
figure in «J.

One can consider the characteristias being that of the displacement on the curve
(c), becausey, x;, X3 depend upon just two variablas u, , while p1, p2, ps depend upon
Ui, Uz , and another variablethat corresponds to the displacement@n The length of
that vector id\? de, in such a way that one has the interpretation:

(38) - o =N? cosfY, n) dode,

in whichn' denotes the normal direction to both the index veldtand an infinitely close
index vector.

10. As for the integral:

@ == Jfffor

one can consider it only when it is taken over an opaltipticity; otherwise, it would be
zero, since it would be equal *coj w’ if it were taken over a closed multiplicity.

It is therefore invariant only for the propagation tisabeing considered, and it is no
longer an invariant that is attached to a system of.rajs elemeni’ is, up to a
numerical factor, the product:

(40) N* dw da,

in which the solid angle that is swept out by the indestareappears, along with the
volume elementw of space, because the factordef dx. dx; in & is three times the
elementary volume that is swept out by the index vector

This is the result that was found by Hadamard along #ytatifferent path in the
case of homogeneous, isotropic medja (

() C.R.Acad. Sc., 14 March 1898C£, DONTOT, Bull. Soc. math. Frande (1914), 72-75.
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Il. - RAY TRANSFORMATIONS

11. The differential expressionsy o, o, &', ¥, o are invariant forany
homogeneous contact transformation, in such a waytlieaintegral invariants that we
studied previouslyhat relate to the mode of propagation that is defined by a particular
function:

H(X1, X2, X3 ; P1, P2, P3)

are also preserved by all of the homogeneous contactainaagions that leave equation
(2) unaltered. Since that equation is not homogenequs [, ps, these transformations
are the ones that leave the functidiitself invariant f). They form a group() in which
the group G) of the propagation is invariant. Its infinitesimalnséormations have
characteristic functions that are the integrals, Whaice homogeneous of first degree in
p1, P2, p3, Of the equation:

(41) @) =0

In order to study this group, we convert it into a cararferm by reducindH itself
to the canonical formps by using a homogeneous contact transformation.
We write one of these canonical transformations as:

=G0 % % R B B (FL23)
(42) g =H0u% % R B R (FL2)
O =H(X %, X5 By B B,

upon denoting the transformed variables Yay y», ys ; b, 02, 03 . Under it, the
propagation group becomes the grogjpaof translations:

(43) yi=VY;, Y2=Ys, ys=ys +6 q=¢, (=12 3),

which is equivalent to the fact that the gro@) (tself, upon taking condition (2) into
account, has ite* trajectories defined by the equations:

(44) Gi=y,, G2=y;, Hi= 2, H.= 2, H=1,
0 0

if one considersy?, y;, z, Z in these equations to be arbitrary constants. Upon

eliminatingps, p2, ps from these equations, one will have the equationsfaays, which

are also characterized by the four arbitrary constghtsy; , z', 2.

() A contact transformation that chand¢snto another functiorH must be regarded as changing the
given mediumM into another oneM . It conserves the integral invariants in questiopnié takes the
modification of the medium into account in the exprassifor these invariants. On the contrary, in this
article, we suppose that one must always apply thesdantato the given mediuiv.
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The canonical transformation (42) conveft} ifito the group ) that is composed of
the homogeneous contact transformationsye, ys ; di, Oz, g3) that leaveqs invariant.
The finite equations of any one of the contact tramsédions:

(45) Y =Yi(Yn Y2 Y3501, G2 Gg), G = Qi(Yw, Y2 Y3 O1, Oz, Ca), (i=1273)

of that group g thus contain the equation, =gz . From the relations of S. Li&)(

(46) YY) =@Q¥W=QQ)=0, QY)=1 (#k,

one then concludes, due to the fact Qag& gz , thatY, Y2, Q1, Q. does not depend upon

ys and thatys is of the form:
(47) Yz=Yy3+P(y1,Yo; 01, O, O).

If one takes the degrees of homogeneity into accaundtjf one sets:

_ q4 _ 4 _ &b _
(48) Doz, Rep, Aoz Ry
Qs 0s Qs q
then the transformation (45) will be written:
= A(Y, ¥, Z, F12),
(49) { Y M3 %22 (FL2)
z=B(Y%, %232 (FL2),
with
(50) Yo =Ya— Y1, Y2;21,2), =03,
and the identity:
3 3
ZQi dy = zq’ dy
i=1 i=1
will reduce to:
(51) BidA +B,dh, =2 dy1+22dy2+dl//.

One thus gets the group) (by starting with the group of transformations (49) that
leave the Pfaff expressian dy; + z dy,, up to an additive total differentialand by
extendingeach of these transformations that are defined by fasr{BD) and (48), where
the functiony is obtained — up to an additive constant — by means efufeérature:

(52) dy=2z dy+ 2z dy-zdy—zdy.

() S. LIE and F. ENGELTheorie der Transformationsgruppen I, pp. 137.
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The group f) of transformations (49) that were considered wasdhiced by S. Lie
(). As Cartan remarked, one can also define it by tharimmce of the bilinear
expression?):

dyl dz + dyz d».

It is a simple group, and its infinitesimal transformasiare of the formKf), whereK is
an arbitrary function ofy, y» ; z1, z ).

12. Each contact transformation of the group) (then corresponds to a
transformation (49) of the groupg). Its significance results from the form (44) of the
equations of the trajectories. Indeed, upon taking degreksmdgeneity into account
and setting:

(53) By, By
Ps Ps
one can set:
(54) Gi = Vi(Xa, X2, X3 ; 11, 12), Hi = Zi(X1, X2, X3 ; 11, 12) (i=1,2),

and the equations of the trajectories become:
(55) Vi=vy, Zi=2 (i=1,2),

in which y°, y2; 2°, 2 are the coordinates of any of thesetrajectories, or of the*

rays that support them.

An arbitrary transformation oflj is defined by the elimination of thg and q
between equations (42), when one writes the analogousatgratith primed letters, and
equations (48), (49), (50). It then implies the equations:

(56) X 1) =AY ] 2), Z(x |IN=Bi((YV]2) (=1 2);

i.e., it changes each trajectory (55) into the ttajgcwhose coordinate’, vy; z°, Zy
are given by the equations:

(57) ¥ =AK|2D), Z2°=Bi(y’|?), i=1,2),

which are the equations of the transformation (49).

Therefore, the transformation (49) gives the law>afhange for theo* trajectories
under the transformations of the grou) that they correspond to by means of the
guadrature (52), and by the intermediary of the canonigaftyamation (42).

t LIE and F. ENGELTheorie der Transformationsgruppen Il, pp. 128, 129, 232, 259, 260.

O s
() E.CARTAN, C. R. Acad. Sc., 21 May 1907.
() S. LIE, Leipziger Berichte, 1895, pp. 292.
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13. Since the transformations of the grodip keave the partial differential equation
(2) of the wave family invariant, they change any familyvaves into another family of
waves. They therefore exchange dfetrajectories that serve to propagate one family of
waves into theo? trajectories that are likewise associated withsdmme family of waves.

On the other hand, one can say that they exchangeofathe propagation if one
agrees to operate on a ray by operating on the conkactelst that it is pseudo-
orthogonal to (no. 1).

Therefore, the transformations of the grodlp) thange thex? rays that are the
pseudo-normals of one family of waves intbrays that enjoy the same property, and in
turn, the transformations (49) that give the law ofhexge of theo* rays under the
homologous transformations of )(in the indicated sense change any congruence of
pseudo-normals into a congruence of pseudo-normals. @neagahat they ar®lalus
transformations.

14. Conversely, imagine an arbitrary transformation (49t tbperates on the
coordinates ofo* rays, and try to express the idea that it changescangruence of
pseudo-normals into a congruence of pseudo-normals.

In order to do that, one must examine how the coomsngl, y5; z, 2 of the

trajectories (55) must be chosen as functions of tlee garametersi;, u, in order for
them to be the trajectories of propagation of a fawilywaves. Because of the fact that
the congruence of rays is given, the trajectories theset rays serve to support are
deduced by the adjunction to each point of each rayeoddhtact element that is pseudo-
normal at that point.

One passes from equations (55) to equations (44) direstty upon adjoining the
auxiliary equation:
(58) Gs=u

to them, wherai is a third parameter, one will define the coordinaie®,, X3 ; p1, P2, Ps

of the contact elements that correspond to the congeuef rays being considered as
functions ofu, u;, u, . Moreover, we know that the condition that expeedbe idea that
they belong to the* waves of the same family is that the expression:

(16) w= 2 p dx

must be an exact total differentialunu,, u; (cf., no. 7). Because this is true, the integral
t = f(x1, X2, X3) Of that differential is an integral of the partdfferential equation (2) of
the family of waves, due to the last of equation (443 eonversely, if the contact
elements considered are those of a family of waveg., t = f(xi1, X2, X3) — then thep; are
proportional to the derivativest / 0x, , and as a result they are equal to them,
respectively, due to the same relatibr 1.

Now, the transformation (42) is a homogeneous cotttacsformation, and one has
the identity:
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3
(59) HldGl+H2dGz+H3d6322p, d)§,

i=1

from which, one concludes the identity:
3

(60) dpdx =du+ ) dy+ 2 dy
i=1

for the functionsy, u;, U, considered, if one takes equations (44) and (58) into account.
The desired condition is therefore that the Pfaff esgion:

(61) ) dy+ 2 dy
must be an exact total differentialup u, .
Therefore, in order for a transformation (49) to b#Malus transformation, it is

necessary and sufficient that it must possess thewmwly property: In order for
z dy + z dy to be a total differential, it is necessary andisigfiit thatz, dy; + z dy,

also be one. In other words, the symbolic equation:

(62) dz dy; +dzdy, =0

must be invariant. The equations of the transformatiast then lead to an identity:
(63) dz dy+ dz dy =p(dz dy, +dz dy,) .

Upon differentiating them symbolically, one finds the ndentity:

(64) 0 =dp (dz dy: + dz dyy),

from which, one effortlessly concludes tlgais a constant.

The Malus transformations are then the ones thatiptyuthe differential formdz
dy: + dz dy, by a constant; i.e., the ones that give rise to itestof the form:

(65) dZ dy+ dz dy - p(dz dy, + dz dys) = dy,

in which p denotes a constant, agds a function of, z, v/, Z .

In other words, one is dealing with the transformation, p) of S. Lie ¢), and one
falls back upon the previously-encountered transformations innthe case where the
constantois equal to unity.

() S. LIE and F. ENGELTheorie der Transformationsgruppen I, pp. 131.
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15. One recovers the general Malus transformations bgidering the groupl(')
that is formed from the homogeneous contact transtiwwngthat leave the grougs)
invariant. Each of them multiplies the characterigtinction H by a constant 1 p,
which is different from 1, in generai)(

Operate on the canonical form d&)( as in no. 11. The only change is in the
equationg, =gz, which must be replaced ly, = g3 : phere. As a result, equation (47)

is replaced with:

(66) Y =P Y3+ P(Y1, Y25 O, G2, G3)
and equations (50) become:

(67) Vs =PY3— Uy Y221, 22) q =

As aresult, the identitE g dp = Zqi’ dy then gives:

(68) B, dA + B, dA, = Yo (Xl dyl + X2 dyz) + dl//,

which gives the property that is characterized hgy itlentity (65) for the transformation
(49) of the rays.

Conversely, any transformation (49) that belorgs$he group(),) is characterized
by the form of the identity (65); i.e., any Maluwarisformation can bextendedy means
of formulas (67) and (48); the function results from the integration of the total
differential (65). It is thus effectively providdyy one of the contact transformations that
leave the groupQ) invariant, and evena® of such transformations.

However, ifpis not equal toonethen, in reality, these transformations will mgdif
the elastic nature of the medium, since everythiagpens as if each wave surface were
replaced by its homothetic transform with respectts origin, with a homothety ratio
that is constant and equalgo Indeed, this is what results from changihgto 1joH in
the tangential equation (2) of the wave surface.

16. As far as integral invariants are concerned, dpplication of the canonical
transformation (42) exhibits the fact thdt and J, are attached to systems of rays,
because, upon taking the conditiy= 1 into account, one deduces the expressions:

(69) w' =dz dy; +dz dy, w'" =—dz dz dy; dy, ,

fromz pi dx :Z g dy; , into which only the constant coordinates of e@ghenter.
Moreover, one verifies that since the transforaoraiof the groupl() give rise to the
identity (52), the invariance ofw’' then results immediately from symbolic

() Ibid., pp. 264 and 267. — The infinitesimal transformations ofgteeip () are the integrals of the
equationsK f) = c H, wherec is an arbitrary constant.
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differentiation, and as a result, thatof’ (which was already remarked on no. 11). The
invariantsJ, andJ, are therefore unaltered by these transformations.

On the contrary, the transformations of the grdup rultiply J, by p andJ, by o,
as symbolic differentiation of the identity (65) showEhe same is therefore true for the
Malus transformations, which leave the invariahtandJ, invariant only in the special
case ofp=1.

17. In the case of a homogeneous and isotropic mediuenhast

2

(70) H=% pr+ s+ P,

in which n is a constant that is the constant length of titkex vector. Here, one can
suppose that it is equal to unity.
One can then take the canonical transformation:to be

% = Py %= P a=y B+ B+ B,

(71)
A R S S I G T -
3

The equations of the ray thatriermal to an arbitrary contact elememnt,(x., Xs; p1,
P1, pr) are:
(72) Xl_xizxz_xzzxs_xs
P P, Ps

here, in whichy; andy, are the coordinates, in the plaxe= 0, of the foot of the ray in
that plane, and our other two coordinates:

(73) a=d=__B =%-___ P

6@ Jprprp 0 \/pi+pi+ Pl

are the two direction cosines of the ray relatovéhex;-axis and thee-axis.

One recovers the variables that were introducedHbyruns in his theory of the
eikonal ).

The variabley; is, moreover, the distance from the foot of thetoaan arbitrary point
of the ray.

One then sees that the success of the Brunsdraretion amounts to the fact that it
changes the group of dilatations into a grouparighations.

() Abhandlungen der k.séchs, Gesellschaft. der WissXy. 2895. —Cf., F. HANSDORFF, Leipziger
Berichte, 1896.



