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 1. In some preceding publications (1), I was led, in the study of the propagation of a 
disturbance as a wave according to the law of enveloping waves (Huygens’s principle), to 
restate two general problems in the calculus of variation: 
 a. The study of the minimum of a definite integral of the given (homogeneous) 
form: 

(1)     J = ∫ F(x1, …, xn, dx1, …, dxn), 
 
taken along an arc of a variable curve with given extremities. 
 b. The study of the minimum value that is taken by a variable t at the extremity of an 
arc of a variable curve with a given origin and extremity, and whose value is given at the 
origin of this same arc and satisfies a given differential equation: 
 
(2)     dt = F(t | x1, …, xn | dx1, …, dxn). 
 
These two functionals represent, in fact, the duration of the propagation along the arc of 
the curve considered, from its origin to its extremity, in a regime that is permanent in the 
former case and variable in the latter. 
 The essential fact that one confirms is that the minimum is given by the arcs of the 
trajectories of propagation, at least for sufficiently neighboring extremities, when the arc 
considered pierces the elementary waves that issue from its successive points (and in the 
sense that the disturbance is propagated along that curve) at the points in whose 
neighborhood these waves are concave towards to their respective origins. 
 In the first of the two articles recalled, I deduced this result from a consideration of 
the second variation; in the second one, I also employed a direct method that was more 
rigorous, and which is equivalent to the methods of Weierstrass and Hilbert, and from 
which, the study of the propagation of waves follows almost intuitively. 

                                                
 (1) Sur l’interprétation mécanique des transformations de contact infinitésimales (Bulletin de la Soc. 
math. de France, t. XXXIV, 1906); Essai sur la propagation par ondes (Annales de l’Éc. Normale sup., 3rd 
series, t. XXVI, 1909). 
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 In his thesis, and later on, in his memoir on the strong maxima and minima (1), 
Carathéodory has made use of a geometric representation in which one is involved, in the 
case n = 2, and for the first of these two problems, with the wave curves that are called 
indicatrices.  In his Leçons sur le Calcul des variations (2), which we shall refer to often 
in this article, Hadamard used an analogous geometrical representation: It is what one 
calls the figurative of the problem.  Moreover, he introduced its polar reciprocal, the 
figuratrix.  He did that in the general problems to which he gave the names of Lagrange 
problem and Mayer problem, and which differ from the preceding ones in that the 
variables x1, …, xn are linked by some given differential relations: 
 
(3)    Fh(x1, …, xn | dx1, …, dxn) = 0  (h = 1, 2, …, α), 
 
in the case of the integral (1) (the Lagrange problem), and: 
 
(4)    Fh(t | x1, …, xn | dx1, …, dxn) = 0  (h = 1, 2, …, α), 
 
in the case of equation (2) (the Mayer problem). 
 However, for these two authors, the purpose was only to illustrate some analytical 
results, whereas from our viewpoint, the elementary waves – or the wave multiplicities 
that are their homothetic transforms − are at the root of the problem and completely 
dominate it.  For example, it is what one finds imposed absolutely at the introduction of 
the partial differential equation of Hamilton-Jacobi that defines, for us, the families of 
waves that issue from the disturbance simultaneously from the various points of that 
multiplicity, as well as the introduction of the canonical system, which is the complete 
translation of the general motion of propagation whose essential character is to be a 
displacement of the contact elements of the waves. 
 
 2. In the following pages, we treat the Lagrange problem from the same point of 
view.  The elementary waves and the wave multiplicities that correspond to them are n – 
1-dimensional multiplicities here, whose point-like support contains ∞n−1− α points.  
However, if one wishes to have true propagation then one is led to assume that the 
tangential support of these multiplicities − i.e., the system of planes of their contact 
elements − contains ∞n−1 planes (3).  Now, this amounts to assuming that the problem of 
the calculus of variations is an ordinary problem (4), a hypothesis that is also imposed in 
the calculus of variations for different reasons. 
 In our preceding articles, we have shown the importance of the tangential viewpoint 
in the problem considered; it is equivalent to the consideration of Hadamard’s figuratrix.  
Here again, it is the representation of the wave multiplicity by its tangential support that 
                                                
 (1) Ueber die discontinuerlichen Lösungen der Variations-Rechnung (Göttingen, 1904); 
 Ueber die starken Maxima und Minima bei einfachen Integralen (Math. Annalen, v. LXII, 1906).  
Carathéodory said that his indicatrices were no different from the wave surfaces that one uses in optics, but 
he made no use of this analogy.  Moreover, the memoirs of Carathéodory were not available to me at the 
moment when I published my preceding articles. 
 (2) Paris, 1910.  Hadamard taught at the Collège de France on the calculus of variation starting in 1902. 
 (3) Without this, the disturbances produced at an arbitrary point would not propagate, if a definite 
orientation is chosen for the contact elements at that point.  I will return to this point in a later work. 
 (4) Cf., Hadamard, loc. cit., pp. 239, 267, 268. 
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is fundamental to our method.  It is quite remarkable that it permits one to avoid the 
objection of du Bois-Reymond on the premature introduction of the second derivative 
into any question in which one does not assume its existence, a priori.  Indeed, it is the 
canonical system of Hamilton that first presents itself in order to define the extremals of 
the problem. 
 One also avoids any very delicate discussions that are necessary in order to justify the 
use of Lagrange multipliers, because here they present themselves in order to define the 
choice that one has to make between the various contact elements that are associated with 
each point on the successive elementary waves that are encountered by an extremal, and 
one sees, in addition, the true significance of these multipliers. 
 As far as the conditions for a minimum are concerned, we limit ourselves to 
establishing sufficient conditions by generalizing the method that was already employed 
in our article in the Annales de l’École Normale, 1909.  It again translates into the 
condition for the concavity of the wave multiplicities towards their origins, which does 
not seem to have been stated for that problem previously. 
 In order to facilitate our presentation, we have recalled in part one the principles of 
the geometry of multiplicities that will employ.  There, one will find, in addition to the 
double representation by means of the point-like support and tangential support, the 
definition and study of the concavity, whether at a contact element or in the domain of 
such an element.  In order to discuss this concavity, one is led to consider the quadratic 
form: 

ϖ = 
1

n

i i
i

dp dq
=
∑ , 

 
where p1, …, pn are the coordinates of a point of a contact element and q1, …, qn are the 
direction coefficients (1) of its plane.  The study of this quadratic form comes down to 
that of another quadratic form in which the givens of the representation – whether point-
like or tangential – of the multiplicity come into play.  The notions of “osculating 
element” and “asymptotic variation” for the most general multiplicities depend upon that 
same form ϖ.  The fact that they vanish identically characterizes the linear multiplicities. 
 
 3. The consideration of waves, where the integral J represents a duration of 
propagation, demands that the differential element be positive.  As one knows, one comes 
to this case − viz., the one in which that element changes sign along the arc of the curve 
considered − upon adding a conveniently chosen total differential to F: This amounts to 
performing a projective transformation that is the dual of a translation on the wave 
multiplicity (which may always be defined).  From the viewpoint of the statement of 
these results, it is more natural when one restricts oneself to the consideration of 
elementary waves: The minimum comes about if there is concavity when F is positive 
and convexity when F is negative. 

                                                
 (1) In order to better exhibit the dualistic character of all of the considerations that come into play, we 

have imposed the condition 
1

n

i i
i

qp
=
∑ = 1 on these 2n coordinates.  However, nothing essential will change if 

one employs homogeneous coordinates. 
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 The process of representing wave multiplicities, which we have systematically 
employed, uses the tangential equation in the form that is solved with respect to the 
homogeneous coordinates.  In reality, this entails no essential restriction, because the 
condition of possibility that comes about is the one that also presents itself in the 
application of the existence theorems for integrals of a differential system in differential 
equations for the extremals, when it is written in the form that was given by Lagrange. 
 Nevertheless, we reserve the demonstration that our method of defining equations for 
the problem in the calculus of variations is not related to the particular mode of 
representation, but only to the sign of the differential element, for another work.  That 
demonstration may also be extended to the case of multiple integrals. 
 In conclusion, we remark that the analytical character of the differential equations of 
the problem that result from our argument consists of the one that expresses that the 
variation of the curvilinear integral: 

(5)      
1

n

i i
i

q dx
=
∑∫  

 
is null, the variables x1, …, xn ; q1, …, qn being coupled by just one relation: 
 
(6)     G(x1, …, xn | q1, …, qn) = 0. 
 
One may, in turn, attach the study of the Lagrange problem to the reduction of a Pfaff 
expression.  Here, we limit ourselves to the indication of that new method that is 
susceptible to being extended to non-ordinary problems, the Mayer problem, and also 
problems of the extrema of multiple integrals. 
 



I. – REMARKS ON THE GEOMETRY OF MULTIPLICITIES. 
 

 1. In an n-dimensional space, we denote the Cartesian coordinates of an arbitrary 
point by p1, …, pn , and agree to reduce the equation of an arbitrary plane to the form: 
 

(1)      
1

n

i i
i

q X
=
∑ = 1, 

 
X1, …, Xn being the current point-like coordinates.  The given coordinates of a contact 
element will then be 2n numbers p1, …, pn ; q, …, qn that are linked by the relation: 
 

(2)      
1

n

i i
i

p q
=
∑ = 0. 

 
One finds that the contact elements whose plane passes through the origin and the ones 
whose point is at infinity are excluded (1). 
 An n – 1 dimensional multiplicity (M) will be defined by a system (S) of n + 1 
equations between the coordinates of a current contact element; this system is subject to 
the double condition of having equation (2) as a consequence and one or the other of the 
following two Pfaff equations (2): 

(3)      
1

n

i i
i

q dp
=
∑ = 0, 

(4)      
1

n

i i
i

p dq
=
∑ = 0, 

 
which are equivalent when one takes equation (2) into account. 
 Now, one may eliminate q1, …, qn between the equations of the system (S).  One thus 
obtains a certain number of the α + 1 equations in p1, …, pn that are independent of them.  
Likewise, one eliminates p1, …, pn and obtains β + 1 equations in q1, …, qn that are 
independent of them.  The two partial systems thus obtained: 
 
(5)    Fh(p1, …, pn) = 0 (h = 0, 1, 2, …, α), 
(6)    Gk(q1, …, qn) = 0 (k = 0, 1, 2, …, β), 

                                                
 (1) If one has to consider one of them then one may reduce to the normal case, respectively, by one of 
the following transformations (translation and correlative translation): 
 

i
p′  = pi + ai , i

q′ = 
1

i

i i
i

q

a q+∑
 (i = 1, 2, …, n); 

i
q′ = qi + bi , i

p′ =
1

i

i i
i

b p

p
+∑

 (i = 1, 2, …, n).  

 
 (2) One generally speaks only of equation (3).  Our exposition has the goal of making appear the 
absolutely symmetric role of two groups of coordinates p1, …, pn and q1, …, qn . 
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define what one may call the point-like support and the tangential support, respectively, 
of the multiplicity, namely, the locus of points and the family of planes, respectively, that 
define part of the contact elements of that multiplicity. 
 The one or the other of these supports defines the multiplicity entirely.  We recall the 
reason for the point-like support, for example. 
 To say that equations (5) express the result of the elimination of q1, …, qn between 
the equations of the system (S) is equivalent to saying that the equations dFh = 0 (h = 0, 1, 
2, …, α) express all of the independent relations in dp1, …, dpn that result from the 
differentiation of the equations of the system (S).  Equation (3) may only then be a 
consequence of equations dFh = 0 (h = 0, 1, 2, …, α).  Upon expressing this fact, one 
obtains n – α – 1 homogeneous linear equations in q1, …, qn that are independent and, 
along with (2), which is not homogeneous, constitute a system (Σ) of n – α linear 
equations that are independent in q1, …, qn . 
 Having said this, let (p1, …, pn) be a point of the support (5).  From the definition of 
support, there is at least one contact element of (M) that is associated with this point, and 
the coordinates q1, …, qn that succeed in defining such an element satisfy the linear 
system (Σ), by virtue of the definition of multiplicities and the preceding explanations.  If 
we would therefore like to determine all of the contact elements of (M) that are associated 
with the point considered, we may deduce from (Σ), the expressions for n – α of the 
unknowns qi as functions of the other ones – q1, …, qα , for example – which will amount 
to calculating them in such a manner as to satisfy the equations obtained by substituting 
these expressions in equations (S).  These equations in q1, …, qα are not incompatible, 
and, moreover, they might only be identities, because otherwise the system (S) will be 
equivalent to a system that is formed from more than n + 1 independent equations, and 
the multiplicity (M) will have dimension at least n – 1. 
 The contact elements of (M) are therefore defined entirely by equations (5) and the 
system (Σ) (1).  As for system (Σ), it is formed from equation (2) and the equations 
obtained upon eliminating the auxiliary unknowns λh (h = 0, 1, 2, …, a) between the 
equations: 

(7)     qi = 0

i

f

p

∂
∂

 (i = 1, 2, …, n), 

 
where f denotes the function: 

(8)      f0 = 
0

h h
h

F
α

λ
=
∑  

 
of the independent variables p1, …, pn ; λ0, λ1, …, λα . 
 It is, in general, preferable to maintain equations (7) such that the general contact 
element of (M) is thus found to be expressed by means of the α + 1 parameters λh  and the 
n – α – 1 parameters that the current point of the point-like support depend upon.  The 
parameters are coupled by the relation: 

                                                
 (1) The following theorem results from this: All of the planes that are associated with the same point 
and define contact elements of (M) define a linear system, and, in turn, correlatively: All of the points of the 
same plane that define contact elements of (M), along with that plane, constitute a linear variety. 
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(9)      0

1

n

i
i i

f
p

p=

∂
∂∑ = 1, 

which results from (2). 
 One remarks that this relation excludes the case where the system (5) is 
homogeneous, because the left-hand side of (9) is then annulled for any point of support.  
Indeed, in this case all of the contact elements of (M) are found exclusively by condition 
(2). 
 All of these reasons and results apply to the tangential support.  One thus has another 
form for the equations of the multiplicity by associating equations (6) with the equations: 
 

(10)     pi = 0

i

g

q

∂
∂

 (i = 1, 2, …, n), 

where one has set: 

(11)     g0 = 
0

k k
k

G
β

µ
=
∑ , 

and the equation of condition: 

(12)     0

1

n

i
i i

g
q

q=

∂
∂∑ = 1. 

 
 It finally results from this that equations (6) result from the elimination of p1, …, pn; 
λ0, λ1, …, λα between the equations (5), (7), (9), and that equations (5) result from the 
elimination of q1, …, qn; µ0, µ1, …, µβ  between the equations (6), (10), (12). 
 
 2. The preceding formulas are simplified if one gives a particular form to the 
equations of support that is equivalent to the use of polar coordinates.  For example, we 
occupy ourselves with the point-like support and suppose first of all that α = 0.  Any 
point of this support is found on a certain ray that issues from the origin, whose direction 
parameters we denote by α1, …, αn, and whose length we denote by ρ.  It is found to be 
defined by the equation: 
 
(13)     F0(ρa1, …, ρan) = 0. 
 
One may consider it as defining 1/ρ to be a function of a1, …, an in a neighborhood of the 
point in question, because, by excluding the contact elements whose plane passes through 
the origin we have excluded the hypothesis that ρ = 0.  One thus obtains, for this domain, 
an equation of the form: 

(14)     
1

ρ
 = F(a1, …, an). 

 
The function F remains positive in this domain.  One may observe, moreover, that it 
remains definite for the values ma1, …, man, where m is sufficiently close to 1, because 
they are also as close as one desires to the initial values, and, from the form of (13), one 
sees that the value of ρ that is deduced by continuity from the first one is therefore ρ/m.  
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Therefore, the value of 1/ρ is m/ρ; i.e., the function F is (positively) homogeneous of 
degree one (1); one may apply the Euler identity to it and its partial derivatives will have 
the known (positive) homogeneities. 
 All of this remains true if one considers, more generally, a1, …, an, ρ to be 
coordinates that are linked to the coordinates p1, …, pn by just the relations: 
 
(15)    pi = ρ ai (i = 1, 2, …, n), 
 
without imposing any restriction on a1, …, an other than that they have the same sign as 
the α1, …, αn, respectively.  One may likewise assume that a1, …, an have values that are 
close as one desires to p1, …, pn , and as a result, one will deduce from equation (14), the 
equation: 

(16)   
1

ρ
 = 1 , , npp

F
ρ ρ

 
 
 
⋯ = 

1

ρ
F(p1, …, pn), 

 
since 1/ρ will be as close to one as one desires. 
 As a consequence, the equation of support will appear in the form: 
 
(17)    0 = F0 ≡ F(p1, …, pn) – 1, 
 
where F has the indicated property of homogeneity.  It is clear that this equation, from the 
manner by which we arrived at it, might represent only a portion of the point-like support 
that is encountered at a point by at most one arbitrary ray that issues from the origin. 
 Here, this ray is subject only to at most the condition that it sweep out only an (n-
dimensional) portion of the space considered. 
 If, on the contrary, one now supposes that α > 0 then its direction must satisfy α 
conditions that one may write in the form: 
 
(18)   Fh(p1, …, pn) = 0 (h = 1, 2, …, α). 
 
 The functions F0, F1, …, Fα having been chosen, one immediately sees that condition 
(9) is equivalent to λ0 = 1.  The multiplicity (M) is thus defined, for the portion in 
question of the point-like support, by the equations: 
 
(19)     F(p1, …, pn) = 1, 
(20)    Fh(p1, …, pn) = 0 (h = 1, 2, …, α), 

(21)   qi = 
i

f

p

∂
∂

, f = F + 
1

h h
h

F
α

λ
=
∑  (i = 1, 2, …, n). 

 
One might remark that f is homogeneous of degree one with respect to all of the variables 
p1, …, pn; λ1, …, λα , and always from the positive viewpoint.  It then results that the 

                                                
 (1) If it happens that it is not initially defined for all of the values of ma1, …, man (m > 0) then the 
property of homogeneity will permit us to prolong it to all of these values.  However, the negative values of 
m remain excluded. 
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tangential support will be deduced from only the equations (20) and (21); i.e., without 
involving equation (19). 
 One will remark that one may replace equation (19) by equation (2), in the preceding 
system, due to the homogeneity of the functions F and Fh . 
 The tangential support will be susceptible, in turn, to an analogous representation that 
will be applied to a portion of that support such that it contains only a plane that meets an 
arbitrary ray that issues from the origin orthogonally.  The equations of that support will 
then be of the form: 
(22)     G(q1, …, qn) = 1, 
(23)    Gk(q1, …, qn) = 0 (k = 1, 2, …, β), 
 
G and Gk being positively homogeneous; G has degree one and the Gk have degree zero 
(1).  Moreover, in order to have the multiplicity (M), or at least the part of it that 
corresponds to that portion of the tangential support, one must add to equations (22) and 
(28), the equations: 
 

(24)  pi = 
i

g

q

∂
∂

, g = G + 
1

k k
k

G
β

µ
=
∑  (i = 1, 2, …, n). 

 
Since g is positively homogeneous of degree one in q1, …, qn; µ1, …, µβ , the point-like 
support here is defined by just equations (23) and (24).  Finally, (22) may be replaced by 
equation (2). 
 
 3. Suppose that the multiplicity (M) considered depends upon one or more 
parameters, and let a be one of them; this parameter will figure in the functions F, Fh, G, 
Gk .  The derivatives of these functions are then coupled by one simple relation that one 
obtains by differentiating the identity (2) totally with respect to all of the variables in 
question, including the parameter a.  Equations (3) and (4) are no longer verified, and one 
obtains only: 

(25)    
1 1

n n

i i i i
i i

q dp p dq
= =

+∑ ∑ = 0; 

 
i.e., due to the formulas (21) and (26): 
 

(26)    
1 1

n n

i i
i ii i

f g
dp dq

p q= =

∂ ∂+
∂ ∂∑ ∑ = 0. 

 
On the other hand, due to (19), (20), (22), (23), one has the identities: 
 
(27)     f = 1, g = 1, 
 

                                                
 (1)  The following results subsist, as far as their essentials are concerned, and the arguments are 
modified only slightly, when one supposes that the degree of homogeneity of the Fk and the Gk is equal to 
one.  This hypothesis is often more convenient in applications. 
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which one may differentiate.  Since one has: 
 

(28)  
h

f

λ
∂
∂

= Fh (h = 1, 2, …, α);  
k

g

µ
∂
∂

= Gk (k = 1, 2, …, β), 

 
the terms in dλh and dµk do not enter in, and what remains is: 
 

(29)    
1

n

i
i i

f f
da dp

a p=

∂ ∂+
∂ ∂∑  = 0, 

(30)    
1

n

i
i i

g g
da dq

a q=

∂ ∂+
∂ ∂∑  = 0. 

 
By comparison with (26), one then obtains the stated relation: 
 

(31)     
f g

a a

∂ ∂+
∂ ∂

 = 0. 

 
 4. Here is another remark that we will make use of: 
 Suppose that the tangential support is n – 1-dimensional, which, for us, will be the 
most important case; equations (23) do not exist then and g reduces to G.  Due to their 
homogeneity, equations (24) thus give a parametric representation for the point-like 
support by means of the parameters q1, …, qn, where it is only the ratios that come into 
play.  Due to this circumstance, we may likewise suppose that these parameters verify 
equation (22). 
 One then has that (p1, …, pn; q1, …, qn) is a contact element of the multiplicity (M) 
that is associated with the point (p1, …, pn) of the point-like support.  However, it is not 
necessarily the only one.  In order to find all of them, one must search for all of the 
systems (p1, …, pn; y1, …, yn) that satisfy the conditions: 
 

(32)     
1

n

i i
i

y p
=
∑ = 1,   

1

n

i i
i

y dp
=
∑ = 0. 

 
The pi are given by equations (24), and among their differentials, one may consider dq1, 
…, dqn to be independent, because it now only comes down to using the parametric 
representation for the point-like support, for which one will have make an abstraction of 
(22), due to the homogeneity of formulas (24).  The equations of the problem are then: 
 

(33)     
1

n

i
i i

G
y

q=

∂
∂∑ = 1, 

(34)    
2

1

n

i
i i j

G
y

q q=

∂
∂ ∂∑ = 0 (j = 1, 2, …, n). 
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In order to solve them, one first determines the general solution to equations (34) and one 
disposes of the arbitrary factor that appears in it in such a manner as to satisfy the 
condition (33). 
 Therefore, if the Hessian of G, which is identically null, due to the homogeneity of G, 
is only of rank one then the system (33), (34) has only one solution, which is: 
 
(35)    yi = qi  (i = 1, 2, …, n), 
 
and the contact element (p1, …, pn; q1, …, qn) is the only one that contains the point of 
support (p1, …, pn).  This is the case when equations (24) give just one relation between 
p1, …, pn ; i.e., the point-like support is itself n − 1-dimensional. 
 If, on the contrary, the Hessian of G is of rank α + 1 (α > 0) – i.e., if the point-like 
support is n – α – 1-dimensional – then this support is represented by the system (19), 
(20), and the result that is expressed by formulas (21) shows that the general solution of 
equations (33), (34) is written, with α arbitrary u1, …, uα : 
 

(36)   yi = 
i

f

p

∂
∂

, f = F + 
1

h h
h

u F
α

=
∑  (i = 1, 2, …, n). 

 
 Now, equations (19), (20), (21), in turn, have, as a consequence, equations (22) and 
(24).  Therefore, equations (19), (20), and (36), which differ only by a change of 
notations, will first have, as a consequence: 
 
(37)     G ≡ G(y1, .., yn) = 1, 
 
in which, to abbreviate, we write G  for the function G, when it is written in terms of the 
letters y1, .., yn, in place of the q1, .., qn ;  moreover: 
 

(38)    pi = 
i

G

y

∂
∂

 (i = 1, 2, .., n). 

 
As a result, any solution of the system (33), (34) satisfies the system that is defined by 
equation (37) and the equations: 
 

(39)    
i

G

y

∂
∂

=
i

G

q

∂
∂

 (i = 1, 2, …, n). 

 
 Suppose, moreover, that the multiplicity (M) depends upon a parameter a as in no. 3.  
Due to formulas (36) and (24), the yi may be considered to be well-defined functions: 
 

(40)  pi = Qi,n(q1, .., qn) + , 1
1

( , , )h i h n
h

u Q q q
α

=
∑ ⋯  (i = 1, 2, …, n) 
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of the variables q1, .., qn ; u1, .., uα , which constitute the general solution of the system 
(33), (34), and these functions turn, not only these equations, but also equations (37) and 
(39), into identities.  In the present case, these identities are also valid at a, which 
likewise enters as a parameter into the coefficients Q of formula (40).  One thus obtains 
equations (33) and (37) by differentiation with respect to a: 
 

(41)    
2

1 1

n n

i i
i ii i

G G
y da dy

q a q= =

∂ ∂+
∂ ∂ ∂∑ ∑ = 0, 

(42)     
1

n

i
i i

G G
da dy

a y=

∂ ∂+
∂ ∂∑ = 0; 

 
thus, upon taking equations (39) into account, one has the formula: 
 

(43)     
G

a

∂
∂

= 
2

1

n

i
i i

G
y

q a=

∂
∂ ∂∑ , 

 
which is a new consequence of equations (33) and (34). 
 
 5. In the application of the study of multiplicities to the calculus of variations, the 
multiplicity (M) will be given for us by equations (19), (20), which define its point-like 
support, and we then make use of the representation (22), (23), (24), which is based on 
the tangential support.  We must therefore examine under what sort of condition this 
second mode of representation is legitimate in the domain of a contact element of a 
multiplicity. 
 More generally, take a point-like support that has n – α − 1 = γ dimensions and is 
represented by the arbitrary parametric equations: 
 
(44)    pi = ϕi(t1, …, tγ) (i = 1, 2, …, n). 
 
The contact elements (p1, …, pn; q1, …, qn) that are associated with an arbitrary point of 
this support are defined by the equations: 
 

(45)    
1

n
i

i
i l

q
t

ϕ
=

∂
∂∑  = 0  (l = 1, 2, …, γ), 

 
which is equivalent to the condition (3), and by equation (2), which is written here as: 
 

(46)     
1

n

i i
i

qϕ
=
∑ = 1. 

 
In order to arrive at the representation of the tangential support in the form (22), (23), we 
give direction coefficients (b1, …, bn) to the normal to the plane of the contact element, 
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and we seek to determine that element (cf., no. 2, where analogous considerations are 
applied to the point-like support).  We must then pose: 
 
(47)    qi = bi σ (i = 1, 2, …, n), 
 
and seek to obtain 1/σ as a function of b1, …, bn by eliminating the parameters t1, …, tγ .  
To that effect, we have made use of the equations that are obtained by substituting the 
values (47) in equations (45) and (46).  If, to abbreviate, we set, while considering b1, …, 
bn to be given constants: 

(48)    1( , , )t tγϕ ⋯ ≡ 
1

n

i i
i

bϕ
=
∑ , 

then this gives the equations: 

(49)    
it

ϕ∂
∂

 = 0 (l = 1, 2, …, γ) 

and: 

(50)     
1

σ
= ϕ, 

 
and we may replace the latter with the combination: 
 

(51)    
1

σ
= 

1
l

l l

t
t

γ ϕϕ
=

∂−
∂∑  = ϕh . 

 
 Since one then has the identity: 
 

(52)    dϕ0 + 
1

l
l l

t
t

γ ϕ
=

∂
∂∑ = 0, 

 
one sees that ϕ0 is a function of those derivatives ∂ϕ / ∂tl that are independent.  As a 
result, everything depends uniquely on the functional determinant of these derivatives – 
i.e., on the Hessian of the function ϕ .  Then again, if one studies what happens in the 
domain of a contact element (p1, …, pn; q1, …, qn) of the multiplicity then, from the 
nature of the Hessian of the function of t1, …, tγ , one has: 
 

(53)     ϕ  = 
1

n

i i
i

qϕ
=
∑ , 

 
where q1, …, qn are considered to be constants (1). 
                                                
 (1) One arrives at this same result more quickly by confirming that equations (45) determine the points 
of the support where a tangent plane is parallel to the plane: 
 

1

n

i i
i

q X
=
∑ = 0. 
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 For a general contact element of the multiplicity (M), this Hessian will be of a certain 
rank β (β ≥ 0), and in the domain of that element one will have the representation (22), 
(23), (24) of (M).  Furthermore, such a representation will cease to be applicable only for 
the contact elements that raise the rank of the Hessian considered. 
 
 6. One arrives at a more geometric statement if one observes that this Hessian is the 
discriminant of the quadratic form in dt1, …, dtγ that one obtains by calculating the 

differential expression ϖ ≡
1

n

i i
i

dp dq
=
∑ corresponding to an arbitrary displacement of the 

multiplicity when starting with one of its elements.  Indeed, one has: 
 

(54)  
1

n

i i
i

dp dq
=
∑ = 

1 1

n
i

i l
i l l

dq dt
t

γ ϕ
= =

∂
∂∑ ∑  =

1 1

n n
i

l i
l i l

dt dq
t

ϕ
= =

∂
∂∑ ∑ . 

 
However, the differentiation of the identities (45) thus gives: 
 

(55)  
1 1

n n
i i

i i
i il l

dq q d
t t

ϕ ϕ
= =

∂ ∂+
∂ ∂∑ ∑ = 0  (l = 1, 2, …, γ); 

 
in such a way that one has: 
 

(56)   ϖ ≡ 
1

n

i i
i

dp dq
=
∑ = −

2

1 1 1

n
i

i l m
i l m l m

q dt dt
t t

γ γ ϕ
= = =

∂
∂ ∂∑ ∑∑ , 

 
and the Hessian considered is precisely the discriminant of the quadratic form thus 
obtained. 

 Since the multiplicity (M) is n – 1-dimensional, this quadratic form 
1

n

i i
i

dp dq
=
∑ will be 

written in the most general form by means of n – 1 independent differentials, and must be 
considered to be a quadratic form in n − 1 variables.  By the mode of representation that 
we employed, we will have thus obtained that form in the case α = 0 (γ = n − 1); i.e., in 
the case where the point-like support has the maximum number of dimensions.  One sees, 
moreover, that if β = 0 – i.e., if the tangential support also has the maximum number of 
dimensions – then the rank of its determinant is null, and that quadratic form is of general 
class. 
 In the general case, the rank of its discriminant − while always considering it to be a 
quadratic form in n − 1 variables − is α + β, and the form is the sum of (n – 1 – α − β) 
independent squares.  Of course, this supposes that one is dealing with a variation (dp1, 
…, dpn; dq1, …, dqn) that is performed by starting with a contact element of (M). 
 
 The representation (22), (23), (24) [and then also, by reason of symmetry, the 
representation (19), (20), (21)] may cease to be valid only in the domain of the contact 
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elements that raise the rank of the discriminant of the form ϖ ≡
1

n

i i
i

dp dq
=
∑ .  We say that 

such elements are EXCEPTIONAL. 
 
 7. This statement, which summarizes the preceding discussion, is easy to apply to all 
of the modes of representation of the multiplicity.  In order to solve the question that was 
posed at the beginning of this paragraph, we apply it to the case where the multiplicity is 
given in the form (19), (20), (21).  The quadratic form to consider is then: 
 

(57)  ϖ ≡ 
1

n

i i
i

dp dq
=
∑ = 

2

1 1 1 1

n n n n
h

i j i h
i j i hi j i

Ff
dp dp dp d

p p p
λ

= = = =

∂∂ +
∂ ∂ ∂∑∑ ∑∑ ; 

 
however, one must suppose that the variables dp1, …, dpn are coupled by the equations of 
condition that are obtained by differentiating equations (19) and (20), namely: 
 

(58)   
1

n
h

i
i i

F
dp

p=

∂
∂∑ = 0  (h = 1, 2, …, α), 

 

(59)     
1

n

i
i i

F
dp

p=

∂
∂∑  = 0, 

 
which reduces the number of variables dp1, …, dpn; dλ1, …, dλα to n − 1.  Indeed, one 
must observe that we pass over, as singular, the points of the point-like support for which 
these equations (58), (59) cease to be independent in the dp1, …, dpn , because for such 
points the normal condition of solubility for the system (19), (20) ceases to apply. 
 As for the quadratic form (57), it reduces, upon taking (58) into account, to the form: 
 

(60)     
2

1 1

n n

i j
i j i j

f
dp dp

p p= =

∂
∂ ∂∑∑ , 

 
and we have to determine the rank of its discriminant – i.e., the difference between the 
number of variables (which is n – 1, here) and the number of independent equations that 
are obtained by equating to zero the partial derivatives of the form with respect to these 
variables. 
 We recall how one resolves questions of this type: Let Q be a canonical form in m 
variables X1, …, Xm that are coupled by independent linear relations L1 = 0, …, Lp = 0.  
One may make a linear change of variables such that one has identically L1 ≡ X1, …, Lp ≡ 
Xp = 0, and since the equations of condition are then X1 = 0, …, Xp = 0 it then remains for 
us to consider the form: 
(61)    Q  = Q(0, …, 0, Xp+1, …, Xm), 
which gives the system: 

(62)    
i

Q

X

∂
∂

= 0 (i = p + 1, …, m), 
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which is equivalent to the system: 
 

(63)   
0 ( 1, , ),

0 ( 1,2, , ).
i

h

Q
i p m

X

X h p

∂ = = +∂
 = =

⋯

⋯

 

 
Now, if one considers the quadratic form in m + p variables: 
 

(64)   S ≡ Q +
1

p

h h
h

Y L
=
∑ ≡ Q +

1

p

h h
h

Y X
=
∑ , 

 
and if one equates its partial derivatives to zero then one obtains the system: 
 

(65)   

0 ( 1,2, , ),

0 ( 1, , ),

0 ( 1,2, , ),

h
i

i

h

Q
Y h p

X

Q
i p m

X

X h p

∂ + = =∂


∂ = = +∂
 = =



⋯

⋯

⋯

 

 
which obviously contains p independent equations more than the system (63), into which 
the variables Y1, …, Yp do not enter.  The rank of the discriminant of Q  is thus the same 
as the tank of the discriminant of S, in which the m + p are independent. 
 We apply this result to the form (60).  Upon setting, to abbreviate the notation, dpi = 
Pi (i = 1, 2, …, n), we will have to consider the quadratic form: 
 

(66)   
2

1 1 1 1 1

n n n n
h

i j i h i
i j i h ji j i i

Ff F
PP PY PY

p p p p

α

= = = = =

∂∂ ∂+ +
∂ ∂ ∂ ∂∑∑ ∑∑ ∑ , 

 
which gives the system: 
 

(67)   
2

1 1

n
h

j h
j hi j i i

Ff F
P Y Y

p p p p

α

= =

∂∂ ∂+ +
∂ ∂ ∂ ∂∑ ∑ = 0 (i = 1, 2, …, n), 

(68)    
1

n
h

j
j j

F
P

p=

∂
∂∑  = 0   (h = 1, 2, …, α), 

(69)     
1

n

j
j j

F
P

p=

∂
∂∑ = 0. 

 
 Multiply the equations (67) and (68) by pi and λh, respectively, and add them.  Since f 
is homogeneous of degree one with respect to pi and λh, and since one has: 
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h

j

F

p

∂
∂

 = 
2

h j

f

pλ
∂

∂ ∂
, 

 
we obtain, upon also taking into account the homogeneity of Fh and F, and finally 
equation (19), the simple combination: 
 
(70)     Y = 0. 
 
The system considered is therefore equivalent to the one that one obtains by adding 
equations (69) and (70) to the system: 
 

(71)   
2

1 1

n
h

j h
j hi j i

Ff
P Y

p p p

α

= =

∂∂ +
∂ ∂ ∂∑ ∑ = 0 (i = 1, 2, …, n), 

(72)    
1

n
h

j
j j

F
P

p=

∂
∂∑  = 0  (h = 1, 2, …, α). 

 
Equations (69) and (70) are obviously independent of each other.  Equation (70) might 
not be a consequence of equations (71) and (72), and the same is true for equation (69), 
because it does not admit the solution: 
 

Pj = pj  (j = 1, 2, …, n), Yh = λh  (h = 1, 2, …, α), 
 
which satisfies the system (71) and (72) for the reasons of homogeneity that were used 
before. 
 The system (67), (68), (69) thus has a number of independent equations that is higher 
than both of the independent equations of the system (71), (72) combined.  Now, this 
latter system is, up to notation, the one that one obtains by equating to zero the partial 
derivatives of the quadratic form that constitutes the right-hand side of the identity (57).  
Since that form contains α + 1 variables less than (1) the form (66), we conclude that the 

rank of the discriminant of the form ϖ ≡
1

n

i i
i

dp dq
=
∑ is greater by α – 1 units than the rank 

of the Hessian of the function f.  It will likewise be greater by β – 1 than the rank of the 
Hessian of the function g. 
 Therefore, the exceptional elements of the multiplicity (M), which are defined by 
equations (19), (20), (21), for which the correlative mode of representation (22), (23), 
(24) might no longer be valid, are the ones that raise the rank of the Hessian of the 
function f. 
 

                                                
 (1) One must recall that (66) must be considered as depending upon the variables Pi = dpi (i = 1, 2, …, 
n), dλh (h = 1, 2, …, α), Yh (h = 1, 2, …, α) and Y.  Thus, if the system (71), (72) contains exactly n + α – 
(β + 1) independent equations then the rank of the Hessian of f is (β + 1), and the rank of discriminant of 
(66) is n + 2α + 1 – (n + α – β + 1) = α + β. 
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 8. The study of the form ϖ ≡
1

n

i i
i

dp dq
=
∑ is equivalent to that of the second order 

projective properties of multiplicities.  It will permit one to classify, in a more precise 
manner, the exceptional elements that we just considered by means of the number of 
units by which they elevate the rank of that form ϖ. 
 For example, n = 3 in the case of ordinary space.  For non-developable surfaces α = 
0, β = 0, and ϖ is a general form in two variables.  The exceptional elements, for which ϖ 
is a perfect square, correspond to the parabolic points of support; the ones for which ϖ is 
identically null correspond to tangent planes for which the distance of a neighboring 
point of contact of such a plane is an infinitesimal of greater than second order. 
 For the developable surfaces α = 0, β = 1, and ϖ reduces, in general, to a form in just 
one variable; it becomes identically null for the exceptional points where the order of 
contact of the tangent plane with the surface is raised. 
 For only one plane, one has: 

α = 0, β = α, 
and the form is identically null. 
 For a curve, one has α = 1, and the case of α = 1, β = 1 comes about only if the curve 
is a line.  One thus has, in general, β = 0, and ϖ is a form that is reducible to just one 
square; it is identically null for the exceptional contact elements that are formed from a 
point of the curve and its osculating plane. 
 For a line, α = 1, β = 1, and ϖ is identically null. 
 Finally, for a point ϖ is again identically null. 
 In the case where n is arbitrary, the rank (α + β) of the discriminant is necessarily 
equal to at most n – 1.  This is obvious, a priori, because the (α + 1) equations of the 
point-like support and the (β + 1) equations of tangential support are independent, and the 
total number of equations between p1, …, pn; q1, …, qn that define an n – 1-dimensional 
multiplicity is n + 1.  We remark that this is equivalent to saying that the sum of the 
numbers of dimensions of the two supports is equal to at least n – 1. 
 One may show that if the preceding inequalities are changed into equalities – i.e., if 
the form ϖ is identically null − then the multiplicity is linear. 
 Indeed, refer to formula (66).  We may suppose that one has chosen the coordinates pi 
to be the parameters t1, …, tγ , γ, for example, p1, p2, …, pγ .  The q1, q2, …, qγ  then 
disappear from the form (56), while the equations of condition (45) can be solved 
precisely with respect to these coordinates.  In order to express the idea that (56) is 
identically null, one does not therefore need to take the equations of condition into 
account, and one obtains the result that all of the second derivatives of the functions (ϕγ+1, 
ϕγ+2, …, ϕn) are identically null.  These functions are linear and, as a consequence, the 
same is true for the equations of point-like support and, also as a consequence, that of the 
tangential support, from the duality of all of our considerations. 
 One verifies, moreover, that if the point-like support is: 
 

(73)   pγ+h = 
1

hl l h
l

a p a
γ

=
∑  [h = 1, 2, …, (α + 1)] 
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then the tangential support is given by equations (45), which are: 
 

(74)    ql + 
1

1
hl h

h

a q
α

γ

+

+
=
∑ = 0, 

 
and by equation (46), which reduces to: 
 

(75)     
1

1
h h

h

a q
α

γ

+

+
=
∑ = 1. 

 
 We remark that, from the remarks that were made above, one may state the result thus 
obtained: The only multiplicities for which the sum of the numbers of dimensions of the 
two supports is equal to n – 1 are the linear multiplicities; the two supports of a 
multiplicity are linear at the same time if that multiplicity is n – 1-dimensional. 
 On a nonlinear multiplicity, the form ϖ may thus be annulled identically only for the 
exceptional elements, which one might call the osculating elements. 
 
 9. Consider a contact element for the multiplicity (M) for which the form ϖ = 

1

n

i i
i

dp dq
=
∑ is neither identically null nor reducible to just one square (1).  There are then 

variations (dp1, …, dpn; dq1, …, dqn) that one performs by starting with an element that 
annuls the form ϖ.  They are what one might call asymptotic variations; however, it is 
intended that one will rule out the ones for which all of the dpi or all of the dqi are null. 
 If one considers, more especially, the point-like support then an asymptotic variation 
will correspond to an asymptotic direction on that support.  However, if β is non-null 
then that asymptotic direction will inversely correspond to an infinitude of asymptotic 
variations, because the qi are expressed by formulas (21), the dqi depend upon the dpi , 
and the dλh, and the dλh remain arbitrary here, since they disappear from the formula (57) 
when one takes (59) into account.  On the contrary, the asymptotic variation is entirely 
determined by the asymptotic direction when the tangential support is n – 1-dimensional. 
 If one considers the tangential support then an asymptotic variation will correspond to 
an asymptotic characteristic, namely, the n – 2-dimensional linear multiplicity that is 
defined by two equations: 
 

(76)    
1

n

i i
i

q X
=
∑ = 1,  

1

n

i i
i

dq X
=
∑ = 0. 

 
 One then sees immediately that an asymptotic variation is defined by the association 
of a direction in the point-like support and a characteristic of the tangential support such 
that the characteristic contains the direction.  Moreover, one sees the reciprocal in the 
same equations at the same time. It is, of course, intended that the direction and the 
characteristic considered are supposed to be furnished by the same variation and contact 
                                                
 (1) The case of a one-dimensional point-like or tangential support is excluded by this [see equation 
(56)]. 
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element considered on the multiplicity.  We again remark that any n – 2-dimensional 
linear multiplicity that is contained in the plane of the contact element and passes through 
the point of that element may be considered to be a characteristic of that element. 
 

 10. The form ϖ = 
1

n

i i
i

dp dq
=
∑ intervenes once more in the notions of the concavity and 

convexity of a multiplicity, which play an essential role in the calculus of variations.  In 
order to define that notion, one may adopt either of two correlative viewpoints: Let (p1, 
…, pn; q1, …, qn) be a contact element (E) of the multiplicity and let 1( p′ , …, np′ ; 1q′ , …, 

)nq′  be a neighboring contact element (E′) of the same multiplicity, which will be 

arbitrary in the domain of (E). 
 From the first viewpoint, the multiplicity will be concave at (E) towards the origin if 
the point of (E′) is constantly on the same side as the origin with respect to the plane of 
(E).  From the second viewpoint, the multiplicity will be concave at (E) towards the 
origin if the point of (E) is always on the same side as the origin with respect to the plane 
of (E′).  This will therefore translate, according to the adopted definition, into one or the 
other inequality: 

(77)     
1

n

i i
i

p q
=

′∑  − 1 < 0, 

(78)     
1

n

i i
i

p q
=

′∑  − 1 < 0. 

 
 The two definitions are, moreover, equivalent if one considers the concavity in a 
region of the multiplicity: The elements (E), (E′) are then two arbitrary elements that are 
different, but sufficiently close to that domain, and play a symmetric role in the question. 
 The concavity in a region, no matter what the support – point-like or tangential – is 
thus expressed by inequalities of the same nature as the ones that define the multiplicity. 
 We return to the concavity at an element and consider, for example, the inequality 
(77).  The ip′  are then deduced from the pi upon given arbitrary infinitely small increases 

to the parameters that define the particular element (E) considered.  If we order the left-

hand side of (77) in increasing powers then the term of degree zero, which is 
1

n

i i
i

p q
=
∑ - 1, 

is null, due to the condition (2), and the set of terms of first degree, which is 
1

n

i i
i

p dq
=
∑ , is 

null due to equation (3); finally, the set of terms of second degree is, as would result from 
the differentiation of the equation (3): 
 

(79)    2

1

n

i i
i

q d p
=
∑ = − 

1

n

i i
i

dp dq
=
∑ = − ϖ. 

 
 One obtains the same result for the left-hand side of (78). 
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 As a consequence, the one or the other concavity is realized if the form ϖ takes only 
positive values for any variation performed on the contact element considered.  We 
intend this to means that the variation neither annuls all of the dpi nor all of the dqi .  The 
one or the other concavity may be realized only if the form ϖ takes on only positive or 
null values. 
 One naturally passes from concavity to convexity upon changing the signs in all of the 
preceding. 
 If one of the two supports of the multiplicity is one-dimensional then one sees from 
formula (56) that at an element that is neither singular nor osculating the multiplicity is 
either convex or concave towards the origin.  On the contrary, if the two supports are at 
most one-dimensional then the concavity and the convexity must be considered as 
exceptional cases.  There is concavity or convexity if all of the asymptotic variations are 
imaginary, because then the form ϖ may not be annulled or change its sign, and the 
preceding stated sufficient condition is found to be satisfied. 
 
 11. That same sufficient condition demands that in order for it to be verified, at least 
one of the supports must be n − 1-dimensional.  Indeed, refer to formula (56) and the 
considerations of no. 6.  If the tangential support is not n – 1-dimensional then the right-
hand side of (56) decomposes into at least γ = n – α – 1 squares; upon equating these 
squares to zero, one defines one or more real asymptotic displacements on the point-like 
support.  Now, if the point-like support is also less than n – 1-dimensional then, in 
addition to the dtl , some arbitrary quantities dλh (h = 1, 2, …, α) enter into the 
expressions for the dqi , as we remarked in no. 9.  The real asymptotic displacements 
obtained thus correspond to real asymptotic variations in which the dqi , not just the dpi, 
are not all null; i.e., the asymptotic variation is effective. 
 We suppose first of all that the tangential support is n − 1-dimensional, and limit 
ourselves to considering only exceptional contact elements.  The sufficient condition is 
found to be equivalent to the following one: The form ϖ is the sum of n − 1 – α = γ 
independent positive squares.  When expressed by the formula (56) and considered as a 
form in dt1, …, dtγ , ϖ is thus a positive definite form. 
 Next, consider ϖ in the form (57) or, more precisely, consider the form ϖ  in the n + 
α independent variables dp1, …, dpn; dλ1, …, dλα that constitute that expression.  We 
know, from no. 7, that in order for ϖ to be the sum of n – 1 – α = γ independent squares, 
it is necessary and sufficient that the form ϖ  be the sum of n + α – 1 = γ + 2α 
independent squares; in other words, the Hessian of f is null, but not of all of its minors of 
rank one. 
 In order to express the second part of the condition, perform the reduction of ϖ into 
squares.  Upon setting: 
 

(80)   Uh = 
1

n
h

i
i i

F
dp

p=

∂
∂∑  (h = 1, 2, …, α), 

 
and letting V1, …, Vn−α denote some other linear forms in dp1, …, dpn that define, along 
with the forms U1, …, Uα , a system of n independent forms, one may write the quadratic 
form ϖ  as: 
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(81)   ϖ  = 
1 1

h h h h
h h

U d U U
α α

λ
= =

′+∑ ∑  + Q(V1, …, Vn−α), 

 
where Q is a quadratic form and where the hU ′  are linear forms in U1, …, Uα ; V1, …, 

Vn−α .  Thus, upon setting: 
 
(82)   Wh = dλh + hU ′  (h = 1, 2, …, α), 

we will have: 

(83)   ϖ  = 
1

h h
h

U W
α

=
∑ + Q(V1, …, Vn−α). 

 
Since ϖ  reduces to γ + 2α independent squares, Q will be the sum of only γ squares (γ = 
n – α – 1), in such a way that one finally has: 
 

(84)    ϖ  = 
1

h h
h

U W
α

=
∑ + 2

1
h l

l

T
γ

ε
=
∑ , 

 
where the Uh , Wh, Tl are independent real forms and the εl are equal to (+1) or (−1). 
 If one takes into account conditions (58), (59) then the Tl will become new linear 
forms lT′  in only the dp1, …, dpn , and since the Uh will null, and we will obtain γ 

independent squares for ϖ , these lT′  will be independent forms, in such a way that the 

reduced form of ϖ is: 

(85)     ϖ  = 2

1
l l

l

T
γ

ε
=

′∑ . 

 
 The sufficient condition for the concavity thus demands that the εl are all equal to 
(+1), and if one refers to formula (84) then one sees that this is equivalent to saying that 
ϖ  decomposes into: 

α + γ = n – 1 
 

positive squares and α negative squares.  We thus arrive at the following conclusion: 
 
 The sufficient condition for the concavity is expressed, in the case of β = 0, by the fact 
that the quadratic form in n + α variables: 
 

(86)   ϖ = 
2

1 1 1 1

n n n
h

i j i h
i j i hi j i

Ff
dp dp dp d

p p p

α

λ
= = = =

∂∂ +
∂ ∂ ∂∑∑ ∑∑  

 
decomposes into a sum of (n + α – 1) independent real squares, where α of them have the 
(−) sign and (n – 1) of them have the (+) sign. 
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 We pass to the case where the tangential support is (n – β – 1)-dimensional (β > 0), 
but where, as a consequence, the point-like support is (n – 1)-dimensional.  The function f 
reduces to F, and the dλh disappear of the form ϖ , which is simply: 
 

(87)    ϖ  = 
2

1 1

n n

i j
i j i j

F
dp dp

p p= =

∂
∂ ∂∑∑ . 

 
Since the rank of the discriminant of ϖ is then β, the Hessian of F is, from no. 7, of rank 
β – (α – 1) = β + 1, and decomposes into (n – β – 1) independent squares, like the form ϖ 
itself (1). 
 Thus, if one has put ϖ  into the form: 
 

(88)    ϖ  = 2

1
m m

m

T
δ

ε
=
∑   (δ = n – β – 1), 

 
one sees that, when one takes into account (59), the Tm become linear forms in only n – 1 
independent variables, and one will have: 
 

(89)     ϖ = 2

1
m m

m

T
δ

ε
=

′∑ . 

 
 The sufficient condition for concavity in the case α = 0 is therefore that the form ϖ  
contains only positive squares. 
 We add that the same mode of reasoning will prove, more generally, that the form 
ϖ has 2α independent squares more than the form ϖ, with α positive squares and α 
negative squares.  Thus, in order for ϖ to have only positive squares, it is necessary and 
sufficient that ϖ  have only a negative squares. 
 Finally, a necessary condition for the concavity is that the form ϖ contains only 
positive squares and, in turn, that the form ϖ contain only α negative squares. 
 One naturally obtains results that are entirely similar by starting with the tangential 
representation (22), (23), (24) of the multiplicity.  The form ϖ  will be replaced by the 
form: 

(90)   ϖ  = 
2

1 1 1 1

n n n
k

i j i k
i j i ki j i

Gg
dq dq dp d

p p q

β

µ
= = = =

∂∂ +
∂ ∂ ∂∑∑ ∑∑ , 

 
and the number α by the number β. 

                                                
 (1) In a general manner, one concludes from no. 7 that in any case ϖ contains 2α independent squares 
more than ϖ.  Here, α = 0, so the number of squares is the same in the two forms. 



II. – THE LAGRANGE PROBLEM.  FORMULATION IN EQUATIONS. 
 

 12.  The problem in question is that of the study of the conditions for an extremum for 
a curvilinear integral in n-dimensional space: 
 

(1)     ∫  F(x1, …, xn | dx1, …, dxn), 
 
that is taken along an arc of the curve whose extremities might be subjected to given 
conditions of a diverse nature, which themselves may also be restricted to satisfying a 
first-order system of differential equations: 
 
(2)    Fh(x1, …, xn | dx1, …, dxn) = 0  (h = 1, 2, …, α). 
 
 We suppose that the arc of the curve is given parametrically by means of a variable u 
that varies from 0 to 1, for example, and always increases. 
 The F(x1, …, xn | y1, …, yn) is, as one knows (1), a (positively) homogeneous function 
of the arguments y1, …, yn .  We suppose, moreover, that F(x1, …, xn | dx1, …, dxn) takes 
on only positive values (2), at least for the curves that we will consider, and the 
differentials dx1, …, dxn correspond to an arbitrary positive increase du.  Fh(x1, …, xn | y1, 
…, yn) are homogeneous of degree zero, and at least positively, with respect to the 
arguments y1, …, yn .  We then set: 
 
(3)     F(x1, …, xn | dx1, …, dxn) = ω du; 
 
ω will be a positive variable that is defined by that equation, and we will have to study 
the extremum conditions for the integral: 
 

(4)      J = 
1

0
duω∫ . 

 
Furthermore, we replace the equations of condition (2) and (3) with the following system, 
which is equivalent to it, due to the conditions of homogeneity that we assumed: 
 
(5)     dxi = ω pi du   (i = 1, 2, …, n), 
 
(6)      F(x1, …, xn | p1, …, pn) = 1, 
 
(7)    Fh(x1, …, xn | p1, …, pn) = 0,  (h = 1, 2, ..., a). 
 
 In other words, we introduce, along with the variable ω, which corresponds to an 
integral element, the variables p1, …, pn , which correspond to a curve element, and we 
see that the problem is characterized by the nature of the multiplicity (6), (7), which is 

                                                
 (1) Cf., HADAMARD, Leçons sur le Calcul des variations, t. I, pp. 80. 
 (2) This restriction, as we will show later on (no. 20), may be raised.  Cf., HADAMARD, loc. cit., pp. 
384. 
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found to be associated with each point (x1, …, xn) of space.  Due to formulas (5), we must 
interpret p1, …, pn as the coordinates of a point of the same space with respect to a new 
system of axes that are parallel to the original coordinate axes, and have the point x1, …, 
xn for its origin: This amounts to saying that in the original system of coordinates, this 
same point will have the coordinates x1 + p1, …, xn + pn .  The point-like multiplicity (1) 
thus introduced will be called the wave multiplicity, which has the point (x1, …, xn) for its 
origin. 
 Consider the points of space as being affected by modifications or disturbances, 
which then propagate, step by step, according to the following law: The disturbance that 
is present at a point and a certain instant is present after an infinitesimal time dt at all 
points of the elementary wave that one obtains by constructing the homothety of the wave 
multiplicity that has the point in question for its origin, which is also the pole of the 
homothety, and the homothety ratio is dt.  This amounts to saying that the possible 
displacements of the disturbance by starting with each point (x1, …, xn) during the time dt 
are given by the general formulas: 
 
(8)     dxi = pi dt (i = 1, 2, …, n), 
 
where p1, …, pn must satisfy the equations (6) and (7). 
 One then sees from formulas (5) that the differential element of the integral J 
represents the time that the disturbance takes in propagating from a point of the curve 
considered to an infinitely close point that follows along the same curve.  As a result, the 
integral itself represents the duration of propagation of the disturbance from the origin to 
the extremity of that curve, when one supposes that one prohibits any propagation of that 
disturbance outside of the points of the curve itself.  This is then what we shall call the 
duration of propagation of the disturbance along the curve. 
 If, for example, the problem posed is a problem of finding a minimum then it comes 
down to the determination of the curves along which the propagation considered moves 
the fastest. 
 
 13. The method that we shall present consists of considering the wave multiplicity to 
be a multiplicity of contact elements and employing the formulas that were obtained in 
the first part of this article in order to transform the system (5), (6), (7): The variables x1, 
…, xn must be considered to be simple parameters that appear in the formulas in question, 
such as the parameter a considered in nos. 3 and 4. 
 We may thus introduce the new variables λ1, …, λα , and the formulas: 
 

(9)     qi = 
i

f

p

∂
∂

 (i = 1, 2, …, n), 

where f is the function: 

(9′)      f = F + 
1

h h
h

F
α

λ
=
∑ ; 

 

                                                
 (1) If α > 0 then it is a multiplicity that is just n – α – 1-dimensional from the point-like viewpoint, 
which is the only one that we will consider at the moment. 
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in such a way that (p1, …, pn; q1, …, qn) are the coordinates of an arbitrary contact 
element of the wave multiplicity (cf., nos. 1 and 2). 
 Since the Hessian of f is of rank 1 here, if one suppose that the problem is ordinary (1) 
then the tangential support is n − 1-dimensional.  One may thus, under the conditions (2) 
that were discussed in nos. 6 and 7, employ formulas of the form: 
 
(10)    G(x1, …, xn | q1, …, qn) = 1, 
 

(11)    pi = 
i

G

q

∂
∂

 (i = 1, 2, …, n) 

 
to represent the wave multiplicity, where the first one results from simply the elimination 
of the pi and the λh between the equations (7) and (8) (cf., nos. 1 and 2). 
 We are then reduced to the following canonical problem: 
 
 PROBLEM A. – Find 2n + 1 functions x1, …, xn ; q1, …, qn ; ω of one variable u that 
satisfy the equations of condition: 
 
(10)    G(x1, …, xn | q1, …, qn) = 1, 
 

(11)   dxi = 
i

G
du

q
ω ∂

∂
  (i = 1, 2, …, n), 

 
and such that one has an extremum for the integral: 
 

(4)      J = 
1

0
duω∫ . 

 
 The functions x1, …, xn are, moreover, subject to certain conditions at the limits (u = 
0, u = 1) of the integration interval, and the function ω may be positive in that interval. 
 
 A necessary condition for the extremum is, as one knows, that δJ be null for any 
system of variations δx1, …, δxn ; δq1, …, δqn , ω that satisfies equations of condition that 
are obtained by taking the variations of the two sides of equations (10) and (12), and are, 
moreover, such that δx1, …, δxn is annulled at the limits of the interval of integration. 
 It is this condition that we shall first seek to express. 
 
 14. In order to avoiding having to introduce the condition δG = 0, we introduce an 
unknown function by setting: 
 
(13)    γi = qi γ0 (i = 1, 2, …, n). 
 
                                                
 (1) Cf., HADAMARD, loc. cit., pp. 239, 267, 268. 
 (2) In fact, the restrictions that they impose on the problem are in the nature of the question itself, as we 
will confirm later on (no. 20). 
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Due to the homogeneity of G, since the function γ is assumed to be positive the system 
(10), (12) will be replaced by the system: 
 
(14)    γ0 = G(x1, …, xn | γ1, …, γn) ≡ G′, 
 

(15)    dxi = 
i

G
duω

γ
′∂

∂
 (i = 1, 2, …, n). 

 
Equation (14) then has no other effect than determining γ0, the equation that one deduces 
by taking the variations has no other utility than determining δγ0, and none of these 
quantities γ0 , δγ0 enter into the relations between δx1, …, δxn ; δγ1, …, δγ n ; ω; x1, …, xn; 
γ1, …, γ n ; ω; u.  In order to express the idea that δJ is null, we will then have to take into 
account only equations (4), (15), and the ones that one obtains by taking the variations of 
the two sides of each of these equations – i.e.: 
 

(16)     δJ = 
1

0
duδω∫ , 

 

(17) id x

du

δ
= 

2 2

1 1

n n

j j
j ji j i j i

G G G
x

x
ω δ ω δγ δω

γ γ γ γ= =

′ ′ ′∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂∑ ∑   (i = 1, 2, …, n). 

 
 In order to express that the δxi are annulled for u = 0, u = 1, we shall seek to calculate 
them upon considering δx1, …, δxn; δω to be known; i.e., to integrate the system (17). 
 According to the most elementary method, we consider the corresponding 
homogeneous system: 
 

(18)   idz

du
 = 

2

1

n

j
j i j

G
z

x
ω

γ=

′∂
∂ ∂∑   (i = 1, 2, …, n). 

Let: 
(19)   zi = zki  (k = 1, 2, …, n; i = 1, 2, …, n) 
 
be n independent solutions of that system.  Applying the method of variation of constants, 
we may then set: 

(20)    δxi = 
1

n

k ki
k

zξ
=
∑   (i = 1, 2, …, n), 

which gives the system: 

(21)    
1

n
k

ki
k

d
z

du

ξ
=
∑ = Ai  (i = 1, 2, …, n), 

upon setting, to abbreviate: 
 

(22)   Ai = 
2

1

n

j
j i j i

G Gω δγ δω
γ γ γ=

′ ′∂ ∂+
∂ ∂ ∂∑  (i = 1, 2, …, n). 
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Now, it is obvious from formulas (20) that the δxi are annulled simultaneously when they 
are based upon the ξk , and only in this case.  The condition that is imposed on the δxi 
then amounts to the following one: The functions ξk , which are solutions of (21) that are 
annulled for u = 0, are also annulled u =1. 
 In order to calculate these functions ξk , we put the system (21) into the solved form: 
 

(23)   kd

du

ξ
= 

1

n

ki i
i

v A
=
∑  (k = 1, 2, …, n). 

 
 The functions vki are defined by the equations: 
 

(24)  
1

n

ki ji
i

z v
=
∑ = 

0 for 

1 for 

k j

k j

≠
 =

 (i = 1, 2, …, n). 

 
 They constitute what one calls the adjoint system to the system of the zki and the 
formulas: 
(25)   vi = vki  (i = 1, 2, …, n; k = 1, 2, …, n) 
 
define n independent solutions of the adjoint linear system to the system (18), namely: 
 

(26)   
2

1

n
i

j
j i j

dv G
v

du x
ω

γ=

′∂+
∂ ∂∑ = 0 (i = 1, 2, …, n). 

 
One then has, for the desired functions ξk : 
 

(27)   ξk = 
0

1

nn

ki i
i

v Adu
=
∑∫   (k = 1, 2, …, n), 

 
and the conditions that they are subjected to are obtained by regarding formulas (22): 
 

(28) 
21

0
1 1

n n

ki j
i j i j i

G G
v duω δγ δω

γ γ γ= =

 ′ ′∂ ∂ + ∂ ∂ ∂  
∑ ∑∫ = 0 (k = 1, 2, …, n). 

 
Moreover, all that remains for us to do is only for us to write that the integral (16) is null 
for any choice of functions δγ1, …, δγn ; δω that satisfy the conditions (28).  The 
condition (1) is thus that there exist n constants c1, …, cn such that one has the identity: 
 

(29)   δω = 
2

1 1 1

n n n

k ki j
k i j i j i

G G
c v ω δγ δω

γ γ γ= = =

  ′ ′∂ ∂+   ∂ ∂ ∂   
∑ ∑ ∑  . 

                                                
 (1) This condition is well-known, at least, in an equivalent form.  We shall return later on to its 
statement and proof (see no. 23). 
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 This decomposes into: 

(30)     
1

n

i
i i

G
y

γ=

′∂
∂∑ = 1, 

 

(31)    
2

1

n

i
i i j

G
y

γ γ=

′∂
∂ ∂∑ = 0 (j = 1, 2, …, n), 

when one sets: 

(32)    yi = 
1

n

k ki
k

c v
=
∑   (i = 1, 2, …, n). 

 
 Now, when c1, …, cn are arbitrary constants, the right-hand sides of the latter 
formulas are the general solution to the system (26).  The condition found is then that 
there exist a solution vi = yi (i = 1, 2, …, n) of the system (26) that satisfies equations (30) 
and (31). 
 If one now recalls the variables q1, …, qn , by means of equations (13), since the ∂G / 
∂qi and ∂2G / ∂qj ∂xi are homogeneous of degree zero and the ∂2G / ∂qj ∂qi are 
homogeneous, then one obtains the desired condition in the following form: 
 
 In order for the variation of the integral J to be null under the conditions that were 
assumed, it is necessary and sufficient that there exist n auxiliary functions y1, …, yn that 
satisfy the equations: 
 

(33)   idy

du
 = − 

2

1

n

j
j j i

G
y

q x
ω

=

∂
∂ ∂∑  (i = 1, 2, …, n), 

 

(34)    
1

n

i
i i

G
y

q=

∂
∂∑  = 1, 

 

(35)   
2

1

n

i
i i j

G
y

q q=

∂
∂ ∂∑  = 0  (j = 1, 2, …, n). 

 
 15.  However, this result can be transformed if one takes into account the remarks of 
no. 4.  We first examine the simplest case: that of the free extremum (1).  The point-like 
support of the wave multiplicity is n − 1-dimensional, since there are no equations of 
condition.  Equations (34) and (35) then admit yi = qi (i = 1, 2, …, n) as their only 
solution, and since one has identically: 
   

(36)   
i

G

x

∂
∂

 = 
2

1

n

i
i i j

G
q

x q=

∂
∂ ∂∑  (i = 1, 2, …, n), 

 

                                                
 (1) Cf., HADAMARD, loc. cit., pp. 41. 
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the condition obtained is that the functions x1, …, xn ; q1, …, qn ; ω, which, by hypothesis, 
satisfy equations (10) and (12), also satisfy the equations: 
 

(37)   dqi = − ω 
i

G

x

∂
∂

 du (i = 1, 2, …, n). 

 
 One remarks that it results from this that the functions qi are themselves 
differentiable, since they are identical to the functions yi that are, by their definition itself, 
derivatives.  By virtue of the relations (8), (11), (12), this is equivalent to saying that x1, 
…, xn are derivatives of second order.  The hypotheses that are implicitly necessitated by 
our reasoning are only those of the continuity of the derivatives of first order, as well as 
the existence and continuity of the partial derivatives of the function G that appeared in 
our calculations. 
 Equations (12) and (37) leave arbitrary the choice of the function ω, which one must 
address, due to the indeterminacy of the parametric representation that was adopted.  One 
will thus have to integrate the canonical system: 
 

(38)   

( 1,2, , ),

( 1,2, , ),

i
i

i
i

G
dx dt i n

q

G
dq dt i n

x

∂ = = ∂
 ∂ = =
 ∂

⋯

⋯

 

 
when one takes initial values that satisfy (10).  Since equations (38) admit the first 
integral G = const., equation (10) will then be verified for any system of functions xi, qi 
that is thus determined.  When t varies by increasing, the point (x1, …, xn) will describe a 
curve that is called an extremal in a definite sense − namely, the sense of propagation − 
and the positive variation of t from one point to another of the curves is the duration of 
the propagation of a disturbance along the arc of the curve considered.  This amounts to 
saying that: 
(39)     dt = ω du, 
 
as one sees by comparing the two systems (38) and (12), (37), and to saying that ω du is 
the differential element of the integral J (cf., no. 12).  The variation of that duration of 
propagation between two arbitrary points of an extremal is null when one replaces the arc 
of the extemal that goes from one point to the other, in the sense of propagation, by 
another arc of the curve that is infinitely close and has the same origin and extremity. 
 
 16. One must observe that if an extremal curve is known, with the sense of 
propagation along that curve, then the values of q1, …, qn at each point of that curve are 
determined completely, with no new integration, and the variable t, which corresponds to 
the duration of the propagation from one point to the other on that curve, is obtained by a 
quadrature. 
 Geometrically, this amounts to saying that at each point of the curve the direction of 
the tangent that corresponds to it, in the sense of propagation, pierces the wave 
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multiplicity that has that point for its origin at a well-defined point, and thus determines a 
contact element (p1, …, pn ; q1, …, qn).  Moreover, the corresponding elementary wave 
must pass through the infinitely close point on the curve, also taken in the positive 
direction of the tangent, while the homothety ratio dt of that elementary wave and the 
wave multiplicity is also known. 
 Analytically, this fact results from formulas (39), (3), (5), and (8), which give: 
 
(40)    dt = F(x1, …, xn | dx1, …, dxn), 
 

(41)    pi = idx

dt
 (i = 1,2, …, n), 

 

(42)   qi = 1 1( , , | , , )n n

i

F x x dx dx

p

∂
∂

⋯ ⋯

 (i = 1, 2, …, n). 

 
 This leads one to search for a differential system which defines the extremal curves 
without passing to the auxiliary variables q1, …, qn . 
 The solution results immediately from the comparison of the equations (38), (41), 
(42), and the equation (31) of no. 3, which gives: 
 

(43)    
i i

F G

x x

∂ ∂+
∂ ∂

 = 0  (i = 1, 2, …, n). 

 
 One thus obtains the well-known differential system of the extremals: 
 

(44)  
1 1 1 1( , , | , , ) ( , , | , , )

0

( 1,2, , ).

n n n n

i i

F x x dx dx F x x dx dx
d

dx dx

i n

∂ ∂ − = ∂ ∂
 =

⋯ ⋯ ⋯ ⋯

⋯

 

 
 
 17.  We now pass to the general case of the constrained extremal. 
 The point-like support of the wave multiplicity is then n – α – 1-dimensional since 
one must account for equations (2).  Each point of that support correspond to ∞α contact 
elements, whose coordinates (p1, …, pn ; y1 .., yn) are defined precisely as functions of 
them and one of the (p1, …, pn ; q1 .., qn) by equation (34) and (35) [equations (33) and 
(34) of no. 4]. 
 Upon taking into account equations (37), (39), and (43) of no. 4, one sees that if one 
sets, for the sake of neatness: 
 
(45)    G  = G(x1, …, xn| y1, .., yn), 
 
then one may add to the system thus found, which is defined by equations (10), (12), 
(33), (34), (35), the equations: 
(46)     G  = 1, 
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(47)    
i

G

y

∂
∂

= 
i

G

q

∂
∂

  (i = 1, 2, …, n), 

 
which are consequences of them, and that one may replace equations (33) by the 
following ones: 

(48)    dyi = − 
i

G
du

x
ω ∂

∂
 (i = 1, 2, …, n). 

 
Equations (47) then permit us to write equations (12) in the form: 
 

(49)    dxi = 
i

G
du

y
ω ∂

∂
  (i = 1, 2,…, n). 

 
 Finally, equations (34), (35) express only that (p1, …, pn ; q1 .., qn) and (p1, …, pn ; y1 
.., yn) are two contact elements that are associated with the point (p1, …, pn) of the wave 
multiplicity, and due to equations (47) the coordinates of this point may be written as 
either pi = ∂G / ∂qi (i = 1, 2, …, n) or pi = / iG y∂ ∂  (i = 1, 2, .., n).  One may, 

consequently, further replace these equations by the ones that one deduces by exchanging 
the yi and the qi; i.e., with the equations: 
 

(50)     
1

n

i
i i

G
q

y=

∂
∂∑  = 1, 

 

(51)    
2

1

n

i
i i j

G
q

y y=

∂
∂ ∂∑  = 0 (j = 1, 2, …, n), 

 
and the ones that they entail, in turn, as consequences of equations (10) and (47). 
 Eventually, what remains is the system that is composed of equations (46), (48), (49), 
(50), (51), and one may further, as in no. 15, and with the benefit of the same 
observations, substitute for equations (48) and (49), the canonical system that one 
deduces by introducing the variable t by means of equation (39). 
 Equations (50) and (51) are verified by the functions qi = yi (i = 1, 2, …, n), because 
the first one reduces to (46), and the other ones are identities for qi = yi (i = 1, 2, …, n).  
From this, it results that if y1, …, yn is a system of auxiliary functions that correspond to a 
solution (x1 …, xn; q1, …, qn; ω) of the problem of the null variation of J then (x1 …, xn; 
y1, …, yn; ω) is also a solution to the same problem.  One thus sees a particular class of 
solutions to the problem appear that we may call canonical solutions, since they are 
defined by the canonical system (38), and any extremal curve enters into at least one 
canonical solution.  From this, one finds, as in no. 15, the existence of the second 
derivatives of xi with respect to any extremal. 
 
 18. Imagine an extremal curve and a canonical solution that includes it.  The tangent 
to the extremal at a point M that points in the direction of propagation determines a point 
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(P) of the wave multiplicity that has (M) for its origin.  The canonical solution serves to 
fix one of the ∞α contact elements of the wave multiplicity at this point.  Finally, 
equations (50), (51) signify only that in any solution – canonical or not – that includes the 
same extremal the values of q1, …, qn correspond to any of the contact elements in 
question.  For an arbitrary solution that includes a well-defined extremal, the functions q1, 
…, qn are thus coupled to the functions x1, …, xn by just the condition that at each point 
of the extremal they provide the plane of one of the contact elements that we just defined.  
On the contrary, a particular of these contact elements enter into the canonical solutions. 
 In order to exhibit this choice, one may, by means of formulas (8), introduce the α 
indeterminates λ1, …, λα  that the contact elements in question depend upon.  One thus 
has to write that these values: 
 

(9)   qi = 
i

f

p

∂
∂

 
1

h h
h

f F F
α

λ
=

 = + 
 

∑   (i = 1, 2, …, n), 

 
where one supposes [no. 16, equation (41)]: 
 

(41)    pi = idx

dt
 (i = 1, 2, …, n), 

 
satisfy the canonical system (38).  Taking into account equations (31) of no. 3, one thus 
obtains the Lagrange system, where the λh are nothing but the Lagrange multipliers, 
namely: 

(51)   
i i

d f f

dt p x

∂ ∂−
∂ ∂

 = 0 (i = 1, 2, …, n). 

 
 In order to define the extremals, one must add to this system the equations of 
condition (2); i.e., with the present notations: 
 
(52)   Fh(x1, …, xn | p1, …, pn) = 0  (h = 1, 2, …, α). 
 
 A question suggests itself naturally: How many canonical solutions correspond to the 
same extremal?  The defining formulas of the preceding section show that the auxiliary 
functions y1, …, yn are the same for all systems of functions q1, …, qn that correspond to 
the same extremal, since all of these systems of functions q1, …, qn satisfy equations (50), 
(51), as long as the y1, …, yn correspond to one of them.  One may thus discuss the search 
for functions y1, …, yn by means of equations (33), (34), (36) (no. 14) upon considering 
the x1, …, xn ; q1, …, qn , ω to be functions of the u knowns.  The linear form of these 
equations shows that the general solution will be of the form: 
 

(53)  yi = y0,i + , 0,
1

( )j j i i
j

y y
γ

ρ
=

−∑   (i = 1, 2, …, n), 

 
in which the ρj are arbitrary and the yj,i (j = 0, 1, 2, …, γ) are (γ + 1) particular solutions. 
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 One also concludes this from equations (51), and naturally γ is at most equal to α. 
 Suppose that the general equations of the extremal that are obtained by integration of 
(38): 
(54)  xi = ϕi(t – t0 | 

0
1x , …, 0

nx ; 0
1q , …, 0

nq )  (i = 1, 2, …, n), 

 
in which the initial values satisfy equation (10), depend, by abstraction from the constant 
t0, on 2n – δ – 1 arbitrary essential constants; equations (52), and consequently, the set of 
solutions of the system (38), depend upon 2n – δ – 1 constants.  One thus has 2n – δ + γ – 
1 = 2n – 1; i.e., γ = δ.  One remarks that under the same conditions the extremal curves 
depend upon 2n – δ – 2 = 2n – γ – 2 essential arbitrary constants.  In order that one may 
make an extremal curve pass through any two arbitrarily chosen points, it is necessary 
that γ = 0, and this is sufficient if one limits oneself to a convenient domain.  In that case, 
and only in that case, only one canonical solution corresponds to each extremal. 
 We summarize the results obtained in the following statement: 
 
 The systems of functions x1, …, xn ; q1, …, qn ; ω of the variable u that satisfy the 
equations of condition (10) and (12), and annul the variation of the integral (4) may be 
divided into two classes: First, there are the systems of functions (canonical solutions) 
that are obtained by taking ω to be an arbitrary positive function of u and then 
determining x1, …, xn ; q1, …, qn by means of the canonical system (38), combined with 
equation (39).  These solutions are the only ones in the problem of a free extremum – i.e., 
the Hessian of G, considered to be a function q1, …, qn , is of rank 1.  Moreover, in this 
case there is only one canonical solution that provides each curve (through x1, …, xn) or 
extremal that solves the problem. 
 On the contrary, if the Hessian of G is of rank α + 1 (α > 0) then to each canonical 
solution (x1, …, xn ; q1, …, qn ; ω) correspond to ∞α other solutions that furnish the same 
extremal: They are obtained by replacing q1, …, qn with any of the solutions 1q′ , …, nq′ of 

the system: 

(55)     
1

n

i
i i

G
q

q=

∂′
∂∑ = 1, 

 

(56)   
2

1

n

i
i i j

G
q

q q=

∂′
∂ ∂∑  = 0 (j = 1, 2, …, n). 

 
 In the general case, for which there are ∞2n−2 extremals, each of them is furnished by 
just one canonical solution.  If, on the contrary, there are ∞2n−γ−2 extremals (γ > 0) then 
∞γ canonical solutions define a subset of the ∞α solutions that correspond to any of them 
by means of equations (54) and (55) (1). 

                                                
 (1) It is clear, from the initial form (1) of the integral J, that it depends only upon the arc of the extremal, 
and not on those of the ∞α solutions at q1, …, qn that one may associate with them in the latter case.  This 
also results from the fact that δJ is constantly null when, leaving the arc of the extremal fixed, one varies 
the system of functions q1, …, qn , provided that it always represents one of these ∞α solutions. 
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 19. Suppose that the integral J is taken along an extremal arc and makes that arc vary 
without leaving its extremities fixed.  δJ is then non-null, in general, and it is given, as 
one knows, by a fundamental formula that is called the formula at the limits (1).  It is easy 
to deduce the calculations of no. 14 from this. 
 Indeed, formula (29) is true, by hypothesis.  With the notations (22) and taking into 
account equations (23), it may be written: 
 

(57)   δω = 
1 1

n n

k ki i
k i

c v A
= =
∑ ∑ = 

1

n
k

k
k

d
c

du

ξ
=
∑ . 

 
From this, one deduces, by integration, if one lets the index zero denote the values that 
correspond to the origin of the arc of the curve considered and lets the index one denote 
the ones that correspond to the extremity, that: 
 

(58)    δJ = 0

1

( )
n

k k k
k

c ξ ξ
=

′ −∑ . 

 
Now, one infers from equations (20), upon solving them, that: 
 

(59)   ξk = 
1

n

ki i
i

v xδ
=
∑   (k = 1, 2, …, n), 

 
and one has, as a result, upon taking into account formulas (32), that: 
 

(60)    
1

n

k k
k

c ξ
=
∑ = 

1

n

i i
i

y xδ
=
∑ . 

 
 Therefore, if we replace the letters y1, …, yn with the letters q1, …, qn , which must 
correspond to one of the particular solutions to the canonical system that was at issue in 
the final statements of no. 18, then we obtain the formula at the limits in the form (2): 
 

(61)    δJ = 
1

1 0

n

i i
i

q xδ
=

 
 
 
∑ . 

 
 We remark that the integral J is itself written in the analogous form: 
 

                                                
 (1) Cf., HADAMARD, loc. cit., pp. 246. 
 (2) If there are only ∞2n−γ−2 extremal curves then formula (61) is furnished by each of the systems of 

functions (53), and one has γ independent relations of the form 
1

1 0

n

i i
i

Q xδ
=

 
 
 
∑  = 0 between variations of x1, 

…, xn . 
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(62)    J = 
1

0
1

n

i i
i

q dx
=
∑∫ , 

 
because one has, from equations (12): 
 

(63)   
1

n

i i
i

q dx
=
∑ = 

1

n

i
i i

G
q du

q
ω

=

∂
∂∑ = G ω du, 

 
and, as a consequence, due to (10): 
 

(64)    ω du = 
1

n

i i
i

q dx
=
∑ . 

 
 One may likewise consider formula (62) to be an application of formula (61).  It 
suffices to vary the extremity of the arc of the extremal past the origin of that arc, which 
one keeps fixed, up to the point of the extremal that one must take to be the defining 
extremity of the arc considered by making it describe all of the arc in question at that 
point.  Formula (61) is then constantly: 
 

(65)    δJ = 
1

n

i i
i

q xδ
=
∑ , 

 
and formula (62) results by integration. 
 We return later on to the circumstances that give rise to formula (62) (see nos. 25, et 
seq.). 
 
 20. We now discuss the restrictions that we imposed on the function F in nos. 12 and 
13. 
 We first address the legitimacy of the representation of the wave multiplicity by 
means of equations of form (10) and (11).  From the conclusions of the discussion that 
was made in nos. 6 and 7, one must overlook the contact elements in the neighborhoods 
where the rank of the Hessian of f (or of F, in that case α = 0) is raised. 
 Now, as far as the system (44) is concerned, which is the one that one comes to mind 
in the case of a free extremum (α ≡ 0), when one reverts to the viewpoint of just the 
variables x1, …, xn, one sees that this Hessian is nothing but the determinant of the 
coefficients of the second differentials in equations (44).  One will thus be led to make 
the same hypothesis in order to affirm the existence of integrals to that system under non-
singular conditions.  We thus have every right to say (making note of no. 20) that the 
restriction thus introduced is not artificial, but is in the nature of the question itself. 
 The same is true for the more general case (α > 0) of a constrained extremum, which 
leads us to the system (55), (56).  Upon seeking to solve this system with respect to the 
second derivatives of the xi and the first derivatives of the λh , one will be led to 
differentiate equations (56), and the determinant that this defines, like the determinant of 
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the homogeneous linear system one obtains, will be the Hessian of f.  One will thus arrive 
at the same conclusion on the nature of that primary restriction. 
 The other restriction is the condition that we imposed on F(x1, …, xn dx1, …, dxn) − 
viz., that it be positive.  Suppose, on the contrary, that the function F is not constantly 
positive along the curve on which one proposes to examine whether the variation (1) is 
null.  One may then always find an auxiliary function H(x1, …, xn) that is defined at all of 
the points of the curve considered, and in the domain of these points – i.e., at all points of 
a certain domain (D) that contains the curve in its interior − admits continuous partial 
derivatives in that domain, and where the value on the curve is an increasing function of 
the parameter u that serves to represent the curve.  One may likewise give an arbitrary 
value to that function at various points of the curve; for example, it might be the value of 

the parameter u itself.  
1

n
i

i i

dxH

x du=

∂
∂∑  then has the value 1 on this curve.  On the other hand, 

1
1, , , , , n

n

dxdx
F x x

du du
 
 
 
⋯ ⋯  is supposed to be continuous and finite on the curve; its 

absolute value is then less than a fixed number M.  If one then sets: 
 

(66)   F  = F(x1, …, xn | dx1, …, dxn) + 
1

n

i
i i

H
M dx

x=

∂
∂∑  

 
then the quotient F / du will be, on the curve considered, greater than a fixed positive 
number, and will remain positive on the curves that one deduces by continuous variations 
that relate to the points and tangents.  Now, if one wishes to obtain the necessary 
conditions for the variation to be null then it suffices to consider such variations of the 
integration curve. 
 To abbreviate the notation, set: 

(67)     
i

H
M

x

∂
∂

 = Hi , 

 
in such a way that the function (66) is: 
 

(68)   F  = F(x1, …, xn | dx1, …, dxn) + 
1

n

i i
i

H dx
=
∑ , 

and consider (1) the integral: 
 

(69)  J = 
1

0
F∫  ≡ J + 2

1 0[ ( , )]nM H x x⋯  ≡ 
1

0
duω∫ . 

 

                                                
 (1) This transformation is, at its basis, the one that was utilized by Carathéodory, and which also served 
for Hadamard (cf., loc. cit., pp. 385).  However, these authors introduced the hypothesis that the function ε 
of Weierstrass had a constant sign, while that hypothesis does not enter in here.  Also, he examined only 
the case α = 0, n = 2. 
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 It is clear that Jδ = δJ when the extremities of the integration arc remain fixed.  We 
thus have to express that Jδ  is null, and all of the preceding reasons and results will still 
apply for this.  What remains is for us to see what this gives relative to the original 
givens. 
 
 21. For this, compare the wave multiplicity in both cases at the same point of the 
curve considered, while the origin of the coordinates is consequently placed at that point.  
The coordinates of the new point of the curve that correspond to a positive increase du of 
the parameter are dx1, …, dxn , and, in the former case they satisfy the equations: 
 

(70)  1 1

1 1

( , , | , , ) ,

( , , | , , ) 0 ( 1,2, , ),
n n

h n n

F x x dx dx du

F x x dx dx h

ω
α

=
 = =

⋯ ⋯

⋯ ⋯ ⋯

 

 
and, in the latter case, analogous equations: 
 

(71)  1 1

1 1

( , , | , , ) ,

( , , | , , ) 0 ( 1,2, , ).
n n

h n n

F x x dx dx du

F x x dx dx h

ω
α

 =
 = =

⋯ ⋯

⋯ ⋯ ⋯

 

 
 To abbreviate the notation, set: 
 
(72)    Xi du = dxi (i = 1, 2, …, n), 
 
and cease writing the letters x1, …, xn in the functions considered, since they are constant 
parameters.  By virtue of formulas (5), the wave multiplicity is defined, for J , by the 
equations: 

(73)   
1

1

( , , ) ,

( , , ) 0, ( 1,2, , ),

( 1,2, , ),

n

h n

i i

F X X

F X X h

X p i n

ω
α

ω

 =
 = =
 = =

⋯

⋯ ⋯

⋯

 

 
in which 1p , …, np  are the coordinate of the point that corresponds to the point dx1, …, 

dxn of the elementary wave.  Moreover, if ω is positive then one will have completely 
similar formulas for J: 
 

(74)   
1

1

( , , ) ,

( , , ) 0, ( 1,2, , ),

( 1,2, , ).

n

h n

i i

F X X

F X X h

X p i n

ω
α

ω

=
 = =
 = =

⋯

⋯ ⋯

⋯

 

 
 These formulas show that when ω is annulled the corresponding point of the wave 
multiplicity goes to infinity.  We may consider them as the definition of the wave 
multiplicity in any case where ω is positive or negative. 
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 The two wave multiplicities correspond to each other point by point by means of 
formulas (73) and (74).  We seek the formulas for that correspondence.  Due to (68), (72), 
(74), one has: 

(75)   ω  = ω + 
1

n

i i
i

H X
=
∑ = 

1

1
n

i i
i

H pω
=

 + 
 
∑ , 

 
which gives the formulas: 
 

(76)   ip  = 

1

1

i
n

i i
i

p

H p
=

+∑
 (i = 1, 2, …, n). 

 
 We seek the coordinates q1, …, qn ; 1q , …, nq for the corresponding contact elements.  

For (74), ω being a constant, we have to write that 
1

n

i i
i

q dX
=
∑  is a linear and homogeneous 

combination of the dF and dFh .  Therefore: 
 

(77)   qi = 0
1

h
h

hi i

FF

X X

α

λ λ
=

∂∂ +
∂ ∂∑  (i = 1, 2, …, n). 

 

 The condition 
1

n

i i
i

q p
=
∑  = 1 gives λ0 = 1.  One thus has, upon once more setting, as in 

no. 1: 

(78)    f = F + 
1

h h
h

F
α

λ
=
∑ , 

the formulas: 

(79)   qi = 
i

f

X

∂
∂

 (i = 1, 2, …, n). 

 
 For the quantities iq , one will have analogous formulas: 

 

(80)  iq  = 
i

f

X

∂
∂

, f = 
1

h h
h

F F
α

λ
=

+∑  (i = 1, 2, …, n). 

 
 Since the λh, hλ are entirely arbitrary, one may impose the condition that they be 

equal: 
λh = hλ   (h = 1, 2, …, α), 

 
respectively, which then gives the law of correspondence for the contact elements of the 
two wave multiplicities.  It is expressed by equations (76) and the equations: 
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(81)    iq  = qi + Hi  (i = 1, 2, …, n). 

 
 One sees that it is nothing but the dual transformation to a translation [cf., no. 1, note 
(1)]. 
 Before returning to the differential equations for the Lagrange problem, we again 
indicate how one generalizes the formulas that were obtained in nos. 2 and 3 for the 
multiplicity that was defined by equations (74).  As we just saw, the tangential support is 
defined by equations (79).  Here, we suppose, as in no. 13, that the Hessian of f is of rank 
1; i.e., the elimination of X1, …, Xn, λ1, …, λα between equations (79) and the equations 
of condition Fh = 0 (h = 1, 2, …, α), furnishes just one equation, which is reducible to the 
form: 
(82)    G(x1, …, xn | q1, …, qn) = 1. 
 
On the one hand, one has: 
 

(83)    
1

n

i i
i

q X
=
∑  = ω,  

1

n

i i
i

q dX
=
∑ = 0; 

thus, one further has: 

(84)     ∑ Xi dqi = 0. 
 
One concludes that the Xi are proportional to the ∂G / ∂qi , and one confirms, due to (83) 
and (82), that the ratio of proportionality is ω.  One thus has: 
 

(85)    Xi = 
i

G

q
ω ∂

∂
 (i = 1, 2, …, n), 

 
and as a result, one again has formulas (11): 
 

(86)    pi = 
i

G

q

∂
∂

 (i = 1, 2, …, n). 

 
 Upon recalling the calculations of no. 3, but while introducing the Xi in place of the 
pi, one finally verifies that equation (31) of no. 3 will be replaced by the following one: 
 

(87) 1 1 1 1( , , | , , ) ( , , | , , )n n n n

i i

f x x X X G x x q q

x x
ω∂ ∂+

∂ ∂
⋯ ⋯ ⋯ ⋯

= 0 (i = 1, 2, …, n). 

 
 22. Now let: 
 

(88)  idx

dθ
 = 

iq

∂Γ
∂

, idq

dθ
 = − 

ix

∂Γ
∂

,  dθ = ω  du (i = 1, 2, …, n), 

 
so the canonical system is obtained by equating the variation of J  to zero.  The equation: 
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(89)    1 1( , , | , , )n nx x q qΓ ⋯ ⋯ = 1 

 
is the tangential equation of the corresponding wave multiplicity. 
 We have to make the change of variables that is defined by formulas (76) and (81), in 
such a way that G is defined by the equation: 
 
(90)   Γ(x1, …, xn | q1 + H1G, …, qn + HnG) = G, 
 
because in order to obtain equation (82), one must solve it with respect to the 
homogeneity variable in the equation of the original wave multiplicity, which results 
from (89) by the change of coordinates (81) (cf., no. 2). 
 If one next differentiates the identity relation (90) then one obtains: 
 

(91)   
1

n

j
ji j i

G
H

q q q=

∂Γ ∂Γ ∂+
∂ ∂ ∂∑  = 

i

G

q

∂
∂

   (i = 1, 2, …, n), 

 

(92)  
1 1

n n
j

j
j ji j i j i

H G
G H

x q x q x= =

∂∂Γ ∂Γ ∂Γ ∂+ +
∂ ∂ ∂ ∂ ∂∑ ∑ = 

i

G

q

∂
∂

  (i = 1, 2, …, n). 

 
 We remark that one further has: 
 

(93)    jp  = 
jq

∂Γ
∂

 (j = 1, 2, …, n), 

 
and as a result, upon taking into account (76) and (75): 
 

(94)  1 − 
1

n

j
j j

H
q=

∂Γ
∂∑ = 1 − 

1

n

j j
j

H p
=
∑ = 

1

1

1
n

j j
j

H p
=

+∑
= 

ω
ω

 . 

 

Equations (91) and (92) may, in turn, be written, by observing that j

i

H

x

∂
∂

= i

j

H

x

∂
∂

, and that 

jpω  = dxj / du: 

(95)    
iq

ω ∂Γ
∂

=
i

G

q
ω ∂

∂
   (i = 1, 2, …, n), 

 

(96)   
1

n
ji

ji j

dxH

x x du
ω

=

∂∂Γ +
∂ ∂∑ = 

i

G

x
ω ∂

∂
  (i = 1, 2, …, n). 

 
Finally, if one takes into account equations (88), then what remains is: 
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(97)    dxi = 
i

G
du

q
ω ∂

∂
  (i = 1, 2, …, n), 

 

(98)   − idq  + dHi = 
i

G
du

x
ω ∂

∂
 (i = 1, 2, …, n). 

 
Due to (81), the latter reduce to: 
 

(99)    dqi = − 
i

G
du

x
ω ∂

∂
 (i = 1, 2, …, n). 

 
One thus recovers the canonical system that was deduced from equation (82). 
 It is convenient to observe that due to formulas (83) the ∂G / ∂qi will be infinite, in 
general, for ω = 0; however, the canonical system may, in the same manner that we just 
obtained, be transformed in such a way that this apparent difficulty disappears. 
 As for the systems (44) or (41), (51), (52), one will again deduce them from the 
canonical system upon referring to formulas (87).  One will also obtain them more 
immediately by starting with the analogous system that relates to the integral J .  Indeed, 
one has, with the variables x1, …, xn ; p1, …, pn : 
 

(100)  
i

f

x

∂
∂

 = 
1

n
j

j
ji i

Hf
p

x x=

∂∂ +
∂ ∂∑ = 

1

n
i

j
ji j

Hf
p

x x=

∂∂ +
∂ ∂∑  (i = 1, 2, …, n). 

 
 Thus, due to (41): 
 

(101)   

( 1,2, , ),

( 1,2, , ),

i i

i
i i

f f dH
i n

x x dt

f f
H i n

p p

 ∂ ∂= + =∂ ∂


∂ ∂ = + =
∂ ∂

⋯

⋯

 

and, in turn: 

(102)   
i i

d f f

dt p x

∂ ∂−
∂ ∂

 = 
i i

d f f

dt p x

∂ ∂−
∂ ∂

  (i = 1, 2, …, n), 

 
which shows clearly that one comes down to the system in question. 
 
 23. The theorem that permits us to express, as in no. 14, that δJ is null for any system 
of variations δγ1, …, δγn , δω that satisfy the conditions (28) is, at its basis, the theorem 
that serves to found the classical method of multipliers in the isoperimetric problems.  
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However, since it is presented in a particular form in our method, it will not be pointless 
to give the corresponding precise statement, with its proof (1). 
 It refers to definite integrals of the form: 
 

(103)     1 = 
1

0
L du∫ , 

 
where L is a linear form with respect to indeterminate functions w1, …, wn of u, in which 
the coefficients of that form are given functions of u. 
 Consider m integrals of that form: 
 

(104)   Ih = 
1

0 hL du∫   (h = 1, 2, …, m), 

 
and associate the functions wi with m arbitrarily chosen systems of determinations: 
 
(105)   wi = wki (i = 1, 2, …, n; k = 1, 2, …, m). 
 
 
 The integrals considered – viz., I1, …, Im – take on the corresponding numerical 
values: 
(106)   Ih = Ikh  (h = 1, 2, …, m ; k = 1, 2, …, m). 
 
 Consider the determinant formed from these numbers Ikh and examine the case where 
it is null for all of the systems of determination (105): There will then be a principal 
minor determinant that is not zero, while the minor determinants of higher degree are all 
null.  One may suppose that this principal determinant is the one that corresponds to k = 
1, 2, …, s; h = 1, 2, …, s.  All of the determinants: 
 

(107)   

11 1 1

1

1, ,

s

s ss s

s l s s l s l

I I I

I I I

I I I+ + +

⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

 (l = 1, 2, …, m – s) 

 
are then null, no matter what the functions wi are.  One thus has some equations with 
constant coefficients of the form: 
 

(108)   Is+l = 
1

s

lh h
h

c I
=
∑   (l = 1, 2, …, m – s), 

i.e.: 

(109)  
1

0
1

s

s l lh h
h

L c L du+
=

 − 
 

∑∫ = 0 (l = 1, 2, .., m – s). 

                                                
 (1) Cf., the analogous proof that was given by Hadamard (loc. cit., pp. 196).  However, the restriction 
that relates to singular fields does not apply here. 
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 Since they are true for any wi and the expressions under the ∫ sign are linear forms 
with respect to wi one concludes from this the identity relations in w1, …, wn (and u): 
 

(110)    Ls+l = 
1

s

lh h
h

c L
=
∑   (l = 1, 2, …, m – s). 

 
It results, in particular, that Is+1, …, Im are null for any choice of functions w1, …, wn, 
which annuls I1, I2, …, Is . 
 
 24. Having said this, we propose to express the fact that the integral (103) is annulled 
for any choice of functions w1, …, wn that makes the integrals (104) null, and suppose 
first of all that the determinant of the quantities (106) is not null. 
 Furthermore, consider an (m + 1)-fold system of determinations in the wi : 
 
(111)    wi = w0,i  (i = 1, 2, …, n), 
 
and the corresponding values I0,1, …, I0,m of the integrals (104).  One may determine the 
numbers µk by the equations: 
 

(112)   ,
1

m

k k h
k

Iµ
=
∑ − I0,h = 0  (h = 1, 2, …, m). 

 
If one then takes the wi to be the functions: 
 

(113)   wi = ,
1

m

k k i
k

wµ
=
∑ − w0,i  (i = 1, 2, …, n) 

 
then the values of the Ih , being equal to the left-hand side of equations (112), are null, 
and, by hypothesis, that of I is then also null. 
 If we denote the values of I that correspond to the choices (105) and (111) by I1,0 , …, 
Im,0 , I0,0 then one thus has the numerical equality: 
 

(114)    ,0
1

m

k k
k

Iµ
=
∑ − I0,0 = 0. 

 
If one compares this with the equalities (112) that are also verified by the µk then one sees 
that the determinant: 

(115)    

0,0 1,0 ,0

0,1 1,1 ,1

0, 1, ,

m

m

m m m m

I I I

I I I

I I I

⋯

⋯

⋯ ⋯ ⋯ ⋯

…
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is null, while the minor of the first element is non-null, and that is true for any choice of 
m + 1 systems of determination for the wi that are introduced.  From the result of no. 23, 
one concludes from this an identity with constant coefficients of the same nature as (110): 
 

(116)     L = 
1

n

h h
h

c L
=
∑ . 

 
 If the determinant of the quantities (106) is null then one may consider only the 
integrals I1, …, Is as giving the principal minor of that determinant.  Because Is+m , …, Im 
are null whenever the preceding ones are null, it will suffice to express the notion that I is 
annulled whenever I1, …, Is are null.  One thus again obtains an identity of the form (116) 
as a necessary condition, with: 

cs+1 = c s+2 = … = cm = 0. 
 

 Since one has the identities (110) in this case, it is clear that one likewise has an 
infinitude of identities of the form (116), where the most general of them can be written, 
by means of one of them: 
 

(117)   L = 
1 1 1

m m s s

h h l s l ik k
h l k

c L L c Lρ
−

+
= = =

 + − 
 

∑ ∑ ∑ , 

 
in which the ρl are arbitrary. 
 Finally, in any case, the existence of an identity of the form (116) is sufficient for I to 
be null when the I1, …, Im are annulled simultaneously. 
 We thus obtain the stated theorem (1): In order for the integral (104) to be annulled 
for any choice of functions wi that simultaneously annul the integrals (105), it is 
necessary and sufficient that the linear forms of the indeterminates wi that are denoted by 
L, L1, …, Lm are linked by a relation of the form (116), which is an identity in w1, …, wn 
and u, and the letters c1, …, cm denote numerical constants. 
 
 In the application of this theorem that was made in no. 14, the δγ1, …, δγn , δω play 
the role of functions w1, …, wn .  The integral I is the integral (16) and the integrals Ih are 
the integrals (28).  There exist γ relations that are analogous to the (m – s) relations (110) 
in the case where the canonical system (38) furnishes only ∞2n−γ−2 extremal curves (cf., 
the note in no. 19). 

                                                
 (1) Since this theorem is deduced from the fundamental lemma of the calculus of variations (cf., 
HADAMARD, loc. cit., pp. 64), it persists, like that lemma, if one imposes diverse restrictions on the 
functions w1, …, wn that relate to either their values at the limits or their analytical character. 



III. – SUFFICIENT CONDITIONS FOR A WEAK EXTREMUM. 
 
 25.  The preceding results that we found and summarized in the statement of no. 18 
may be stated in a remarkable form, on the condition that, should the need arise, one 
limits oneself to canonical solutions.  This restriction is, moreover, of little importance, 
since it does not prevent us from obtaining all of the curves that annul the variation of J.  
It permits us to suppose that the function q1, …, qn that one considers are differentiable. 
 Consider the integral: 

(1)      H = 
1

0
1

n

i i
i

q dx
=
∑∫ , 

 
where one supposes that the functions x1, …, xn ; q1, …, qn of the variable of integration u 
are linked by just one equation of condition: 
 
(2)     G(x1, …, xn | q1, …, qn) = 1, 
 
and demands that the variation δH be null.  With what we have learned from the remark 
made above, we apply the classical procedure, which then gives us: 
 

(3)    δH = 
1

1

0
1 10

( )
n n

i i i i i i
i i

q x q dx x dqδ δ δ
= =

  + − 
 
∑ ∑∫ . 

 
 We further suppose that the extremities of the integration arc are fixed.  The quantity 
that remains under the ∫ sign thus reproduces δG up to a factor, and one finds the 
canonical system: 

(4)    i

i

dx
G

q

∂
∂

= i

i

dq
G

x

∂−
∂

 = dt  (i = 1, 2, …, n), 

 
which entails the formula: 

(5)      dt = 
1

n

i i
i

q dx
=
∑ , 

 
when one takes into account (2), and one recalls that G is homogeneous of degree 1 in q1, 
…, qn . 
 The extremals of the problem A are thus obtained by writing that the variation of the 
integral H is null, by means of just the equation of condition (2), when one supposes that 
the extremities of the integration arc are fixed. 
 One sees, moreover, that if one varies only the functions q1, …, qn while leaving the 
integration arc fixed then one finds immediately, and consequently without any 
hypotheses on the differentiability of the function q1, …, qn , the formula: 
 

(6)      δ0H = 
1

0
1

n

i i
i

q dxδ
=
∑∫ . 
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 The condition for the variation δ0H to be null will thus be: 
 

(7)    dxi = 
i

G
dt

q

∂
∂

  (i = 1, 2, …, n), 

 
since the variations of the qi will then be linked by just the equation: 
 

(8)     0 = δ0G = 
1

n

i
i i

G
q

q
δ

=

∂
∂∑ , 

 
and one will again have formula (5). 
 Therefore, the systems of formulas considered in the statement of problem A are the 
ones that one obtains by writing the condition of null variation in the following problem: 
 
 PROBLEM B. – Being given an arc of the curve that is represented by formulas: 
 
(9)    xi = ϕi(u), 0 ≤ u ≤ 1  (i = 1, 2, …, n), 
 
determine functions q1, …, qn of u that satisfy the equation: 
 
(2)     G(x1, …, xn | q1, …, qn) = 1, 
 
and are such that they give an extremum for the integral: 
 

(1)      H = 
1

0
1

n

i i
i

q dx
=
∑∫ . 

 
 One sees, moreover, upon referring to formula (62) of no. 19, which is the origin of 
the present remarks that the integral J considered in problem A are the integral H of 
problem B, which corresponds to the case of the null variation (for the same problem B.). 
 Meanwhile, in order to satisfy the condition ω > 0 of problem A, it is necessary that 
problem B admit only functions q1, …, qn that verify the conditions: 
 

(10)     
1

n

i i
i

q dx
=
∑ > 0. 

 
 If one interprets q1, …, qn as the components of a vector that has the point (x1, …, xn) 
for its origin and which describes the arc in question when u varies from 0 to 1 then this 
condition is equivalent to saying that this vector must be situated on the positive side of 

the tangent with respect to the normal plane 
1

( )
n

i i i
i

X x dx
=

−∑ = 0, or that it must make an 

acute angle with the positive direction of the tangent. 
 One must also observe that if the Hessian of G is of rank (α + 1), with α > 0, then 
equations (7) have the same consequences as equations (2) of no. 12, namely: 
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(11)   Fh(x1, …, xn | dx1, …, dxn) = 0  (h = 1, 2, …, α); 
 
problem B is therefore possible in this case only if the given curve (9) is an integral curve 
of the Monge system. 
 
 26. In all of these cases, the preceding remarks introduce, and in the most natural 
manner, the Jacobi-Hamilton partial differential equation: 
 

(12)    1
1

, , , ,n
n

t t
G x x

x x

 ∂ ∂
  ∂ ∂ 
⋯ ⋯ = 1. 

 
 Indeed, they show that one will obtain the extremals of problem A upon first 
determining functions q1, …, qn of x1, …, xn  that satisfy (2) and annul the variation of the 
integral H, and then, upon determining x1, …, xn by means of equations (7), where one 
has substituted the functions of x1, …, xn that were thus found for the q1, …, qn .  Because 
the variation of H is then null, either when one varies the curve while preserving the 
functions we found for the qi , or when one keeps the curves fixed and varies the qj , it is 
therefore again null when one varies the curve and the qi at the same time, because any 
variation of that general type is obtained by superposing two variations that belong to the 
two special categories considered, respectively. 
 Now, this calculation amounts to first taking the derivatives: 
 

(13)    qi = 
i

t

x

∂
∂

 (i = 1, 2, …, n) 

 
of an integral of equation (12), namely: 
 
(14)     t = V(x1, …, xn), 
 
and then determining the transversals of the family of surfaces depending upon the 
parameter t, which are represented by equation (14); i.e., the curves that are defined by a 
property that shall recall. 
 Each point of M on any of the surfaces (14) is the origin of a wave multiplicity (cf., 
no. 12), and on that wave multiplicity there exists a point P whose coordinates are: 
 

(15)    Xi = xi + 
i

G

q

∂
∂

  (i = 1, 2, …, n), 

 
in which the qi have the values (13).  This point is entirely defined by the fact that there 
exists, at each point, a plane that is tangent to the wave multiplicity and has the direction 
coefficients λq1, …, λqn ; i.e., it is parallel to the tangent plane at M of the surface (14) 
considered (1).  The direction MP, whose direction coefficients are: 

                                                
 (1) This point must be on the side of increasing V with respect to the tangent plane at M to the surface 
considered. 
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(16)    pi = 
i

G

q

∂
∂

 (i = 1, 2, …, n), 

 
is called transversal to the contact element (x1, …, xn ; λq1, …, λqn) of the point M and is, 
in turn, transversal to the surface considered at M. 
 Having said this, the transversals of a one-parameter family of surfaces (to simplify, 
we are supposing that one and only surface of the family passes through each point of the 
space considered) are the curves whose direction, at each of their points, is transversal to 
the surface of the family that passes through this point. 

 One will remark that in the present case, due to the condition 
1

n

i i
i

q dx
=
∑  > 0, the 

transversals to the family of surfaces (14) must be assumed to point in the direction of 
increasing V. 
 
 27. Reciprocally, the preceding construction gives all of the extremals.  Indeed, start 
with an initial surface (S0) and each of its contact elements01(x , …, 0

nx ; 0
1q , …, 0

nq ), 

whose coordinates may be assumed to satisfy condition (2), and then associate the 
integral of the system (4), which satisfies the initial conditions xi = 0

ix ; qi = 0
iq (i = 1, 2, 

…, n).  It will satisfy condition (2).  At each point M0 of (S0), one will find it associated 
with the extremal curve that issues from M0 , and which is the locus that is described by 
the point M, whose coordinates are (x1, …, xn), when t varies by starting with the value t 
= 0.  These curves, at least in the neighborhood of (S0), will be such that one and only one 
of them passes through each point M of the space (1).  Each point (x1, …, xn) will be 

associated with the value of the integral 
1

n

i i
i

q dx
=
∑∫ , which is taken from M0 to M along 

the arc of the extremal that passes through M, since equations (4) entail equation (5): t is 
therefore a function V(x1, …, xn). 
 In order to find its total differential, it is necessary and sufficient to vary M in an 
arbitrary manner;  it follows with its corresponding extremal, whose foot M0 describes 
(S0).  If one applies (2) formula (3), upon remarking that one has: 
 

0 0

1

n

i i
i

q xδ
=
∑  = 0, 

then what remains is: 

(17)     δt = 
1

n

i i
i

q xδ
=
∑ . 

 

                                                

 (1) This will break down when (S0) satisfies the (partial differential) equation G( 0

1
x , …, 0

nx  | 0

1
q , …, 

0
qn ) = 0, which is the singular case that we have implicitly passed over. 

 (2) This method, which based on the formula at the limits, is employed by Hadamard (loc. cit., pp. 169).  
The principle is due to Darboux (Théorie des surfaces, t. II, pp. 536). 
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 The function t that we have constructed thus satisfies equations (13) and the partial 
differential equation (12).  Moreover, when equations (7) are verified the extremals that 
have served to define that function are the transversals to the family of surfaces (14) that 
they correspond to. 
 Finally, it is clear that each extremal will be transversal to an infinitude of families of 
surfaces of the indicated type, because it corresponds (cf., nos. 16 and 18) to at least one 
canonical solution, and it will suffice that one of the surfaces of the family include one of 
the elements (x1, …, xn ; q1, .., qn) that is furnished by that solution in order that all of the 
other ones enter into the other surfaces of the family (1). 
 We further remark that one may attempt to replace the surface (S0) with an n – 1-
dimensional multiplicity whose point-like support has less than (n – 1) dimensions.  The 
construction will further involve ∞n−1 canonical solutions, but if equation (12) has only 
∞2n−2−γ characteristic curves (extremals of problem A) then it may happen that one 
obtains less than ∞n−1 extremals, and that consequently they do not fill up the space that 
neighbors (S0).  The definition of the function V will then break down.  This will certainly 
happen, always upon supposing that γ > 0, if (S0) is replaced by a point of space, and, 
more generally, if the support employed has less than γ dimensions. 
 Similarly, upon supposing that γ = 0, but α > 0, and upon starting at a point of M0 that 
is taken on the initial multiplicity, the extremals employed indeed sweep out an n-
dimensional space, but that space will terminate at the point considered in a singular 
form, since the extremals that issue from that point do not point in all directions: It will 
not contain all of the points of a domain of M0, nor, for that matter, those of the points 
that are on the same side of a surface that passes through M0 and has a tangent plane at 
that point. 
 
 28. The families of surfaces that we just introduced are composed of successive states 
of the same wave (i.e., it is a locus of points that are disturbed at the same instant) when 
one considers the mode of propagation that was defined in no. 12.  One must assume only 
that the state of a wave at time t + dt can be deduced from the state of that wave at time t, 
up to infinitesimals of higher order, by taking the envelope of the elementary waves that 
issue from the various points of the multiplicity that includes the state of the wave at time 
t. 
 On this point, we refer to our article in the Annales de l’École Normale, 3rd series, t. 
XXVI, 1909, pp. 405, because the interpretation in question is a consequence of the 
results in no. 5 of that article, and the reasoning that led up to it is based on the tangential 
representation of the elementary waves and does not cease to be applicable when the 
point-like support of the wave multiplicity has less than n – 1 dimensions, provided that 
the tangential support has exactly n – 1 dimensions. 
 Here again, one may conceive of extremals [which are characteristics of equation 
(12)] as the trajectories of propagation of the various contact elements. 

                                                
 (1) The singular case that was pointed out in our preceding note may not present itself here, since all of 
the elements of a canonical solution satisfy equation (2). 
 However, in general, one must limit the extremal arc considered in order to obtain a family of surfaces 
(and transversals) such that one and only one of them passes through each point of the domain considered. 
 We would not like to reproduce that well-known argument here. 
 Cf., HADAMARD, loc. cit., pp. 360, et seq. 



E. Vessiot: The theory of multiplicities                                            51 

 Observe, moreover, that when one considers (x1,…, xn ; q1, .., qn) to be the 
homogeneous coordinates of a contact element, equations (4) define a one-parameter 
family group of contact transformations and, from the preceding discussion, provide the 
successive states of the same wave by the application of these various contact 
transformations to one of them.  This was the viewpoint of our article in this Bulletin (t. 
XXXIV, 1906), but there we supposed that the Hessian of G was of rank 1, while we 
make no such restriction here in that regard. 
 The finite contact transformations of that group are defined by the correspondence 
that was established between each point of the space and the wave that resulted from a 
disturbance that is produced at that point after a definite time t. 
 In the case where equation (12) has only ∞2n−2−γ characteristic curves, there are 
∞2n−2−γ  of them passing through each point, in such a way that the particular point-like 
multiplicities that enter in here have only n – 1 – γ dimensions.  One is then involved with 
the contact transformations that are all defined for γ + 1 equations between the 
coordinates x1, .., xn and 1x , …, nx  of the points of the two mutually transformed spaces. 

 
 29. The remarks of the preceding numbers, independently of their analytical interest, 
lead very simply to sufficient conditions for the extremum in problem A, by reducing it to 
the extremum of problem B.  As we shall see, one will have a minimum for A if one has a 
maximum for B. 
 Indeed, imagine an extremal of A and two fixed points M0 and M1 on that extremal.  
Assume that these points are as close as one needs in order to associate the arc M0M1 of 
the extremal with a family of surfaces (14) that satisfies the conditions that were 
enumerated in no. 27, namely: There exists an n-dimensional portion of space that is 
continuous and all in one piece, such that through each of its points there passes one and 
only one surface (14).  The arc M0M1 is completely interior to that space, meets each of 
the surfaces at no more than one point, and is transversal to each of them. 
 We let E denote the arc of the extremal considered, and let C denote another arc (1) 

that goes from M0 to M1 in the same portion of space, and differ from E by its points and 

tangents as little as one desires. 
 Since one may take the qi to be derivatives ∂V / ∂xi (no. 26), the integral JE is the 

integral of dV taken from M0 to M1, and does not change if one takes it along the arc C.  

One thus has: 

(18)   JE = JC = − 
1 1

n n

i i i
i i i

V
q dx dx

x= =

 ∂− ∂ 
∑ ∑∫ ∫C C

 = − (HC − H ′
C
), 

 
and one perceives in the right-hand side the difference between two integrals that relate to 
the curve C and have the same nature as the ones that enter into the statement of problem 

B, where the first of them corresponds, by hypothesis, to a system of functions q1, …, qn 
that annuls the variation of that integral.  Moreover, the values of q1, .., qn will also be as 
close as one pleases to the values: 

                                                
 (1) Of course, in the case α > 0 one must verify the Monge equation (II).  (Cf., no. 25). 
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1q′ = 
1

V

x

∂
∂

, …, nq′  = 
n

V

x

∂
∂

 

 
at any point of C, provided that C is sufficiently close to E (in terms of its points and 

tangents). 
 The arc E will therefore furnish a weak minimum for J if the system (q1, …, qn) 

furnishes a maximum for Π taken along C. 

 
 30. Now, the discussion for the maximum in problem B is immediate, because one 
has: 

(19)    HC − H ′
C
 = 

1

0
1

( )
n

i i i
i

q q dx
=

′−∑∫ . 

 Upon setting, as in no. 12: 
 
(20)   dxi = ω pi du  (i = 1, 2, …, n), 
 
with [equation (64), no. 19)]: 
 

(21)     ω du = 
1

n

i i
i

q dx
=
∑ , 

one then has: 

(20)    HC − H ′
C
 = −

1

0
1

( 1)
n

i i i
i

q p dxω
=

′ −∑∫ . 

 
 Since the element ω du is, by hypothesis, essentially positive, not only on E, but also 

on the curves that are sufficiently close, one sees that in order for the left-hand side to be 
positive, it is necessary and sufficient that the condition: 
 

(21)     
1

1
n

i i
i

q p
=

′ −∑ < 0 

 
be verified on each of the wave multiplicities that has their origin at the various points of 
C, and has the contact element (E) (p1, …, pn ; q1, …, qn) that enters into the integral HC . 

 If one refers to no. 10 then one sees that each of these multiplicities must be concave 
towards its origin at (E). 
 
 Therefore, in order for the integral H to have a maximum for a system of functions q1, 
…, qn when it is taken along an arc of the curve C that satisfies the Monge equations 

(11), it is necessary and sufficient that the following conditions be satisfied: 
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 1. The positive direction of the tangent at each point (x1, …, xn) of C pierces the 

wave multiplicity that has that point for its origin at a point to which there corresponds a 

contact element whose plane has the equation 
1

( )
n

i i i
i

q X x
=

−∑ = 1. 

 2. At that contact element, the wave multiplicity is concave towards its origin, in the 
sense that the point of that element is on the same side as the origin with respect to the 
planes of the neighboring contact elements. 
 
 31. This condition will be satisfied for C if it is satisfied for E in the domain of the 

contact elements of the wave multiplicities, which results from the preceding construction 
when it is applied to E because then one may vary the curve infinitesimally without which 

the condition ceasing to be realized.  It is always intended that the variation alters the 
curves and tangents infinitely little. 
 We thus arrive at the following conclusion: 
 
 An arc of the extremal in problem A furnishes a minimum for the integral J (in the 
case where the extremities of the arc of integration remain fixed) if it satisfies the 
following conditions: 
 1. At least one of the wave families that is cut transversally by this extremal fills up a 
portion of the space that surrounds all sides of the arc considered in a regular manner (1) 
and satisfies, in addition, the following criterion: 
 2. Letting M be an arbitrary point of the extremal arc, Π, the tangent plane at the 
point M to the wave considered that passes through it; the positive direction of the 
tangent to the extremal at M pierces the wave multiplicity that has M for its origin at a 
point P, and it results from transversality that this point P, along with a plane that is 
parallel to the plane Π, forms a contact element (E) of that wave multiplicity.  In the 
domain of that contact element (E) the wave multiplicity must be concave towards its 
origin. 
 
 The developments of nos. 10 and 11 give one the means to verify analytically 
whether this criterion is found to be verified in the extended case.  One may further 
involve the function G uniquely then. 
 We remark that in the case of the minimum that we just explained, the elementary 
waves that issue from the points of a wave of the family considered are convex towards 
their envelope, which constitutes the consecutive wave of that same family.  The word 
“envelope” here thus has its etymological sense here, and, in a way, its physical one, too, 
and the picture that emerges is completely in agreement with the idea itself of 
propagation, that an arbitrary wave must be the front of the elementary waves that one 
considers to have produced it when one applies the principle of enveloping waves. 
 
 32. In the preceding remark, we have substituted the consideration of the elementary 
wave for that of the wave multiplicity.  Since these two multiplicities are homothetic with 
respect to their common origin, this substitution is legitimate because they are, at the 

                                                
 (1) This must say that one and only one surface of the family passes through each point. 
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same time, either convex or concave.  It seems that the elementary wave makes the best 
image to envision, because it is more immediately associated with the differential 
element of the integral considered. 
 This is especially true in the case where the differential element ω du is susceptible to 
a change of sign on the arc of the curve considered, a case about which it remains for us 
to say a few words in conclusion. 
 For that, we refer to the transformations that were employed in nos. 20 and 21.  
Formulas (76) and (81) of no. 21, when applied simultaneously to two neighboring 
contact elements, give: 

(22)   
1

n

i i
i

p q
=

′∑  − 1 = 
1

1

( )

1

n
i i i

n
i

j j
j

p q H

H p=

=

′ +

+
∑

∑
 − 1 = 1

1

1

1

n

i i
i

n

j j
j

p q

H p

=

=

′ +

+

∑

∑
. 

 
Upon further taking into account formula (75) of no. 21, what remains is: 
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 If the sufficient condition for the minimum is satisfied for the transformed integral 

with a positive differential element duω∫  then the left-hand side of that identity (33) is 

negative.  The same is then true for the right-hand side. 
 As a consequence, the second sufficient condition for the minimum translates into 
concavity or convexity of the wave multiplicity according to whether ω is positive or 
negative, respectively.   However, the point that enters in here is, moreover, on the 
prositive or negative direction of the tangent according to whether ω is positive or 
negative, respectively.  One may say that there is convexity towards the positive direction 
of the tangent. 
 It seems simplest to restrict oneself to the elementary wave: 
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for which the point to consider is always (in the system of coordinates that has the origin 
(x1, .., xn) of that wave for its origin): 
 
(25)    Xi = dxi  (i = 1, 2, …, n). 
 
 The values of q1, …, qn that one must associate at that point are always defined by the 
canonical solution considered, or furthermore, by the family of surfaces that is defined by 
equation (14), which corresponds to solutions of the Jacobi-Hamilton equation (12). 
 However, a fact that is worthy of note presents itself here when one applies the 
construction of no. 27 to find one of the solutions that corresponds to the extremal 
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considered.  When one passes a point of the extremal for which ω du is annulled upon 
changing sign, the value of t ceases to increase (for example) in order to begin 
decreasing.  Past such a point N, it then repeats the values that it took on before.  The 
surfaces that are obtained no longer cut the extremal arc at each of its points.  At N, the 

corresponding surface is tangent to the arc of the extremal, since 
1

n

i i
i

q dx
=
∑  is then null, 

and in the neighborhood of that particular surface the ones that cut the extremal cut it at 
two points: one on each side of N. 
 
 33. At such a point N, one does not need to preserve the latter side of the equation (= 
dt) in the canonical equations (4) for the definition itself of the extremal.  Above all, as 
we remarked in no. 22, this canonical system is useless at that point in the form (4) 
because the derivatives of G will be, in general, infinite.  However, this difficulty will 
disappear if one introduces the Jacobi-Hamilton equation in a less restrictive form than 
the form (12), which we have specialized only insofar as the theory is concerned. 
 Indeed, recall that this equation in the original form (2), defines the tangential support 
of the wave multiplicity, and, from the argument in no. 21, this support is obtained by 
eliminating the ratios of X1, …, Xn ; λ1, …, λn between the equations (1): 
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and the equations of condition: 
 
(27)  0 = Fh(x | X) ≡ Fh(x1, …, xn | X1, …, Xn) (h = 1, 2, …, α). 
 
 If the result of that elimination is obtained in an arbitrary form: 
 
(28)    G(x1, …, xn | q1, …, qn) = 0, 
 
then dG0 and dG will be linked by an identity of the form: 
 
(29)    dG ≡ M(x1, …, xn | q1, …, qn) dG0  
 
for all of the elements (x1, …, xn | q1, …, qn) that satisfy equation (2) or equation (28), 
which are assumed to be equivalent.  The canonical system (4) and the equation (2) will 
then be replaced by equation (18), and the most general canonical system: 
 

(30)   1

0

1

dx
G

q

∂
∂

 = … = 
0

n

n

dx
G

q

∂
∂

= 1

0

1

dq
G

x

∂−
∂

= … = 
0

n

n

dq
G

x

∂−
∂

. 

 

                                                
 (1) The letters Xi denote the differentials dxi here, instead of the derivatives dxi / du; however, this 
changes nothing in the reasoning of no. 21, which, for brevity, we shall not repeat. 
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 The canonical solutions will then be determined, and t will always depend upon the 
quadrature of the differential: 
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That differential, from equations (30), is annulled at the same time as the expression: 
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and that expression intervenes precisely when one seeks to deduce G from G0, since it 
amounts to solving the equation: 
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for G. 
 If one takes into account the fact that G must have the value 1 on the multiplicity 
considered then one deduces from that equation, by total differentiation: 
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which shows that D is the inverse of the coefficient M of the formula (29).  This 
coefficient M must then be infinite for the exceptional contact elements that define the 
object of our discussion (1). 
 From another point of view, these elements are found to be exceptional under the 
same conditions as the elements that were omitted in no. 1, because the planes that figure 
in them pass through the origin of the coordinates (the origin of the elementary wave).  
However, the difficulty disappears here because the contact elements of the elementary 
wave have coordinates (x1, …, xn ; q1, …, qn), which, from formulas (26) and (24), are 
now linked by the relation: 

(35)     
1

n

i i
i

q X
=
∑ = ω du, 

 

                                                
 (1) It is easy to study these peculiarities in the examples.  As a very simple case, one may take the 

following one: ω du = 2 2dx dy+ − 2y dy.  One considers the extremal y = x and the neighboring extremals 

y = x + c, which gives the family of parabolic waves 
2

x y+ − y2 = const.  The elementary waves are then 

conics that are simple to discuss. 

 By the process in no. 20, the integral ∫ ω du comes down to duω∫ , where ω  du = 2 2dx dy+ . 

 The exceptional point N of the extremal is x = y = 2 / 2 , here. 
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which is equivalent to establishing the homogeneity of the coordinates q1, …, qn , which 
we refrained from doing in no.1, in order to better indicate the duality between the two 
viewpoints – viz., point-like and tangential. 
 
 In summation: The extremals of the Lagrange problem are given, without imposing 
the condition on the sign of the differential element of integration (1) (no. 12), by the 
solutions of the canonical system (30) that satisfy equation (28). It is the tangential 
equation of the elementary wave (24), where the coordinates (X1, …, Xn ; q1, …, qn) of a 
contact element of that wave are linked by the condition (35).  An arc of the extremal thus 
obtained furnishes a minimum for the problem considered if the following (sufficient) 
conditions are satisfied: 
 1. By means of that extremal and ∞n−1 conveniently chosen neighboring extremals, 
construct a family of surfaces (family of waves) by the procedure of no. 27 that fills up, 
in a regular manner, a portion of the space that contains it and surrounds the arc of the 
extremal considered on all sides. 
 2. The elementary wave that has each point (x1, …, xn) of that arc for its origin and 
passes through the infinitely close consecutive point of that arc is concave or convex 
towards its origin [in the domain of the contact element of that elementary wave that 
contains that point and whose plane has the quantities (q1, …, qn) that are associated 
with (x1, …, xn) for its direction coefficients in the solution of the system (28), (30) that 
one considers] according to whether the differential element F(x1, …, xn | dx1, …, dxn) ≡ 
ω du is positive or negative, respectively. 
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