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INTRODUCTION 

 

 1. – Any system (S) of first-order ordinary differential equations corresponds to a linear partial 

differential equation (E) whose solutions are the first integrals of (S). The correspondence is 

reciprocal, and the integration of the system (S) and that of the equation (E) constitute equivalent 

problems. There then exists a sort of duality between (S) and (E), and one can say that the system 

and that equation are correlative. Those terms are all the more justified because the origin of the 

equivalence between the two integration problems of (S) and (E) is found in the bilinear relation: 

 

(1)  df = 1

1

n

n

f f
dx dx

x x

 
+ +

 
 = 0 

 

that exists between the partial derivatives of any solution of (E) and differentials of the coordinates 

of the current point of any integral of (S). 

 A similar duality exists between the completely-integrable systems of Pfaff equations and 

complete systems of homogeneous linear first-order partial differential equations. Cartan gave it 

the following form, in which a generalization of formula (1) appears: Let: 

 

(S)     i = , 1

1
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n

i na x x dx 
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  = 0 (i = 1, 2, …, s) 

 

be a completely-integrable system of s Pfaff equations in n variables, and let: 
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be a complete system of m = n – s linear partial differential equations. The two systems (S) and 

(E) are correlative, and the integration of each of them will imply that of the other, if one has an 

identity of the form: 
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(2)     df = 1 X1 + … + m Xm + 1 Z1 + … + s Zs , 

 

in which 1, …, m are new linear forms in dx1, …, dxn, and Z1, …, Zs are new linear forms in 
1

f

x





, …, 
n

f

x




. 

 I propose to extend that notion of duality to the case in which the system (S) is an arbitrary 

Pfaff system, and to establish the principles of the correlative theory that must result from that 

extension, while taking my inspiration from Cartan’s beautiful theory of Pfaff systems. In the 

following pages, I shall give a first glimpse into the new theory (1). 

 

 

 2. – If one is given n = m + s Pfaff expressions 1, …, s, 1, …, m then the identity (2) will 

define the linear operators X1, …, Xm, Z1, …, Zs, under the single condition that 1, …, s, 1, …, 

m must be linearly-independent forms in the dx1, …, dxn . 

 If one is given only the Pfaff system (S) then 1, …, s will be defined only up to a linear 

substitution: 

i  = , 1

1

( , , )
s

i np x x 



=

   (i = 1, 2, …, s) . 

 

 On the other hand, one can choose 1, …, m arbitrarily in such a way that if one makes an 

initial choice then their most general values will have the form: 

 

j  = 
, 1 , 1

1 1

( , , ) ( , , )
s m

j n j nq x x r x x   
 

 
= =

+    (j = 1, 2, …, m) . 

 

 One immediately recognizes that such modifications to the choices of i and j will have the 

effect of replacing X1, …, Xs with homogeneous linear combinations of the form: 

 

(3)    U f = u1 (x1, …, xn) X1 f + … + um (x1, …, xn) Xm f , 

 

and can give forms for Z1, …, Zs that are entirely arbitrary in 
1

f

x




, …, 

n

f

x




. 

 By interpreting expressions such as Xj f as the symbols of infinitesimal transformations (which 

conforms to the ideas of Sophus Lie), I conclude that under the type of duality that is defined by 

means of the identity (2), any system (S) of Pfaff equations will correspond to a sheaf of 

infinitesimal transformations: 

 

 
 (1) An analogous duality manifests itself between Monge equations and non-linear partial differential equations, 

and it is also susceptible to extension.  
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()      {X1, …, Xm}  (m = n – s) , 

 

i.e., the set of infinitesimal transformations that are given by (3), in which X1, …, Xm are well-

defined divergent (1) infinitesimal transformations, while the coefficients u1, …, um remain 

arbitrary. 

 Conversely, any sheaf {X1, …, Xm} will correspond to a Pfaff system 1 = … = s = 0 in the 

same way. 

 An integral multiplicity of the Pfaff system (S) will be an integral multiplicity of the correlative 

sheaf (), and conversely, if one adopts the following definition: A p-dimensional multiplicity is 

called an integral of a sheaf of infinitesimal transformation if it is invariant for p divergent 

transformations of the sheaf. 

 Here, one is led to consider complete integrals instead of the isolated integral multiplicities, 

and that is one difference between the two correlative theories. I say complete integral to mean a 

family of integral multiplicities such that one and only one multiplicity of that family passes 

through each point of space. 

 Any p-dimensional complete integral is provided by a complete system of p equations U1 f = 

… = Up f = 0 whose left-hand sides are transformations of the sheaf. Those transformations U1, 

…, Up then define what one calls a complete subsheaf of the given sheaf. 

 The problem of integrating a Pfaff system then has the following correlate: Determine all of 

the complete subsheaves that are contained in a given sheaf of infinitesimal transformations. That 

is what one can call integrating the sheaf. 

 

 

 3. – Cartan’s theory is based upon considering the bilinear covariants: 

 

i  = i (d) – di () . 

 

 It gives rise to the identities-congruences: 

 

(4)   i   , , 1

( , )

( , , )i nc x x   
 

   (mod 1, …, s) (i = 1, 2, …, s) , 

 

in which   symbolically denotes the determinant: 

 

 ()  (d) −  (d)  () . 

 

 
 (1) I intend the word divergent, which justifies the geometric interpretation of infinitesimal transformations, to 

mean that there exists no identity of the form: 

 

u1 (x1, …, xm) X1 + … + um (x1, …, xm) Xm = 0 

between the X1, …, Xm . 
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Those identities define the structure of the Pfaff system, which is a structure that depends upon 

the nature of the problem of integrating that system. 

 In our theory, the Jacobi brackets: 

 

(Xj f, Xh f) = Xj (Xh f) – Xh (Xj f) 

 

replace the bilinear covariants, and it is the identities-congruences: 

 

(5)   (Xj, Xh)  , , 1( , , )j h nc x x Z 


  (mod X1, …, Xm) (j, h = 1, 2, …, m) 

 

that define the structure of the sheaf {X1, …, Xm}. 

 The equivalence of the two viewpoints results from a calculation whose principle is once more 

due to Cartan. One deduces the following identity from the identity (2): 

 

 0 =  (df) – d (f) 

 

= 
( , )

( , )X Z X X       
   

    + +    + 
( , ) ,

( , ) ( , )Z X Z Z       
   

   +  , 

 

and one immediately concludes from this that the functions cj,h,i are the same in formulas (4) and 

(5). 

 One attaches the notion of derived sheaf to the structure formulas (5), which is the correlate of 

the notion of derived system that was introduced by Cartan into the theory of Pfaff equations. The 

derived sheaf of a given sheaf is obtained by adding to it the brackets (Xj, Xh) that are formed from 

its basis transformations X1, …, Xm : In order to do that, it will suffice to add to them the linear 

forms Z1, …, Zs that appear in the right-hand sides of formulas (5), which are mutually independent. 

One notes that the word “derived” is used here in a sense that is entirely analogous to the one that 

S. Lie gave it in the theory of transformation groups (1). 

 In certain cases, there is good reason to complete the analysis of the structure of the sheaf by 

considering its successive derivatives. 

 

 

 4. – Any infinitesimal transformation of a sheaf () defines an infinitesimal displacement at 

each point that is, in fact, what Cartan called an integral element of the correlative Pfaff system 

(S), and one then obtains all of the integral elements. 

 I say that two transformations of the sheaf are in involution when their bracket belongs to the 

sheaf. That is the case when two integral elements that are in involution at each point, in the sense 

 
 (1) Indeed, the derived sheaf of a sheaf {X1, …, Xm} is composed of the brackets of the various infinitesimal 

transformations of the sheaf when they are taken pair-wise in all possible ways, and the derived group of a finite group 

of transformation {X1, …, Xm} is also composed of the brackets of the various infinitesimal transformations of the 

group taken pair-wise in all possible ways. However, there is not, in general, an identity between the bases of the 

derived group and the derived sheaf that is deduced from the same infinitesimal transformations X1, …, Xm . 
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that Cartan gave to that term. The search for complete subsheaves is then subordinate to the 

algebraic problem that consists of finding involutions of the sheaf with an arbitrary degree p, i.e., 

the subsheaves {U1, .., Up} that satisfy the congruences (1): 

 

(Ui, Uj)  0 (mod X1, …, Xm) (i, j = 1, 2, …, p) . 

 

Those involutions provide the integral elements of various orders that were considered by Cartan. 

 A sheaf will be called involutive of order p if the general transformation of the sheaf belongs 

to an involution of degree at least 2, the general involution of degree 2 belongs to an involution of 

degree at least 3, etc., and finally, if the general involution of degree p – 1 belongs to an involution 

of degree at p. 

 That definition, which is copied from Cartan’s definition of Pfaff systems in involution, leads 

one to introduce the notion of genus and character of the sheaf, which are the same integers that 

Cartan introduced under the same names in his study of Pfaff systems. (One considers a sheaf and 

a correlated Pfaff system.) 

 

 

 5. – The preceding generalities are the subject of the first two sections of this work. In the 

second section, I will also establish the existence of complete subsheaves of degree p (i.e., p-

dimensional complete integrals) for any involutive sheaf or order p, and I will specify the nature 

of the indeterminacy in the general complete subsheaf of degree p. 

 I will then indicate how one can prolong a sheaf in such a manner as to obtain a new sheaf 

whose p-dimensional integrals are themselves the multiplicities that are obtained by prolonging – 

in the sense that Lie gave to that word – the p-dimensional integral multiplicities of the initial sheaf 

by adding their contact elements. 

 In order to not overextend that sketch of the new theory, I shall confine myself to stating two 

fundamental theorems without proof, which are, moreover, consequences of some analogous 

theorems in Cartan’s theory: Upon prolonging an involutive sheaf, one will obtain an involutive 

sheaf, and the indefinite prolongation of an arbitrary sheaf will lead to an involutive sheaf after a 

finite number of operations. 

 In the last two sections, I have preferred to indicate how the theory of characteristics flows out 

of the study of the structure of the sheaf of infinitesimal transformations, and I will show, by some 

examples, that the new theory lends itself to the applications with great ease. To that end, I have 

addressed only some applications of a classical character that relate to partial differential equations 

in two independent variables and one unknown function. The passage from partial differential 

equations to the sheaf that they correspond to is achieved immediately without appealing to Pfaff 

systems, moreover. 

 The Cauchy characteristics are provided (in all of the cases where they exist) by 

transformations of the sheaf that leave a sheaf invariant. Those distinguished transformations form 

a complete subsheaf whose integrals are the characteristics, and the use of those integrals for 

 
 (1) For a complete subsheaf, one has the defining congruences: 

 

(Ui, Uj)  0  (mod U1, …, Up)  (i, j = 1, 2, …, p) . 
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integrating the given sheaf is immediate. As examples, I have taken the first-order partial 

differential equation and systems of two second-order partial differential equations that are in 

involution. 

 In an analogous manner, the Monge characteristics provide some transformations of the sheaf 

that, without being distinguished transformations, are nonetheless singular transformations from 

the standpoint of the study of involutions of degree 2 (1). 

 Those transformations (when they exist) form one or more subsheaves (which are not generally 

complete) whose integrals are, if applicable, the characteristics in question. In that way, I have 

studied the characteristics of the second-order partial differential equations in the case where the 

two systems of characteristics are distinct. Their various properties are then obtained quite rapidly. 

 It is worthy of note that the invariants of one or the other of those systems of characteristics, 

as Goursat defined them in his studies of second-order partial differential equations (which are 

now classical), are precisely the invariants that are common to the infinitesimal transformations of 

the characteristic subsheaves in question: Of course, those subsheaves must be prolonged up to 

the order of the invariants that wishes to consider. 

 Moreover, the use of those invariants of all order for the integration of the second-order 

equations will flow out of our method for finding complete integrals with remarkable simplicity. 

 Finally, the case of first-order invariants will lead quite naturally to the notion of first-order 

characteristics: When they exist, they will be provided by families of infinitesimal transformations 

that will become sheaves only in the case of the Monge-Ampère equation. 

 I have considered partial differential equations that are solved for their derivatives of maximum 

order everywhere. On another occasion, I shall indicate how the method of sheaves of 

transformations can be adapted to the study of equations that are not solved. In a later work, I will 

also show how one can develop the theory of continuous transformation groups (whether finite or 

infinite) by the method that Cartan has based upon his theory of Pfaff systems in involution. 

 

 

I. –INFINITESIMAL TRANSFORMATIONS AND  

THE GENERAL INTEGRATION PROBLEM. 

 

 1. Sheaves of infinitesimal transformations. – Let m infinitesimal transformations in n variables 

be given: 

(1)     Xk f = 
1

1

( , , )
n

k n

f
x x

x


 


=




  (k = 1, 2, …, m) . 

 

When one starts from an arbitrary point (x1, …, xn) in n-dimensional space, each of them will 

define an infinitesimal displacement: 

 

(2)   dx1 = k1 (x1, …, xn) dt , …, dxn = kn (x1, …, xn) dt . 

 

 
 (1) More generally, one can similarly consider involutions that are singular relative to the study of involutions of 

higher degree. 
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If there exists no identity of the form: 

(3)      1

1

( , , )
m

nx x X f 



=

 = 0 

 

with coefficients  that are not all zero then those displacements will define an m-dimensional 

planar element, and we will say that the transformations X1, …, Xm are divergent (1). That demands 

that m  n. 

 The set of all infinitesimal transformations: 

 

(4)     U f = 1

1

( , , )
m

nu x x X f 
 =

 , 

 

in which the u are arbitrary functions of x1, …, xn will then be called a sheaf of infinitesimal 

transformations of degree m. 

 The transformations X1, …, Xm constitute the basis for that sheaf. However, one can take the 

basis that defines the sheaf to be m other arbitrary, but divergent, transformations of the sheaf. 

That amounts to performing a homogeneous linear substitution on X1, …, Xm whose coefficients 

are arbitrary functions of x1, …, xn . 

 In particular, one can exhibit the sheaf in a form that is solved for m of the derivatives 
1

f

x




, …, 

n

f

x




, i.e., suppose, for example, that X1, …, Xm have the form: 

(5)    Xk f = 
, 1

1

( , , )
n

k n

mk

f f
x x

x x


 


= +

 
+

 
   (k = 1, 2, …, m) . 

 

 

 2. Complete sheaves. Derived sheaves. – The Jacobi brackets: 

 

(Xh f, Xk f) = Xh Xk f − Xk Xh f   (h, k = 1, 2, …, m) 

 

are infinitesimal transformations that are covariants to the transformations X1, …, Xm . The 

properties of the sheaf (4) or the sheaf {X1, …, Xm} depends essentially upon the nature of those 

transformations. If they all belong to the sheaf then we say that the sheaf is complete, and we write: 

 

(Xh , Xk)  0  (mod X1, …, Xm) (n, k = 1, 2, …, m) 

 

 
 (1) Since X1, …, Xm are linear forms in f / x1 , …, f / xn , it would be natural to employ the term independent 

transformations. However, in the terminology of Sophus Lie, that word would express the idea that there exists no 

identity of the form (3) between the X1, …, Xm that has constant coefficients  . 
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to indicate that those brackets are expressed a homogeneous linear functions of X1, …, Xm . In a 

more abbreviated manner, if the letter  denotes the sheaf then we also write: 

(Xh , Xk)  0  (mod ) (n, k = 1, 2, …, m) 

in this case. 

 If the sheaf is not complete then the brackets (Xh , Xk) will be expressed as homogeneous linear 

functions of X1, …, Xm and some other infinitesimal transformations Xm+1, …, Xm that one can 

choose in such a manner that X1, …, Xm, Xm+1, …, Xm will be divergent, and the sheaf {X1, …, Xm} 

is called the derived sheaf of the sheaf {X1, …, Xm}. 

 One sees that a sheaf is always contained in its derived sheaf, which one can express by saying 

that it is a subsheaf, and a complete sheaf is a sheaf that is identical to its derived sheaf. 

 If the derived sheaf of a sheaf is not complete then one might be led to consider the derived 

sheaf of that derived sheaf, or second derived sheaf of the proposed one, and more generally, the 

successive derived sheaves of the given sheaf. 

 Since the number m of transformations in a basis for a sheaf cannot exceed the number n of 

variables, one will necessarily arrive at a final derived sheaf, which will be complete. 

 If that final derived sheaf has degree n , which is less than n, then one will get a complete 

system upon equating the infinitesimal transformations of its basis to zero, and upon introducing 

n – n (independent) integrals of that complete system as variables in place of the variables nx  , 

…, xn, the proposed sheaf, along with its successive derived sheaves, will, in fact, no longer depend 

upon the variables x1, …, nx  , since the derivatives 
1n

f

x +




, …, 

n

f

x 




 will no longer enter in. That 

result is effortlessly completed in such a way that one arrives at the following one: 

 

 The degree of the final derived sheaf of a sheaf of infinitesimal transformations is equal to the 

minimum number of effective variables to which one can reduce that sheaf by a change of 

variables. 

 

The other (ineffective) variables will appear only as arbitrary parameters. 

 

 

 3. Integrals of a sheaf of transformations. – We say that a multiplicity Mp of the space (x1, …, 

xn) whose dimension is p  m : 

 

Fh (x1, …, xn) = 0  (h = 1, 2, …, n – p) 

 

is an integral multiplicity of the sheaf {X1, …, Xm} if it remains invariant under p divergent 

transformations of the sheaf. In that definition, it is implicit that none of the transformations in 

question leave every point of the multiplicity invariant. It will then be generated by the trajectories 

of each of those transformations U1, …, Up , and also by the trajectories of any transformation of 

the sheaf { U1, …, Up}. Conversely, any family of p−1 curves that is not exceptional and generates 
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the multiplicity Mp is composed of the trajectories of one of the transformations of that proposed 

subsheaf {U1, …, Up}. 

 In particular, the one-dimensional integral multiplicities of a sheaf are the trajectories of the 

various transformations of that sheaf. 

 If the sheaf {X1, …, Xm}, where m < n, is complete then there will be m-dimensional integral 

multiplicities whose general equations are obtained in the form: 

 

(6)     Fh (x1, …, xn) = ch  (h = 1, 2, …, n – m) 

 

upon equating n – m independent arbitrary solution to the complete system X1 = X2 = … = Xm = 0 

to constants. There are also integral multiplicities with an arbitrary number p < m of dimensions 

that are easily deduced from the preceding ones. 

 In general, to integrate a sheaf of infinitesimal transformations is to determine all of its integral 

multiplicities. We shall see that this problem is no different from the one that consists of integrating 

the most general differential systems. 

 

 

 4. Sheaves of transformations and Pfaff systems. – The theory of sheaves of infinitesimal 

transformations and the theory of Pfaff equations are two equivalent theories that correspond by a 

sort of duality. One can show that by a method that is due to Cartan. Associate the transformations 

of the basis for the given sheaf {X1, …, Xm} with n – m = s arbitrary infinitesimal transformations 

Z1, …, Zs in such a manner that X1, …, Xm, Z1, …, Zs will be collectively divergent, and we will 

have an identity of the form: 

 

(7)  df = 1 X1 + … + m Xm + 1 Z1 + … + s Zs , 

 

in which 1, …, m, 1, …, s are n independent Pfaff expressions. It then results that the 

infinitesimal displacements that satisfy the Pfaff system: 

 

(8)      1 = 2 = … = s = 0 

 

are precisely the ones that correspond to the various infinitesimal transformations of the sheaf {X1, 

…, Xm}. 

 Any integral multiplicity of the sheaf {X1, …, Xm} is then an integral multiplicity of the system 

(8) and conversely. The integral multiplicities are defined in the two cases by only two different 

procedures. 

 Conversely, the same method will permit one to make any system of Pfaff equations 

correspond to an equivalent sheaf of transformations. Cartan appealed to it in order to exhibit the 

correspondence between the completely-integrable Pfaff systems and the complete systems of 

homogeneous linear partial differential equations. 

 We say that sheaf {X1, …, Xm} and a system 1 = … = s = 0 that it corresponds to are 

correlative or dual to each other. It results from what we just recalled that if the sheaf is complete 

then the Pfaff system will be completely integrable, and conversely. 
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 5. Sheaves of transformations and partial differential equations. – The foregoing will suffice 

to show that the integration of any system of partial differential equations depends upon the 

integration of a sheaf of infinitesimal transformations. However, it is useful to give the direct proof. 

 Imagine an arbitrary differential system (). One can suppose that they have order one by 

taking, if necessary, a certain number of derivatives of the unknown functions to be auxiliary 

variables. Therefore, let x1, …, xp be independent variables, let y1, …, yq be unknown functions, 

and let yj,i = vj / xi be their derivatives. 

 On an arbitrary p-dimensional multiplicity, y1, …, yq and their derivatives yj,i will be well-

defined functions 1y , …, 
qy , …, 

,j iy , … of x1, …, xp, and that multiplicity will admit the p 

infinitesimal transformations: 

(9)     
,

1

q

i

i

f f
y

x x


 =

 
+

 
  (i = 1, 2, …, p) . 

 

As a result, it will admit any system of p infinitesimal transformations: 

 

(10)  Xi f = 
, 1 1

1

( , , , , , )
q

i p q

i

f f
x x y y

x x


 


=

 
+

 
   (i = 1, 2, …, p) , 

 

such that the ,i will become identical to the 
,iy  with the same indices when one replaces the 

variables yj with the corresponding functions 
jy . 

 Hence, if the system () is solved for all of the derivatives yj,i , i.e., it has the form: 

 

(11)  yj,i = j,i (x1, …, xp, y1, …, yq)  (i = 1, 2, …, p ; j = 1, 2, …, q) , 

 

then any integral multiplicity of () will admit the transformations (10) as soon as one replaces the 

j,i in them with the right-hand sides of equations (11), and conversely any p-dimensional integral 

multiplicity of the sheaf (10) thus-defined will be an integral multiplicity of the system (). To 

integrate () will then be to find the p-dimensional integral multiplicities of the sheaf (10), which 

are deduced from it immediately. 

 In the general case, the equations of the system () can be put into the form: 

 

(120  yj,i = Pj,i (x1, …, xp, y1, …, yq, w1, …, wr)  (i = 1, 2, …, p ; j = 1, 2, …, q), 

 

in which w1, …, wr are conveniently-chosen indeterminates (1). They can be some of the 

derivatives yj,i , and more generally, well-defined functions of the coordinates of a point of the 

multiplicity and the derivatives yj,i . Be that as it may, if one takes into account the equations (12) 

 
 (1) If the derivatives of some of the unknown functions do not appear in the equations of the system () then one 

can delete those functions from the list y1, …, yq and introduce them among the w1, …, wr . In the considerations that 

follow, that will imply some formal modifications that I shall omit, to abbreviate. 
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of the system then the set of values of x1, …, xp, y1, …, yq, w1, …, wr will collectively define a 

contact element on any integral multiplicity. 

 One will have then realized a prolongation (in the sense of Sophus Lie) of the integral 

multiplicity, and it is those prolonged integral multiplicities that we propose to find. On each of 

them, not only will the yj be well-defined functions 
jy  of the variables x1, …, xp, but the wk will 

also be well-defined functions kw  of those variables that are, moreover, defined once one is given 

the initial multiplicity, due to equations (12). 

 Each (initial) integral multiplicity will then admit the transformations: 

 

(13)  Xi f = 
, 1 1 1

1

( , , , , , , , , )
q

i p q r

i

f f
P x x y y w w

x y


 =

 
+

 
  (i = 1, 2, …, p) 

 

as soon as one replaces the yj and the wk in them with the functions 
jy  and kw  that correspond to 

that multiplicity. However, if one would like to pass to the prolonged multiplicity then one must 

introduce the derivatives: 

wk,i = k

i

w

x




 

 

and replace the transformations (9) with the prolonged transformations: 

 

(14)   
, ,

1 1

q r

i i

i

f f f
y w

x y w
 

  = =

  
+ +

  
   (i = 1, 2, …, p) . 

 

 Now the equations of the system () give no indication in regard to those functions 
,iw  (which 

are the derivatives of the functions w ). One can then confirm only that any prolonged integral 

multiplicity will admit p infinitesimal transformations of the form: 

 

(15)     Xi f + ,

1

r

i

f
w

w


 =




  (i = 1, 2, …, p), 

 

in which the Xi are the transformations (13) that are known, and the w,i are functions of the x1, …, 

xp, y1, …, yq, w1, …, wr that remain to be chosen conveniently. 

 The converse is immediate, and one can conclude that integrating the system () is equivalent 

to determining the p-dimensional integral multiplicities of the sheaf, which are known from 

equations (12) and formulas (13): 

(16)     1

1

, , , , .,p

r

f f
X X

w w

  
 

  
 . 
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 6. Examples. –  

 

 1. The sheaf of infinitesimal transformations that corresponds to the partial differential 

equations: 

p

y

x




 = 

1

1 1

, , , , , ,p

p

y y
x x y

x x −

  
     

 

 

is defined by the transformations: 

 

  Xi = i

i

f f
y

x y

 
+

 
 (i = 1, 2, …, p – 1), 

 

  Xp = 
1 1 1( , , , , , , )p p

p

f f
x x y y y

x y
−

 
+ 

 
 , 

 

and the transformations 
i

f

y




, …, 

1p

f

y −




. 

 

 2. The sheaf that corresponds to the second-order partial differential equation: 

 

t =  (x, y, z, p, q, r, s) 

will have the four transformations: 

 

f f f f
r x s

x z p q

   
+ + +

   
, 

f f f f
q s

y z p q

   
+ + + 

   
, 

f

r




, 

f

s




 

for a basis. 

 

 3. The sheaf that corresponds to the system of second-order partial differential equations: 

 

s =  (x, y, z, p, q, r),  t =  (x, y, z, p, q, r) 

 

is defined by the three transformations: 

 

f f f f
p r

x z p q

   
+ + + 

   
, 

f f f f
q

y z p q

   
+ +  + 

   
, 

f

r




. 
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 7. Complete integrals. – I say, to abbreviate, that a family of multiplicities is regular if one and 

only one multiplicity of the family passes through each point in space (1), and I call any regular 

family of integrals of a sheaf with an arbitrary number of dimensions a complete integral of that 

sheaf. 

 Let {X1, …, Xm} be a sheaf, and let 1 = 2 = … = s = 0 be the dual Pfaff system [no. 4]. If 

the sheaf admits a complete integral then one can reduce it to the form xp+1 = c1, …, xn = cn−p . The 

Pfaff system must then be verified under the hypothesis that dxp+1 = … = dxn = 0 for any x1, …, xp, 

dx1, …, dxp when one replaces xp+1, …, xn with arbitrary constants, i.e., it will be verified identically 

as soon as one sets dxp+1 = … = dxn = 0. Hence, 1 , …, s are linear forms in the dxp+1, …, dxn . 

 Furthermore, one can satisfy the identity (7) [no. 4] by taking 1 , …, p to be the differentials 

dx1, …, dxp, and taking p+1 , …, m to be forms in dxp+1, …, dxn . It will then result that one can 

suppose that X1 = f / x1 , …, Xp = f / xp , i.e., that there exists a complete subsheaf in the given 

sheaf that has the supposed complete integral for its general integral. 

 The search for the complete integrals of a sheaf is then equivalent to the search for complete 

subsheaves of that sheaf. It is implicit that once those complete subsheaves have been found, it 

will still remain for one to integrate them. However, one does that by integrating ordinary 

differential equations, and the goal of the general theory of general differential systems is to carry 

out or simplify their integration by integrating ordinary differential equations. 

 The first part of our theory of integration will then have the goal of discussing the existence of 

complete subsheaves of a sheaf of infinitesimal transformations that are supposed to be given. The 

following section will be devoted to that question. 

 As for the isolated integral multiplicities, some of them will belong to complete integrals, and 

their determination will depend upon the theory in question: One can say that they are particular 

integrals. 

 From the same standpoint, the other ones will be singular integrals. Indeed, part of the essential 

character of our theory must be that it is independent of any change of variables. Now, it is easy 

to show, by examples, that conveniently-chosen changes of variables can make integrals of the 

type that we call singular appear or disappear in a sheaf. Hence, the sheaf 
f

y




, 

f f
y

x z

 
+

 
 has no 

two-dimensional integral multiplicity. Meanwhile, it will take on a (singular) integral x  = 0 under 

the change of variables x = ex, y  = y, z  = z. Similarly, it will take on the (singular) integral y

= 0 under the change of variables x, y = y x , z = z . Indeed, those singular integrals are introduced 

in favor of a singularity in the changes of variables themselves. 

 Moreover, we shall return to the determination of all integral multiplicities (whether singular 

or not) at the end of the following section. 

 

 

 

 

 
 (1) In that general study, we ignore all singularities. Here, it is then implicit that we shall conveniently limit the 

space and multiplicities as appropriate. Restrictions of the same type are made implicitly in all of the analogous cases. 
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II. – INVOLUTIVE SHEAVES. EXISTENCE OF COMPLETE INTEGRALS. 

PROLONGATION OF A SHEAF. 

 

 8. Involutions of a sheaf. – Conforming to the conclusion of the preceding section, we shall 

move on to the search for complete subsheaves of an arbitrary given sheaf {X1, …, Xm}. If that 

given sheaf  is complete then it will admit a unique m-dimensional complete integral: 

 

(1)     Fh (x1, …, xn) = ch  (h = 1, 2, …, n – m) , 

 

and in order to obtain the most general p-dimensional complete integral of the sheaf , it will 

suffice to intersect it with an arbitrary family of regular multiplicities: 

 

(2)     Gk (x1, …, xn) = ak  (k = 1, 2, …, m – p) . 

 

 We then suppose that the given sheaf  is not complete, and we introduce the derived sheaf 

{X1, …, Xm ; Z1, …, Zs}. Here, the sum s + m is equal to at most the number n of variables. From 

the definition of a derived sheaf [no. 2], we will have some identities of the form: 

 

(3)   (Xi, Xj) = 
, , 1 , , 1

1 1

( , , ) ( , , )
s m

i j n i j nc x x Z g x x X   
 = =

+   (i, j = 1, 2, …, m), 

 

in which the functions ci,j,h define what we can call the structure of the sheaf (1). 

 The conditions that express the idea that the subsheaf: 

 

(4)     Uh = , 1

1

( , , )
m

h nu x x X 
 =

   (h = 1, 2, …, p) 

 

is complete are written, in turn, as: 

 

(5)     0 = (Uh, Uk) = 
, , , , , , , , , ,

1 1 1 1 1 1

s m m m m m

h k h k k h h kc u u Z U u U u g u u X             
     = = = = = =

   
+ − +   

   
    , 

 

which gives the conditions: 

(6)     
, , , ,

1 1

m m

h kc u u    
 = =

 = 0 (j = 1, 2, …, s) 

and 

 

 
 (1) It will suffice to take the sheaf in the solved form [no. 1] in order to make the functions gi,j,k disappear from 

formulas (3). 
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(7)    
, , , , , ,

1 1

m m

h k k h h kU u U u g u u      
 = =

− + = 0 (i = 1, 2, …, m). 

 

 It is convenient to first consider the conditions (6), which have a purely-algebraic character. 

They are equivalent to the identities-congruences: 

 

(8)     (Uh, Uk)  0 (mod ) (h, k = 1, 2, …, p), 

 

as one sees immediately from the expressions (5) for the brackets (Uh, Uk). 

 We say that two infinitesimal transformations of the sheaf  are in involution if their bracket 

belongs to the sheaf, i.e., if that bracket is congruent to zero (mod ), and that a subsheaf {U1, …, 

Up} of  is an involution of degree p of that sheaf if its transformations are pair-wise in involution 

(1). It is among the involutions of degree p in the sheaf  that we will find the complete subsheaves 

of degree p. 

 

 

 9. Involutive sheaves of order p. – In order to determine the general involution of degree p, 

one can write the congruences (8) in the form: 

 

(81)   (U1, U2)  0 , 

(82)   (U1, U3)  0 ,  (U2, U3)  0 , 

…    …………….  …………… 

(8p−1)   (U1, Up)  0 ,  (U2, Up)  0 ,  …, (Up, Up−1)  0 . 

 

If U1 is given as a general transformation of the sheaf  then one takes U2 to be the general solution 

of the identity-congruence: 

(91)   (U1, U)  0  [U = 1

1

( , , )
m

nu x x X 
 =

 ] , 

 

and then takes U3 to be the general solution of the identities-congruences: 

 

(92)    (U1, U)  0, (U2, U)  0, 

 

and so on, until one ultimately takes Up to be the most general solution of the identities-

congruence: 

 

(9p−1)   (U1, U)  0 , (U2, U)  0 , …, (Up−1, U)  0 , 

 
 (1) The elementary displacements that the transformations of an involution of degree p determines at each point of 

space constitute an integral element of order p, in Cartan’s terminology. 
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if no obstruction presents itself. 

 Of course, it is necessary that (91) must admit other solutions than the transformations of the 

sheaf {U1}, that (92) must admit other solutions than the transformations of the sheaf {U1, U2}, 

and so on, and finally, that (9p−1) must admit other solutions than the transformations of the sheaf 

{U1, …, Up−1}. 

 If that is true then the sheaf  will be called an involutive sheaf of order (at least) p. The 

definition of an involutive sheaf of order p is then the following one: The general transformation 

of the sheaf belongs to an involution of degree at least 2. The general involution of degree 2 

belongs to an involution of degree at least 3, and so on. Finally, the general involution of degree 

p – 1 belongs to an involution of degree at least p. 

 One notes that all systems (91), (92), …, (9p−1) are equivalent to systems of equations that are 

homogeneous and linear in u1, …, um . The degree of indeterminacy of each of them is then fixed 

by the rank of the linear system that it then provided (viz., the degree of the principal determinant), 

and it cannot be raised if one successively specializes U1, U2, …, Up−i . We let q1, q2, …, qp−1 

denote the ranks of those linear systems, which are calculated by keeping all of the indeterminacy 

in U1, U2, …, Up−1 that is found in each of those transformations, in succession, and is susceptible 

to the application of the preceding calculations. 

 In other words, q1 is the number of independent linear equations (in u1, u2, …, um) that express 

the idea that the transformation U = u1 X1 + u2 X2 + … + um Xm of the sheaf is in involution with 

the general transformation (of the sheaf). q2 is the number of independent linear equations that 

express the idea that U is in involution with each of the transformations of the general involution 

of degree 2 (of the sheaf), and so on. 

 If  is an involutive sheaf of order p then, from the foregoing, one will have: 

 

(10)   q1 + 1 < m , q2 + 2 < m , …, qp−1 + (p – 1) < m , 

 

since m −  q1, m − q2, …, m – qp−1 are the numbers of independent solutions of the successive 

systems (91), (92), …, (9p−1). We remark that, on the other hand: 

 

(11)     q1  q2   …  qp−1 , 

 

since the equations of each of the linear systems considered belong to the following system. 

Finally, if one sets q = m – p then the last of the inequalities (10) is written qp−1  q . 

 

 

 10. Genus, indices, and characters of a sheaf. – The genus g of a sheaf  is the maximum 

order of involutivity of the sheaf. By definition, a sheaf of genus g is then involutive of order p if 

p  g and it is not if p > g. 

 Consider the identities-congruences for such a sheaf: 

 

(12)    (U1, U)  0, (U2, U)  0, …, (Ug, U)  0, 
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in which {U1, …, Ug} is the general involution of degree g of sheaf. The rank of the corresponding 

linear system in u1, …, um is then: 

 

(13)      qg = m – g , 

 

since the congruences (12) are satisfied only if U belongs to the sheaf {U1, …, Ug}, from the 

definition of the genus g. 

 The characters (1) of the sheaf are, by definition, the positive or zero integers: 

 

(14)  s1 = q1 , s2 = q2 − q1 , s3 = q3 − q2 , …, sg = qg − qg−1 , 

 

and conversely, one will have one calls the indices of the sheaf for the integers q1, q2, …, qg : 

 

(15) q1 = s1 , q2 = s1 + s2 , q3 = s1 + s2 + s3 , …, qg = s1 + s2 + … + sg . 

 

 We remark that if s2 is the number of independent equations of the linear system that is 

provided by (91) and s1 + s2 is the number of (independent) equations of the linear system that is 

equivalent to (92) then s2 is the number of (independent) equations that (U2, U)  0 adds to the 

ones that are provided by (U1, U)  0. Therefore, s2 cannot be greater than the number of 

independent equations that are provided by (U2, U)  0, when considered by itself, and the latter 

number cannot be greater than s1 [no. 9], but it can be less, since U2 is in involution with U1, so it 

will no longer be the most general transformation of the sheaf . 

 One then concludes that s2  s1, and similarly, s3  s2, and so on. 

 Hence, the characters of the sheaf are coupled by the inequalities: 

 

(16)     s1  s2  s3  …  sg . 

 

As a result, if one of the characters is zero then all of the following ones will also be so. 

 

 

 11. Solved form of the involutions. – Let us return to the study of the involutions of a sheaf 

while preserving all of the preceding notations. In the general involution of degree p of the sheaf 

: 

 

(17)   Uh = uh,1 X1 + … + uh,m Xm  (h = 1, 2, …, p; p  g), 

 

which is supposed to be calculated by the method in no. 9, the coefficients u1, ( = 1, 2, …, m) 

are arbitrary, the coefficients u2, are coupled by q1 independent linear equations (whose 

coefficients depend upon the u1,), the coefficients u3, are coupled by q2 independent linear 

 
 (1) The genus and characters of a sheaf are the same numbers that Cartan introduced under the same names for the 

dual Pfaff system of the sheaf. The inequalities that we establish in regard to them are therefore not new. 
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equations (whose coefficients depend upon the u1, and m – q1 functions u2, that remain arbitrary), 

and so on. Taken together, the coefficients: 

 

u  ( = 1, 2, …, p ;  = 1, 2, …, m) 

 

are then coupled by q1 + q2 + … + qp−1 independent equations. 

 In order to have the number of arbitrary variables in any subsheaf (17), one must take it in its 

solved form, for example, in the form: 

 

(18)   Vh = Xh + ,

1

q

hv X 
 =

   (h = 1, 2, …, p ; q = m – p). 

 

That number of arbitrary variables is therefore pq, and the number of essential arbitrary variables 

in the general involution of degree p of the sheaf  is equal to: 

 

(19)    Q = pq – (q1 + q + … + qp−1) . 

 

 In order to exhibit those Q arbitrary variables, recall the search for that general involution by 

putting into the form (18) from the outset and following the same route as in no. 9. We must 

successively consider the systems of identities-congruences: 

 

(201)   (V1, U)  0 , 

 

(202)   (V1, U)  0 , (V2, U)  0 , 

…    …………..., …………..., 

(20p−1)   (V1, U)  0 , (V2, U)  0 , …, (Vp−1, U)  0 , 

 

in which we have further set: 

U = u1 X1 + … + um Xm . 

 

 If the transformation V1 is non-singular [no. 9] for arbitrary values of v,1 then the general 

solution to (201) in terms of u1, …, um will depend upon m – q1 arbitrary ones. Furthermore, u1, …, 

up cannot be coupled by any relation, because when the Vh are the ones that the first method gives, 

the system (201) will admit the solution: 

 

u1 V1 + u2 V2 + … + up Vp = u1 X1 + u2 X2 + … + up Xp + …, 

 

in which the u1, …, up are arbitrary. Hence, if u1, …, up are arbitrary for a certain choice of the v,1 

then they will also be so a fortiori when the v,1 are indeterminate. Hence, in the general solution 

of (201), the u1, …, up are arbitrary, as well as the m – p – q1 other coefficients of U, whereas the 

other coefficients of U are expressed in terms of them. It then results that there are solutions of the 
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form V2 (which are obtained for u1 = 0, u2 = 1, u3 = 0, …, up = 0), and that in the most general of 

them, q1 of the v,1 are expressed in terms of q – q1 other ones, which will remain arbitrary. 

 If the general involution {V1, V2} thus-obtained is non-singular [no. 9] then one can argue 

similarly with the system (202), and so on. 

 Thus, the arbitrariness in the general involution (18) comes from: The q coefficients v,1 , q – 

q1 of the v,2, q – q2 of the v,3, …, q – qp−1 of the v,p . The v,2 that are not arbitrary are expressed 

in terms of the v,1, and the v,2 remain arbitrary. The v,3 that are not arbitrary are expressed in 

terms of the v,1, and the v,2 and v,3 remain arbitrary, and so on. 

 One can remark, moreover, that if q – qk−1 of the coefficients u1, …, um are arbitrary in the 

general solution of (20k) then they will be arbitrary a fortiori in the general solution to (20k−1), 

which is contained in (20k). One can then choose the notations in such a manner that the arbitrary 

coefficients are: 

 

v1,1 , …, vq,1 ;  
1 1,2qv +

, …, vq,2 ; 
2 1,3qv +

, …, vq,3 ; …, 
1 1,pq pv

− +
, …, vq,p . 

 

 It remains to show that one can take X1, …, Xp in such a manner that the successive involutions: 

 

{V1}, {V1, V2}, …, {V1, V2, …, Vp−1} 

 

to which an application of the method will lead are all non-singular. 

 To that effect, we remark that this will be the case when one takes X1, …, Xp to be pair-wise in 

involution and such that the involutions: 

 

{X1}, {X1, X2}, …, {X1, X2, …, Xp−1} 

 

are all non-singular. That is true because, by hypothesis, that will be the case when one annuls all 

of the v,h (h = 1, 2, …, p), and as a result, it will be true a fortiori when one subjects them to only 

the conditions (Vh, Vj)  0 (h, j = 1, 2, …, p) that those conditions will be verified by hypothesis 

when one annuls all of the v,h . 

 Having said that, start from an arbitrary basis 0 0

1{ , , }mX X  of the sheaf , and take: 

 

Xh = 
0

,

1

m

hu X 
 =

  (i = 1, 2, …, m) 

 

in the foregoing, in which u,i are indeterminate (and functions of the x1, …, xn, like all of the 

arbitrary things that we introduce). V1 will cease to be non-singular only when the coefficients u,1 

satisfy a certain system S1 of algebraic equations. The involution {V1, V2} that is then calculated 

by the preceding method will then cease to be non-singular only if the coefficients u,1 and u,2 

satisfy a certain system S2 of algebraic equations, and so on. None of those systems S1, S2, … is 

verified by all systems of values for the u, , since we have seen that one can choose the u,  in 

such a manner that none of the systems S1, S2, … is verified. 
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 The method can certainly be applied then without one being obligated to take the X1, …, Xp in 

the way that we just did, viz., transformations that are pair-wise in involution. 

  I shall now say that upon performing a change of the preliminary variables, if necessary, one 

can apply the method by taking X1, …, Xm to be the basis for the sheaf when it has been solved for 

the derivatives 
1

f

x




, …, 

m

f

x




 [no. 1]. 

 Indeed, suppose that 1 0

0{ , , }mX X  is precisely that solved form: 

 

0

kX  = 
, 1

11

( , , )
n

k n

m m

f f
x x

x x





= +

 
+

 
   (k = 1, 2, …, m), 

 

and make a change of variables of the form: 

 

(21)   xi = i (y1, …, ym, xm+1, …, xn) (i = 1, 2, …, m). 

 

 Now solve the sheaf in the form: 

 

Yh = 
, 1 1

1

( , , , , , )
n

h m m n

mh

f f
y y x x

y x


 

 +

= +

 
+

 
  (h = 1, 2, …, m) . 

 

 Under a change of variables (21), Yh will become, conversely, a transformation of the sheaf : 

 

Xh = 1 , 1 ,

1 1

h h m h m h n

m m n

f f f f
Y Y

x x x x
   +

+

   
+ + + +

   
, 

so one will have the identity: 

 

Xh = 
0

1

m

hY X 



=

  (h = 1, 2, …, m) . 

 

 For an arbitrary choice of the functions , the Yh  = 
hY




 + … cannot be coupled by any 

system of algebraic equations that are not of an identical nature. Hence, they will not generally 

satisfy any of the differential systems that one deduces from the systems S1, S2, … by setting u,h 

= Yh  , and that proves that our assertion is legitimate. 

 

 

 12. Existence of complete subsheaves of degree 2. – We can now establish the existence of 

complete subsheaves for all degrees p that do not exceed the genus g of the sheaf  considered, 
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i.e., complete integrals that have a given number p of dimensions that is equal to at most that genus 

g. We begin with the subsheaves of degree 2, and we pass on the general case by recurrence. 

 We take the transformations for the basis of the sheaf in the solved form [no. 1, eq. (5)]: 

 

(22)   Xk = 
, 1

1

( , , )
n

k m

mk

f f
x x

x x


 


= +

 
+

 
   (k = 1, 2, …, m) , 

 

in such a way that the identities (3) [no. 8] will have the form: 

 

(23)   (Xi , Xj) = , , 1

1

( , , )
s

i j mc x x Z 
 =

   (i, j = 1, 2, …, m) , 

 

in which the Zh are themselves transformations of the sheaf: 

 

1

, ,
m n

f f

x x+

  
 

  
 . 

 

 Start from the general involution of degree 2 {V1, V2} taken in the form: 

 

(24)  V1 = X1 + ,1 2

1

q

v X 


+

=

 , V2 = X2 + ,2 2

1

q

v X 


+

=

  (q = m – 2). 

 

 Since one has involution [no. 8], one has identically: 

 

(V1, V2) = 1 ,2 2 ,1 2

1

( )
q

V v V v X  


+

=

− , 

 

in such a way that the sheaf {V1, V2} will be complete under the conditions that: 

 

(25)    V1 v,2 – V2 v,1 = 0  ( = 1, 2, …, q). 

 

 Since {V1, V2} is the general involution of degree 2, one can consider [no. 11] the v,2 and q – 

q1 of the v,1 in formulas (24) to be arbitrary; the other v,1 are functions of those arbitrary ones (1). 

If one replaces those v,1 with their expressions in the condition equations (25) then one can 

consider the other v,1 (for example, 
1 1,1qv +

, …, vq,1) to be arbitrarily-chosen functions of the x1, …, 

xn, in such a way that they will be a system of partial differential equations that relate to only the 

v1,1, …, vq,2 . 

 
 (1)  One can take X1, …, Xp in any order in the considerations of no. 11. 
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 It then results from the solved form for X1 and X2 that this system is a Kowalewski system. It 

will then admit a solution for which the functions v,2 (
0

1x , x2, …, xn), in which 0

1x  is an arbitrary 

numerical value of x1, are arbitrarily-given functions, and that is the general solution of that system 

(25). 

 We then conclude that if a sheaf has genus  2 then it will contain complete subsheaves of 

degree 2, and the general complete sheaf of degree 2 will depend upon n – 2 – q1 arbitrary functions 

of n arguments and m − 2 arbitrary functions of n – 1 arguments. Recall that n is the total number 

of variables and m is the degree of the sheaf. 

 

 

 13. General existence theorem. – We shall preserve the notations of the preceding sections and 

look for the complete subsheaves of arbitrary degree p, which is less than or equal to the genus g 

of the given sheaf . We suppose that such a subsheaf has been put into the solved form: 

 

(26)   Vi = Xi + ,

1

q

i pv X 


+

=

   (i = 1, 2, …, p ; q = m – p) . 

 

 From the result that was obtained for p = 2, it is natural to think that such subsheaves exist and 

that for the most general of them, the arbitrary data are q – qp−1 of the functions v,1, the values 

(1) of q – qp−1 of the functions v,2 for x1 = 0

1x , the values of q – qp−3  of the functions v,3 for x1 = 

0

1x , x2 = 0

2x , etc., the values of q – q1 of the functions v,p−1 for x1 = 0

1x , …, xp−2 = 0

2px −
, and finally 

the values of q of the functions v,p for x1 = 0

1x , …, xp−1 = 0

1px −
. 

 We shall suppose that this theorem was established for the subsheaves of degrees 2, 3, …, p – 

1, and examine whether it persists for the subsheaves of degree p. 

 We will have some identities of the form: 

 

(27)   (Vi, Vj) = 
, , , ,

1 1

q

i j i jA X C Z    
 

+

= =

+     (i, j = 1, 2, …, p) 

upon setting: 

 

(28)     Ai,j, = Vi v,j – Vj v,i 

 

and upon letting Ci,j,k denote the left-hand sides of the algebraic equations: 

 

(29)   Ci,j,k = 0  (i, j = 1, 2, …, p ; k = 1, 2, …, s) , 

 

 
 (1) We shall use the word value, to abbreviate, to refer to a function of all of the variables x1, …, xn other than the 

ones to which one gives the name of well-defined numerical values 0

1x , 0

2x , … 
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which expresses the idea that the subsheaf is an involution of . In order for the subsheaf to be 

complete (cf., no. 8), one must add the differential equations: 

 

(30)    Ai,j,k = 0 (i, j = 1, 2, …, p ; k = 1, 2, …, q) . 

 

 First consider the equations: 

 

(31)    Ci,j,k = 0 (j = 2, 3, …, p ; k = 1, 2, …, s) , 

 

which are linear in v1,1, …, vq,1 . 

 In the general involution {V1, V2, …, Vp}, they will determine V1 when one supposes that the 

general involution {V2, …, Vp} is given. There will then be qp−1 of those equations that are 

independent, and the other ones will be consequences of them. Isolate those qp−1 equations and let 

the notation: 

 

(32)    rh (v1,1, …, vq,1) = 0  (h = 1, 2, …, qp−1) 

 

denote those of equations (31) that they provide when one supposes that the v,p are entirely 

undetermined. Those equations (32) are a fortiori independent, and one will have some identities 

of the form: 

(33)    Ci,j,k = 
1

, , , , , , , , ,

1 2 2 1

pq p p s

j k j k jF C       
   

 
−

= = = =

+   

 

in order to express the idea that the system (31) will reduce to the system (32) when one introduces 

the relations between the v,2, v,3, …, v,p that express the idea that {V2, …, Vp} is an involution, 

i.e., the equations: 

 

(34)    Ci,j,k = 0 (i, j = 2, 3, …, p ; k = 1, 2, …, s) . 

 

The  are functions of the v,2, v,3, …, v,p, and the  depend upon those indeterminates, along 

with those of the quantities v,1 that are left arbitrary in equations (32). To fix ideas, we suppose 

that the latter are 
1 1,1pqv

− +
, …, vq,1 (

1). 

 
 (1) Indeed, one can first write some identities of the form: 

 

(33, cont.)   Ci,j,k = 
1 1

1, , , , ,1 , ,0

1 1

p p

p

q q q

j k j k q j kF v   
 

  
− −

−

−

+

= =

+ +  . 

 

 The equations j,k,l = 0 are consequences of equations (34) because if one supposes that those equations (34) are 

verified by the 
,2v

, 
,3v

, …, 
,v 

  then the Ci,j,k , which are linear functions of the v1,1, …, 
,1qv , will then become 

homogeneous combinations of nothing but linear functions (of those variables) F1, …, 
1pqF

−

. 
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 Having made that remark, we consider the mixed system: 

 

(35)    Fh (v1,1, …, vq,1) = 0  (h = 1, 2, …, qp−1), 

 

(36)    A1,j,k = 0 (j = 2, 3, …, p ; k = 1, 2, …, q). 

 

 We infer the values of v1, …, 
11, pqv

−
in equations (35) and substitute them in equations (36). If 

we then consider 
1 1,1pqv

− +
, …, vq,1 to be arbitrarily-chosen functions of x1, …, xn then they will be 

equations of Kowalewski type in the 
,2v , 

,3v , …, 
, pv , because they are found to be solved for 

the expressions V1 vj,k (j = 2, 3, …, p ; k = 1, 2, …, q), and V1 is the only one of those operators Vi 

in which the derivative f / x1 appears. 

 Hence, the system (35), (36) will determine all of the vi,j when one is given (arbitrarily) the 

expressions for
1 1,1pqv

− +
, …, vq,1, and the functions of x2, …, xn to which the various unknowns 

,2,v  

,3v , …, 
, pv  ( = 1, 2, …, q) reduce for x1 = 0

1x . 

 

 

 14. Continuation and conclusion. – We choose those initial data in such a manner that the sheaf 
(0) (0)

2{ , , }pV V  is complete. Here and in what follows, the index (0) signifies that x1 has been 

replaced with 0

1x . That should create no difficulties when the derivatives f / x1 does not appear, 

which is the case for V2, …, Vp . 

 For the same reason, the existence of complete sheaves (0) (0)

2{ , , }pV V  results from that of 

complete subsheaves {V2, …, Vp}, i.e., from the hypothesis that we are reasoning by recurrence 

itself. 

 We will thus have completely determined a general type of subsheaf {V2, …, Vp} in which the 

number and nature of the arbitrary data that were enumerated in the statement of our theorem (no. 

 
 Now consider equations (34). One knows (no. 11) that one solves them step-by-step: One first solves q1 of them 

with respect to q1 of the 
, 1pv −

, then solves q2 other ones with respect to q2 of the 
, 2pv −

, and so on. Finally, one 

solves qp−2 of them with respect to qp−2 of the 
,2v

. All of the systems that one must solve are linear and have non-

zero determinants: Let H1 = H2 = 0 be the set of equations of all those systems. If one considers the equations H1 = 

w1, H2 = w2, …, in which w1, w2, … will be auxiliary indeterminates that are left to solved. 

 Substitute the values thus-obtained for the 
,2v

, 
,3v

, …, 
, 1pv −

 that one has solved for, and the j,k,l will become 

rational functions of the 
,2v

, …, 
, 1pv −

 that remain arbitrary and the w1, w2, … Each of those rational functions that 

are annulled for w1 = w2 = … = 0 will be written in the form M1 w1 + M2 w2 + …, where the coefficients M1, M2, … 

can depend upon the 
,2v

, …, 
, 1pv −

 that remain arbitrary and w1, w2, … One will get an identical expression for that 

function  upon replacing w1 with H1 , w2 with H2, … in the expression M1 w1 + M2 w2 + … Thus, every function j,k,l 

can be written in the form of a homogeneous polynomial of degree one in a certain number of the Ci,j,k , which are the 

left-hand sides of equations (34). In order to obtain the identities (33) in the text, all that remains then is to substitute 

the expressions thus-obtained for the j,k,l in the formulas (33, cont.). 
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13) will appear. It remains for us to verify whether the subsheaf thus-obtained is indeed complete, 

because for the moment we know only that it satisfies the conditions (35), (36), and: 

 

(37)  (0)

, ,i j hA  = 0, (0)

, ,i j hC  = 0 (i, j = 2, 3, …, p ; h = 1, 2, …, q ; k = 1, 2, …, s). 

 

 To that end, start from the Jacobi identity: 

 

(V1, (Vi, Vj)) = (Vi, (V1, Vj)) − (Vj, (V1, Vi)) . 

 

In the context of the identities (27) and (36), it will give: 

 

(38)  
1 , , 1 , , , , 1 , , 1

1 1 1 1

( , ) ( , )
q qs s

i j p i j i j p i jV A X V C Z A V X C V Z       
   

+ +

= = = =

 +  + +     

 

= 
1, , 1, , 1, , 1, ,

1 1 1

( ) ( , ) ( , )
s s s

i j j i j i i jV C V C Z C V Z C V Z      
  = = =

−  + −    . 

 

The brackets (V1, Z), (Vi, Z), (Vj, Z) are expressed as homogeneous linear functions of the Xp+, 

the Z, and after some other transformations T, they can be made to be independent of the 

preceding ones (and to belong to the second derived sheaf of ). It would suffice to equate the 

coefficients of the Xp+ and Z in the two sides of the equation. 

 We point out that the terms in F in the identities (33) will disappear as a result of the identities 

(35), and if we appeal to those identities in order to transform the right-hand side of our identity 

(38) then we will get identities of the form: 

 

(39) 
1 , , , , , ,

1 , , , , , , , , , ,

homogeneous linear functions of  the  and the ,

homogeneous linear functions of  the , , , and ,

i j k

i j k i j

V A A C

V C A C V C V C

     

           

=


=
 

 

in which the indices i, j, h, k can take all values that they have in the identities (37). The indices , 

 are taken in the sequence 2, 3, …, p, and the indices  and  are taken from the sequences 1, 2, 

…, q and 1, 2, …, s, respectively. 

 One will then have a Kowalewski system relative to the Ai,j,k and Ci,j,k (i, j > 1) that has been 

solved for the derivatives of the type f / x1, and since those functions are zero for x1 = 0

1x , one 

will conclude that they are identically zero, because equations (39) are verified if one replaces all 

of the unknowns with zero, and the solution that is determined by the initial conditions (37) is 

unique. 

 It will now suffice to recall the identities (33) for us to conclude that the C1,j,k are also all zero. 

The equations of condition (29) and (30) are all verified then, so the subsheaf {V1, …, Vp}, which 

is determined in the stated way, will be complete, and the existence theorem for complete integrals 

that was stated at the beginning of no. 13 will be established. 
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 We then conclude that a sheaf of order p admits complete p-dimensional integrals. The most 

general of those complete integrals depends upon q – qp−1 arbitrary functions of n arguments, q – 

qp−2 arbitrary functions of n – 1 arguments, etc., …, of q – q1 arbitrary functions of n – p + 2 

arguments, and finally of q arbitrary functions of n – p + 1 arguments. The choice of those arbitrary 

functions is explained by the statement in no. 13. Recall that n is the total number of variables, m 

is the degree of the sheaf [no. 1], that q = m – p, and that the whole numbers q1, q2, …, qp−1 are the 

first p – 1 indices of sheaf [no. 10]. 

 In the existence theorem that Cartan established for the integrals of systems of Pfaff equations, 

the arbitrary functions for the general p-dimensional integral multiplicity are q – qp−1 arbitrary 

functions of p arguments, qp−1 – qp−2 = sp−1 arbitrary functions of p – 1 arguments, etc., q1 = s1 

arbitrary functions of one argument, and n – m arbitrary constants. The integers s1, …, sp−1 are the 

first p characters of the Pfaff system, and consequently, they will also be characters of the sheaf of 

infinitesimal transformations that is its correlate. 

 It is not surprising that the arbitrary functions take different forms in the two theories: One of 

them has isolated integrals in mind, while the other has complete integrals in mind, and an isolated 

integral belongs to an infinitude of complete integrals. One easily accounts for the difference by 

considering the one-dimensional integral multiplicities, because in one case, one then has a system 

of n – m ordinary differential equations in n – m unknown functions, which is a system that depends 

upon the choice of m – 1 arbitrary functions of one variable, and in the other case, one has a 

homogeneous linear partial differential equation that depends upon m – 1 arbitrary functions of n 

arguments. One remarks that one will be led to set q0 = 0. 

 

 

 15. The integrals of a sheaf and its successive prolongations. – In the foregoing, we proved 

the existence of p-dimensional complete integrals that we can call general for any involutive sheaf 

of order p. We now recall the search for p-dimensional integral multiplicities for an arbitrary sheaf 

, which is supposed to be given, without making any restricting hypothesis on either the sheaf or 

the integral multiplicities in question. 

 We suppose that the variables x1, …, xp, for example, will remain independent of the integral 

multiplicity Mp considered, and we let X1, …, Xp denote the transformations of the sheaf that is 

soluble for the 
1

f

x




, …, 

p

f

x




. The subsheaf of  that leaves Mp then has the form: 

 

(40)   Vi = Xi + 
1

q

i pv 


 +

=

   (p + q = m ; i = 1, 2, …, p) . 

 

 It is well-known that a multiplicity cannot admit two infinitesimal transformations without 

admitting their bracket. It then results that on the multiplicity Mp, the (Vi, Vj) will reduce to 

homogeneous linear combinations of V1, …, Vp , and a fortiori of X1, …, Xm . Therefore, the 

congruences: 
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(41)    (Vi, Vj)   0 (mod ) (i, j = 1, 2, …, p) 

 

are realized on Mp. 

  Those congruences [nos. 8 and 13] provide a system of equations () for the xi (i = 1, 2, …, n), 

and the vij (j = 1, 2, …, q ; i = 1, 2, …, p).  

 If that system () implies some relations between only the xi then the multiplicity Mp must 

satisfy those relations. It must also satisfy relations of the same nature that one can possibly deduce 

by a repeated application of the operations Vi . Therefore, if, among all of those relations, there are 

some that couple the x1, …, xp with each other then the multiplicity Mp could not exist (1). If that 

case is excluded then the relations in question will permit one to infer certain dependent variables 

xp+1, …, xn as functions of the other ones and the x1, …, xp . One can then reduce the number of 

unknown functions xp+1, …, xn by truncating the infinitesimal transformations of the sheaf. If, for 

example, one has expressions for 1nx + , …, xn such as: 

 

(42)    nx +  =  (x1, …, )nx   ( = 1, 2, …, )n n−  

 

then it will suffice to suppress the terms in 
1n

f

x +




, …, 

n

f

x




 in the transformations Xh (h = 1, 2, …, 

m) and to replace 1nx + , …, xn with their expressions in (42) in the other. One then begins the 

calculations anew with the sheaf thus-truncated. 

 In the second place, it can happen that the system () does not imply any relation between only 

the x1, …, xn that can be solved for all of the vji . In that case, the transformations (40) are well-

determined, and one will be reduced to a problem that was treated by Sophus Lie: Find all p-

dimensional multiplicities that admit p given infinitesimal transformations (2). The complete 

solution will depend upon calculations that involve eliminating variables and integrating the 

complete system. 

 Let us remain in the case where the equations () leave x1, …, xn independent and permit us to 

calculate a certain number of the vj,i (the calculations will then be linear algebraic solutions) as 

functions of the x1, …, xn and the other vj,i, which remain arbitrary. Let w1, …, wr denote the latter, 

or more generally, some indeterminates of a minimum number by means of which one can express 

all of the vj,i in such a fashion as to satisfy equations () in the most general manner. One will then 

replace equations () with a solved system of the form: 

 

(43)   vj,i = Pj,i (x1, …, xn, w1, …, wr) (i = 1, 2, …, p ; j = 1, 2, …, q) . 

 

 
 (1) That is, one must repeat the calculation after taking p other independent variables from among the x1, …, xn . 

 (2) Furthermore, one deals with the simple case in which those transformations remain divergent on the 

multiplicity. 
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 Here, one observes the analogy with the considerations of no. 5. If one supposes that X1, …, 

Xm are solved for the 
1

f

x




, …, 

m

f

x




 then on the supposed multiplicity Mp , the vj,i will be equal to 

the partial derivatives 
p j

i

x

x

+


 (j = 1, 2…, m – p), and the other partial derivatives of the type m h

i

x

x

+


 

(h = 1, 2…, m – n) are known linear functions of the vj,i , since they are equal to the coefficients of 

the derivatives 
m h

f

x +




 in the Vi . In regard to equations (43), one then sees that on the desired 

multiplicity Mp , w1, …, wr are coordinates of the contact element that is associated with the point 

(x1, …, xn) of that multiplicity. 

 If X1, …, Xm are not in solved form then the partial derivatives 
p j

i

x

x

+


 (j = 1, 2…, n – p) will 

be rational functions of the vj,i , and the conclusion will be same. 

 One can proceed as in no. 5. One introduces w1, …, wr as new variables (functions of x1, …, 

xp) and replaces the search for the multiplicity Mp in the space of (x1, …, xn) with the search for 

the prolonged multiplicity 
pM  , which is found to be defined in the space (x1, …, xn, w1, …, wr) by 

means of formulas (43), and in order to do that, it will suffice to replace the given sheaf with 

the prolonged sheaf ( ) , which is defined by the transformations: 

 

(44)  iX   = , 1 1

1

( , , , , , )
q

i i n r pX P x x w w X 


+

=

+    (i = 1, 2, …, p)  

and 

(45)     
1

f

w




,  

2

f

w




, …, 

f

w




. 

 

 One then operates on the sheaf   as one does on the sheaf , i.e., upon considering the 

transformations 

 

(46)  iV   = 
,

1

r

i i

r

f
X w

w


 =


+


   (i = 1, 2, …, p) 

 

in place of the V1, …, Vp, in which the wj,i must play the role that was previously played by the vj,i, 

and so on. 

 If one arrives at an involutive sheaf of order p at some point then the problem will be solved 

by the search for the complete general integral of degree p in that sheaf, because one will then find 

oneself in the presence of a general involution of degree p in that sheaf that has been put into 

solved form [no. 11]. In that case, one does not have to pass on to the following prolongation (1). 

 
 (1) In that case, one can show that the prolongation will again lead to an involutive sheaf of order p.  
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 The only case that remains unresolved is then the one is which the method will lead to an 

infinitude of successive prolongations, but one can show (1) that one will then necessarily arrive 

at an involutive sheaf of order p by one of those prolongations. 

 

 

III. – DISTINGUISHED TRANSFORMATIONS AND CAUCHY CHARACTERISTICS. 

 

 16. Invariance of a sheaf under a transformation. – Let {X1, …, Xm} be a sheaf  of 

infinitesimal transformations. If one performs the same finite transformation: 

 

(1)     ix  = fi (x1, …, xn)   (i = 1, 2, …, n) 

 

on its various transformations then one will get a sheaf  that is defined by the basis 

transformations: 

(2)     
kX f  = 

1

n

k

f
X x

x


 =





    (k = 1, 2, …, m) . 

 

Those transformations are found to be written with the letters 1x , …, nx . On the other hand, let  

denote what the sheaf  will become when one simply puts primes on each of the symbols x1, …, 

xn, and let 1X  , …, mX   denote what each of those basis transformations will then become. 

 If the sheaves  and   are thus the same then one will say that  is invariant under the 

transformation (1). The analytical condition for that to be true is then expressed by some identities 

of the form: 

(3)     
kX  = , 1

1

( , , )
m

k nx x X 



=

     (k = 1, 2, …, m) . 

 

 When that is true, the transformation (1) will change any integral multiplicity of the sheaf  

into an integral multiplicity of the same sheaf. The converse is true. It likewise suffices that the 

transformation (1) should change any one-dimensional integral of  into an integral of . 

 Under the same conditions, we say that the sheaf  admits the transformation (1). 

 

 

 17. Invariance of a sheaf under and infinitesimal transformation. – If one supposes that the 

sheaf is invariant under each transformation: 

 

(4)     ix  = fi (x1, …, xn | t)   (i = 1, 2, …, n) 

 

 
 (1) I shall return to that proof (and that of the theorem that was stated in the preceding footnote) in a later work.  
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of a one-parameter group then the identities (3) will take the form: 

 

(5)    
kX  = , 1

1

( , , | )
m

k nx x t X 



=

     (k = 1, 2, …, m), 

 

and one can differentiate the two sides with respect to t while considering 1x , …, nx , and t to be 

the independent variables. The derivative of the left-hand side is then identical to the bracket (Xk, 

X), where X f is the infinitesimal transformation that is the generator of the group (4), and the 

variables x1, …, xn are expressed in terms of 1x , …, nx  in the bracket (1). If one sets t = 0 in both 

sides of the identities thus-obtained [that value of t is supposed to be the one for which (4) reduces 

to the identity transformation] then one will get identities of the form: 

 

(6)    (Xk, X) = , 1

1

( , , )
m

k nx x X 



=

  (k = 1, 2, …, m). 

 

 Conversely, if such identities are true then it will suffice to replace x1, …, xn with functions of 

1x , …, nx , t by means of formulas (4) in order to get identities of the form: 

 

(7)    kdX

dt
 = , 1

1

( , , | )
m

k nx x t X 



=

   (k = 1, 2, …, m). 

 

One then concludes that the 
kX  are homogeneous linear functions of their initial values 

jX  , with 

coefficients that are functions of 1x , …, nx , and t, i.e., the existence of identities of the form (5). 

 Hence, in order for a sheaf  to be invariant under the transformations of a one-parameter 

group, it is necessary and sufficient that the brackets of the basis transformations of the sheaf with 

the infinitesimal transformation of the group should belong to the sheaf, i.e., that one will have the 

identities-congruences: 

 

(8)     (Xk, X)  0 (mod ) (k = 1, 2, …, m). 

 

 We express that fact by saying that the sheaf  remains invariant under the infinitesimal 

transformation X f. 

 

 

 18. Distinguished transformations of a sheaf. – While generalizing the use of a terms in S. 

Lie’s theory, we say that a transformation of a sheaf is a distinguished transformation if it leaves 

 
 (1) One can avoid appealing to that theorem of S. Lie by reducing the group (4) to the canonical form: 

 

ix  = xi  (i = 1, 2, …, n – 1), 
nx  = xn + t . 
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the sheaf invariant. From the form of the conditions (8) that amounts to saying that it is in 

involution with each of the transformations of the sheaf. The following consequences result 

immediately from that: 

 

 1. If a sheaf is complete then each of its transformations will be a distinguished 

transformation. 

 

 2. Conversely, if a sheaf of degree m contains m divergent distinguished transformations then 

it will be complete. 

 

 More generally, suppose that the sheaf  of degree m contains r divergent distinguished 

transformations, and no more, while supposing that r < m. The distinguished transformations of  

will then form a subsheaf  of degree r : I say that the subsheaf  is complete. 

 Indeed, let X and Y be two transformations of . Each of them leaves  invariant, so their 

bracket (X, Y) will also leave  invariant (1). However, X belongs to , and Y is a distinguished 

transformation of  then (X, Y) will also belong to . It will then be a distinguished transformation 

of , and it will belong to . Moreover, since the bracket of two arbitrary transformations of  

will belong to , that subsheaf  is indeed complete. 

 Hence, the distinguished transformations of a sheaf define a complete subsheaf of that sheaf. 

 We further point out that if an involution  of  does not contain all of the distinguished 

transformations of  then those distinguished transformations that do not belong to  will also be 

in involution with each of the transformations of . It will then result that the genus g of  is greater 

by at least one unit than the number r of (divergent) distinguished transformations of  and that 

the general involution of  of degree equal to its genus g will contain the sheaf  of distinguished 

transformations of . 

 

 

 
 (1) It is a general fact in the theory of infinitesimal transformations that any analytic invariant of two of those 

transformations will be invariant under their bracket. The verification of that fact is easy here: Indeed, one concludes 

from the identities: 

(Xk, X) = 
ku X 



 , (Xk, Y) = 
k X 



  

and the Jacobi identity that: 

 

(Xk, (X, Y)) = ((X, Xk, Y) – ((Y, Xk, X))  { ( , ) ( , )}k kX X u Y X   


 −   0 . 
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 19. Characteristic manifolds. – In order to go further, it would be simplest to introduce the first 

integrals y1, …, yn of the complete subsheaf  of distinguished transformations of  ( = n – r) as 

new variables. That sheaf  will then be reduced to the form: 

 

(9)       
1

f

x




, …, 

r

f

x




, 

 

and the sheaf  will be deduced from  by adding  = m – r transformations of the form: 

 

(10)   Yi = 
,

1

i

i

f f

y y




  


= +

 
+

 
   (i = 1, 2, …,  ;  =  – m) 

 

to it. If one then writes out that the transformations of  are distinguished, i.e., that one has: 

 

, i

h

f
Y

x

 
 

 
  0  (mod ) (i = 1, 2, …,  ; h = 1, 2, …, r) 

 

then one will find that the i,j do not depend upon any of the variables x1, …, xr . 

 The Pfaff system that is dual to the sheaf  is then: 

 

(11)    dy+j = 
, 1 2

1

( , , , )i y y y dy


  



=

   (j = 1, 2, …, ), 

 

and the variables x1, …, xr do not appear. That shows that the variables that were introduced are 

the ones that Cartan called characteristic variables, because it is immediate that conversely the 

existence of the form (11) for the Pfaff system will imply the consequence that the transformations 

(9) are distinguished transformations of the dual sheaf to that system (whose variables are x1, …, 

xr, y1, …, y). 

 The integral multiplicities of the sheaf  and each of its complete subsheaves are Cauchy 

characteristic multiplicities, in the sense that Cartan attributed to that term. 

 To simplify, we confine ourselves to the case in which we seek the general integrals of the 

sheaf  that have a number of dimensions that is equal to the genus g of that sheaf. 

 From the theory of the preceding subsection of this article, we will have to consider a general 

involution of the form [no. 18]: 

 

(12)    1

1

, , , , ,
r

f f
V V

x x


  
 

  
 ( + r = g), 
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(13)    Vj = 
,

1

j jY V
 

  



−

+

=

+    (j = 1, 2, …, ). 

 

 It is clear that {V1, …, V} is the general involution of maximum degree of the reduced sheaf 

{Y1, …, Y}. The ,j are coupled by some relations in which x1, …, xr do not appear. Upon writing 

out that the sheaf (12) is complete, one will find forthwith that the ,j are entirely independent of 

the x1, …, xr and that {V1, …, V}  must itself a complete sheaf. 

 One will then recover the result that the desired integrals are generated by the characteristic 

multiplicities y1 = c1, …, y = c . The integration of the sheaf  is reduced to that of the sheaf {Y1, 

…, Y} in y1, …, y , and that integration will indicate how one must associate the characteristics 

in order for them to effectively generate the desired integrals, which is a result that is in complete 

agreement with Cartan’s theory. 

 

 

 20. EXAMPLE I. – The integration of the equation q =  (x, y, z, p). – The corresponding 

sheaf is [no. 57]: 

X1 = 
f f

p
x z

 
+

 
, X2 = 

f f

y z

 
+ 

 
, X3 = 

f

p




. 

 

The structure formulas are: 

 

(X1, X2) = 1

f
X

z





, (Y2, X2) = −

f

p z

 

 
, (X3, X1) = 

f

z




. 

 

 The sheaf is therefore not complete, and the derived sheaf is: 

 

, , ,
f f f f

x y z p

    
 

    
, 

 

in such a way that it is not possible reduce the number of variables in the sheaf. 

 We seek the involutions of degree 2 in the solved form [no. 11]: 

 

V1 = X1 + 1 X3 , V2 = X2 + 2 X3 . 

 

 The conditions between 1 and 2 then reduce to just one: 

 

1 1 2X
p

 


 + −


 = 0 , 

 

and the general involution of degree 2 can be written: 
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V = X1 +  X3 ,  W = 1X
p




 − X2 − X1   X3  

 

when one combines V1 and V2 in such a way as to eliminate 1 and 2 and puts  in place of 1. 

 It then results that W is, in its developed form: 

 

W f = 
f f f f f

p p
p x z x z p y z

           
+ − + − +     

            
 , 

 

and one sees that W f = 0 is the linear equation that is equivalent to the system of characteristics of 

the classical theory. 

 Moreover, our method will give all of the other results of that theory very rapidly. The sheaf 

can be written {X1, X3, W}, and it will suffice to integrate the sheaf {X1, X3} after one has introduces 

the characteristic variables (viz., first integrals of W f = 0). However, in its first form, the sheaf 

{X1, X3} can be integrated immediately. The general (one-dimensional) integral (1) is: 

 

z = f (x), p = ( )f x , 

 

with the arbitrary function f (x). Therefore, everything does, in fact, reduce to W f = 0. 

 Let: 

( , , , )x y z p , ( , , , )x y z p , ( , , , )x y z p  

 

be three independent first integrals. The change of variables will be: 

 

 = ( , , , )x y z p ,  = ( , , , )x y z p ,  = ( , , , )x y z p , 

 

and one will infer formulas of the form: 

 

x = a (, , , y) , z = b (, , , y) , p = c (, , , y) 

from them. 

 The formulas: 

b = f (a) , c = ( )f a , 

 

in which f is arbitrary, and in which one replaces , ,  with their expressions  ,  ,  , give 

the general integral of the proposed equation. 

 If one takes  ,  ,   to be integrals of W f = 0 that reduce to x, y, z, respectively, for y = y0 

then the integral will reduce to z = f (x), p = ( )f x  for y = y0 , i.e., it will be found in the form that 

gives the solution to the Cauchy problem [the integral that passes through the curve z = f (x), y = 

 
 (1) Here, we have ignored the viewpoint of complete integrals. However, in order to resolve the question from that 

viewpoint, it will suffice to introduce two arbitrary constants into f. 
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y0]. One can remark, moreover, that with that choice of ,  ,  , the sheaf {X1, X3} will reduce 

to the form: 

f f


 

 
+

 
, 

f






, 

 

after a change of variables that is independent of y, since one will have   = x,   = z,   = p for 

y = y0 . One can also write the general integral of the proposed equation in the form: 

 

  = ( )f  ,   = ( )f   

then. 

 

 

 21. EXAMPLE II. – Integrate the system: 

 

r =  (x, y, z, p, q, s) ,  t =  (x, y, z, p, q, s) . 

 

The sheaf that it corresponds to is: 

 

  X1 = 
f f f f

p s
x z p q

   
+ +  +

   
, 

 

  X2 = 
f f f f

q s
y z p q

   
+ + + 

   
, 

 

  X3 = 
f

s




. 

 The structure relations are: 

  (X1, X2) = − 2 1

f f
X X

p q

 
 + 

 
, 

 

  (X2, X3) = −
f f

p s q

  
+

  
, 

 

  (X1, X3) =   
f f

s p q

  
+

  
. 

 

 The sheaf is not complete, and one cannot reduce the number of variables, since the second-

order derived sheaf will be: 

, , , , ,
f f f f f f

x y z p q s

      
 

      
. 
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We seek the involutions of order 2: 

 

V1 = X1 + 1 X3 , V2 = X2 + 2 X3 . 

 

 The condition (V1, V2)  0 gives the equations in 1, 2 : 

 

(14)   1 − 2
s





 − X2  = 0 , 1

s





 − 2 + X1  = 0 . 

 

 If the determinant 
s s

 

 
 – 1 is not identically zero then one can infer 1 and 2 from those 

equations, and there will be only one involution {V1, V2}. If it is a complete sheaf then the proposed 

system will admit just one complete integral that is calculated by integrating the complete system 

V1 = 0, V2 = 0. In the contrary case, there can only be singular integrals (1). 

 The only truly-interesting case is the one in which the system (14) is indeterminate: 

 

(15)    
s s

 

 
 = 1,  1 2X X

s


 + 


 = 0 . 

 One will then have: 

(16)   V3 = X2 + 1 1 3X X
s


 

+  
 

  (1 arbitrary), 

 

and the involution {V1, V2} can be written: 

 

(17)    V = X1 +  X3 ,  W = 
s




 − X2 – X1   X3 . 

 

 The transformation W is then a distinguished transformation, and the integrals of the given 

system are generated by the (characteristic) integrals W f = 0. 

 For example, let: 

 (x, y, z, p, q, s) ,  (x, y, z, p, q, s) , 

 

 (x, y, z, p, q, s) ,  (x, y, z, p, q, s) ,  (x, y, z, p, q, s) 

 

be the principal first integrals of W f = 0, which reduce to x, z, p, q, s, respectively, for y = y0 . The 

change of variables: 

 

(18)   =  ,   =  ,   =  ,  =  ,   =  ,  y = y 

 

 
 (1) We omit the details from our discussion, to abbreviate, since they present no difficulty. 
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reduces the sheaf to the form (1): 

 

0( , , , , , )
f f f f

y p q    
   

   
+ +  +

   
,  

f






,  

f

y




, 

 

and everything comes down to integrating the subsheaf that is composed of the first two of those 

transformations [no. 19], i.e., up to notations, the subsheaf {X1, X2} of the proposed sheaf. It is 

equivalent to the differential equation in z, q, and x: 

 
2

2

z

x




 = 0, , , , ,

z q
x y z q

x x

  
  

  
 . 

 

If one sets z = f (x) then one will have: 

 

z

x




 = p = ( )f x  and  (x, y, z, p, q, s) = ( )f x , s = 

q

x




. 

 

One is then reduced to the integration of the first-order equation with independent variable x and 

one unknown function q : 

(19)    0, , ( ), ( ), ,
q

x y f x f x q
x

 
   

 = ( )f x , 

 

in which the function f (x) remains arbitrary, and the replacement of the letters x, z, p, q, s with the 

functions  ,  ,  ,  ,  , respectively, in the result: 

 

z = f (x) , p = ( )f x , q = g (x), s = ( )g x  . 

 

 

IV. – SINGULAR TRANSFORMATIONS AND MONGE CHARACTERISTICS. 

 

 22. – Transformations and singular involutions. – From what was said in no. 9, a singular 

transformation of a sheaf  is a transformation of that sheaf that is in involution with more than 

m – q1 divergent transformations of that sheaf (q1 being the first index of the sheaf and m is its 

degree). A singular involution of degree k is an involution of the sheaf such that all of its 

transformations are in involution with more than m – qk divergent transformations of the sheaf (qk 

being the kth index of the sheaf). 

 The search for singular transformations and singular involutions will permit one to simplify (if 

applicable) the structure relations of the sheaf, and as a result, to recognize the particular properties 

of that sheaf from the standpoint of its integration. In particular, in certain cases, one will get ways 

 
 (1) For the same reason as in the previous example.  
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of generating integral multiplicities by characteristics that are distinguished from the ones that 

prove the distinguished transformations (which are, moreover, singular transformations, in such a 

way that they are as singular as possible), which are characteristics that we call Monge 

characteristics, with Cartan. 

 Without developing a general theory here, we shall specify those suggestions in a particular 

case by applying them to the classical problem of integrating second-order partial differential 

equations in two independent variables and one known function. 

 

 

 23. Singular transformations in the case of a second-order equation. – Now consider the 

equation: 

r =  (x, y, z, p, q, s, t) . 

The sheaf to be integrated is: 

  X1 = 
f f f f

p s
x z p q

   
+ +  +

   
, 

 

  X2 = 
f f f f

q s t
y z p q

   
+ + +

   
, 

 

  X3 = 
f

s




,  X4 = 

f

t




. 

 The structure relations are: 

 

 (X1, X2) = − 2

f
X

p





, (X1, X3) = −

f f

s p q

  
−

  
, (X1, X4) = −

f

t p

 

 
, 

 

 (X2, X3) = −
f

p




, (X2, X4) = −

f

q




, (X3, X4) =  . 

 

One has n = 7, m = 4. Upon seeking the relations that express the idea that: 

 

U = u1 X1 + u2 X2 + u3 X3 + u4 X4 , V = v1 X1 + v2 X2 + v3 X3 + v4 X4 

 

are in involution, one will find two bilinear equations: 

 

(1)  (u1 v2 – u2 v1) X2  + (u1 v2 – u2 v1) 
s




+ (u1 v4 – u4 v1) 

t




+ (u2 v3 – u3 v2) = 0 , 

 

(2)  (u1 v3 – u3 v1) + (u2 v4 – u4 v2) = 0 , 

 

which are, in general, independent of v1, v2, v3, v4. Hence, q1 = 2, and there is no general involution 

of degree greater than 2. 
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 However, equations (1), (2) will reduce to just one if u1, u2, u3, u4 satisfy the conditions: 

 

(3)   
2 2 3 4

3

u X u u
s t

u

 
 + +

   = 2 2 3

4

u X u

u

 −

−
 = 

1 2

1

u u
s

u


+



−
 = 

1

2

u
t

u



 . 

 

 One concludes from the equality of the last two ratios that: 

 

(4)      2 3

2 1 2 1u u u u
s t

 
+ −

 
 = 0 , 

which leads one to set: 

 

(5)       u2 = m u1 , 

 

with 

(6)      2m m
s t

 
+ −

 
 = 0 . 

 

 Introducing the two roots of that equations, which are supposed to be different (say m1 and 

m2), will give: 

(7)     
s




= − (m1 + m2) , 

t




 = − m1 m2 , 

 

and upon taking m = m1, for example, the common value of the ratios (3) will become − m2, and 

what will remain is: 

 

m1 u1 X2  – m1 u3 – m1 m2  u4 = 0 ,  u1  X2  – u3 – m2  u4 = 0 , 

 

which will reduce to: 

 

(8)      u3 + m2  u4 = u1  X2  . 

 

 Two arbitrary contributions will then remain, for example, u1 and u4, and one will have a first 

sheaf of singular transformations: 

 

(9)    P1 = X1 + m1 X2 + X2   X3 ,  Q1 = X4 – m2 X3 . 

 

 Each of the transformations of that subsheaf is in involution with 3  transformations V that 

are defined by the unique condition (2). 

 Similarly, one has another subsheaf of singular transformations: 

 

(10)   P2 = X1 + m2 X2 + X2   X3 ,  Q2 = X4 – m1 X3 . 
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 When one takes {P1, P2, Q1, Q2} to be a basis for the given sheaf, one will have structure 

relations of a remarkable simplicity: 

 

(11)    

1 2 1 2

2 1 1 2

1 1 1 2 2

2 2 1 2 1

( , ) 0, ( , ) 0,

( , ) 0, ( , ) 0,

( , ) ( ) ,

( , ) ( ) .

P P P Q

P Q Q Q

f f
P Q m m m

q p

f f
P Q m m m

q p

 


 

   

 − − −  
  

   
  − − 

   

 

  

 That shows that each transformation of the sheaf {P1, Q1} is in involution with each 

transformation of the sheaf {P2, Q2}. One can then say that those two subsheaves are related by a 

reciprocal involution. 

 

 

 24. Second-order characteristics. – We can now look for second-degree involutions of the 

form: 

V1 = P1 + v1,1 Q1 + v2,1 Q2 , V2 = P2 + v1,2 Q1 + v2,2 Q2 . 

 

 The condition (V1, V2)  0 reduces to v2,1 = v1,2 = 0, and the general form of the second-degree 

involution is, with two arbitrary contributions v1, v2 : 

 

(12)    V1 = P1 + v1 Q1 , V = P2 + v2 Q2 . 

 

 It results immediately from this that the complete subsheaves of degree 2 have the same form, 

and that as a result, any non-singular integral multiplicity will be generated by one-dimensional 

integrals from one or the other of the sheaves {P1, Q1} and {P2, Q2}. 

 Those one-dimensional integrals are the characteristics of the two systems in classical theory. 

A discussion of linear systems of partial differential equations: 

 

P1 = 0 , Q1 = 0 , P2 = 0 , Q2 = 0  

 

will establish the known results in regard to the numbers of distinct invariants from one or the 

other of the characteristic systems. The term “invariant” is perfectly adapted to our viewpoint, 

since in the sense of the theory of groups of transformations, we are effectively dealing with 

invariants that are common to all the infinitesimal transformations of one and the other of the two 

characteristic subsheaves {P1, Q1} and {P2, Q2}. 

 The system P2 = 0, Q2 = 0 is (up to notations) the one to which Goursat was led to discuss in 

his studies of the invariants of characteristic systems (1). 

 
 (1) GOURSAT, Leçons sur l’integration des équations aux dérivées partielles du second ordre, t. II, pp. 155. 
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 Relative to the integral surfaces, v1, and v2 are the derivatives of t when taken in the 

characteristic directions: 

(13)    v1 = 1

t t
m

y x

 
+

 
, v2 = 2

t t
m

y x

 
+

 
. 

  

 

 25. Third-order characteristics. – In order to obtain the higher-order characteristics, one can 

prolong the given equation by appending the equations that are obtained by successively 

differentiating it up to an arbitrary order and operating on the sheaf of infinitesimal transformations 

that are associated with the differential system thus-obtained. However, one will obtain more 

complete results by prolonging the sheaf {P1, P2, Q1, Q2} directly using the method in no. 15. 

 The first prolonged sheaf (1) is, with the notations (12): 

 

(14)     1 2

1 2

, , ,
f f

V V
v v

  
 

  
, 

 

in which the only brackets that are not identically zero are: 

 

1

1

,
f

V
v

 
 

 
 = Q1 , 2

2

,
f

V
v

 
 

 
 = Q2 , 

and 

 

(15)   (V1, V2) =  V + 1 Q1 – 2 Q1  (V = V2 – V1) , 

 

with the following expressions for , 1, 2 : 

 

(16)   

1 2 2 1
1 1 2 2

2 1

2 2 1 1 1 2 2

2 1

, , ,

( )
.

V m V m
v v

m m

V X v V m v V m

m m

      



−
= = + = + −


 +  −  =

 −

 

 

One observes that  is linear and  is bilinear in v1 and v2 . 

 One immediately finds the general second-degree involution of the sheaf (14) in the form: 

 

1 1 2

1 2

f f
V w

v v


 
+ +

 
,  2 1 2

1 2

f f
V w

v v


 
+ +

 
, 

 

in which w1 and w2 remain arbitrary. We set: 

 
 (1) From the theory of no. 15, the two-dimensional integrals of the sheaf are the prolonged multiplicities that issue 

from two-dimensional integrals of the initial sheaf {P1, P2, Q1, Q2}, i.e., integrals of the given second-order equation. 
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(17)    1 = V1 + 2

2

f

v





, 2 = V2 + 1

1

f

v





, 

 

and we will then have two subsheaves in reciprocal involution: 

 

(18)     1

1

,
f

v

 
 

 
, 2

2

,
f

v

 
 

 
 . 

 

 Since any complete subsheaf of the prolonged sheaf has the form: 

 

(19)    W1 = 1 + 1

1

f
w

v




, W2 = 2 + 2

2

f
w

v




, 

 

one sees that the prolonged integral multiplicities are generated by one-dimensional integrals of 

one or the other subsheaf (18). Those one-dimensional integrals are third-order characteristics, and 

formulas (17) show immediately that they result from a prolongation of the second-order 

characteristics. 

 Moreover, one will get some interesting suggestions on the subject of the search for invariants 

of those third-order characteristics (1). For example, for the first system, one deals with finding the 

common solutions to the equations: 

(20)     1 = 0 , 
1

f

v




 = 0 . 

 

 One first remarks that for an invariant that contains neither v1 nor v2, that system will reduce 

to V1 = 0, which will decompose into P1 = Q1 = 0. Hence, the second-order invariants are included 

as special cases in the invariant of the third: Furthermore, that will result a priori from the fact that 

the sheaves (18) are the prolongations of the sheaves {P1, Q1}, {P2, Q2}, respectively. 

 One then sees that the third-order invariants (of the system considered) are functions of only 

x, y, z, p, q, s, t, v2, and since 2 is linear in v1, moreover, from formulas (16) and the remarks that 

were made about  and , one can set: 

2 = 2,0 + 2,1  v1 , 

 

and replace the system (20) with a new system of two equations: 

 

(21)    P1 + 2,0

2

f

v





 = 0 , Q1 + 2,1

2

f

v





 = 0 . 

 

 Here, it is obvious that one can have at most one third-order invariant, along with some possible 

second-order invariants (when one counts only the independent invariants). 

 
 (1) Compare GOURSAT, loc. cit., pp. 151.  
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 26. Higher-order characteristics. – We shall now move on to fourth-order. We must consider 

the prolonged sheaf: 

(22)     1 2

1 2

, , ,
f f

W W
w w

  
 

  
, 

 

with the notations (19). The variables w1 and w2 are the derivatives of v1 and v2, respectively, in 

the first and second characteristic directions: 

 

(23)    w1 = 1 1
1

v v
m

y x

 
+

 
, w2 = 2 2

2

v v
m

y x

 
+

 
. 

 

 The brackets of the transformations (22) are zero, except for: 

 

1

1

,
f

W
w

 
 

 
 = 

1

f

v




, 2

2

,
f

W
w

 
 

 
 = 

2

f

v




, 

and 

(24)   (W1, W2) =  W + 1 2

1 2

f f

v v
 

 
−

 
  (W = W2 – W1) . 

 

 The value of  is given by formulas (16), and one will have: 

 

(25)   1 =  (w1 – 1) + W1 1 , 2 =  (w2 – 2) + W2 2 . 

 

One sees that 2 does not depend upon w1, which is linear in w2, and one easily confirms that it is 

linear in v1, moreover. One has some analogous results for 1 . 

 The general involution of degree 2 of the sheaf (22) is obtained immediately in the form: 

 

1 1 2 2 1 2

1 2 1 2

,
f f f f

W t W t
w w w w

 
    

+ + + + 
    

, 

 

in which t1 and t2 remain arbitrary. 

 One will then have the process by which one generates fourth-order characteristics that are 

one-dimensional integrals of the sheaf: 

 

(26)    1 1

1 2

,
f f

W t
w w

  
+ 

  
, 2 1

1 2

,
f f

W
w w


  

+ 
  

. 

 

 As for the invariants of the first system, for example, they are given by: 
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W1 + 2

2

f

w





 = 0 , 

1

f

w




 = 0 . 

 

 One concludes forthwith that f / v1 = 0, and upon setting: 

 

2 = 2,0 + 2,1  v1 

 

(in such a manner as to exhibit the fact that 2 is linear in v1), one will come down to the search 

for solutions of the system: 

 

(27)   1 2,0 2,0

2 2

f f
P

v w
 

 
+ +

 
 = 0 ,  1 2,1 2,1

2 2

f f
Q

v w
 

 
+ +

 
 = 0 . 

 

Those solutions must not depend upon either v1 or w1, which do not appear in equations (27), 

moreover. 

 The remarks that were made on the subject of third-order invariants extend, moreover, to 

fourth-order quite easily, and the nature of the preceding calculations shows that there would be 

difficulty in generalizing the results thus-obtained (by a process of recurrence) for the 

characteristics and invariants of arbitrary order. 

 

 

 27. Applications of the theory of characteristics to the integration of the equation. – We first 

confine ourselves to introducing first and second-order derivatives: The variables x, y, z, p, q, s, t, 

and the complete integrals are defined by complete systems of the form [no. 24]: 

 

(28)   V1 = P1 + v1 Q1 = 0 ,  V2 = P2 + v2 Q2 = 0 . 

 

Formula (15) must be modified here, because v1 and v2 are no longer new variables, but functions 

of x, y, z, p, q, s, t that we determine in such a manner that the system (28) is effectively complete. 

With the notations of no. 25, we will then have: 

 

(29)   (V1, V2) =  (V2 – V1) + (2 − V1 v1) Q1 + (V1 v2 − 2) Q2 , 

 

in such a way that v1 and v2 are determined by the system: 

 

(30)     V1 v1 = 1 , V1 v2 = 2 . 

 

 The peculiarities of the integration must depend upon the nature of the characteristic 

subsheaves {P1, Q1} and {P2, Q2}. For example, consider the first one and its successive derived 

sheaves [no. 2]. One easily confirms that the direct derived sheaf has degree 3, and that the second 

derived sheaf has degree at least 4. Therefore, the subsheaf {P1, Q1} has at most three invariants. 
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 1. Suppose that there exists one, and let  be that invariant. That will permit one to find some 

complete integrals. To that end, determine v2 in such a manner that  is a solution of the system 

(28). That will give the equation of first degree in v2 : 

 

(31) P2  + v2 Q2  = 0 . 

 

 Here one must suppose that Q2   0, but if one has Q2  = 0 then since one already has Q1  

= 0, one can conclude [see the expressions (9) and (10) for Q1 and Q2] that  will not be effectively 

of second order. 

 We shall discard that case for the moment. 

 Since  is a solution of the system (28), it will satisfy the equation (V1, V2). From the formulas 

(29), and upon taking into account the facts that Q1  = 0 and Q2  = 0, one must have: 

 

(32)      V1 v2 – 2 = 0 

 

for any v1. 

 It will then suffice to determine v1 by means of the equation: 

 

(33)      V2 v1 = 1 

 

in order for the system (28) to be complete. Now, since v2 is known, that equation (33) is integrated 

by means of ordinary differential equations. 

 One then concludes that all of the integrals of the proposed system that satisfy the condition 

that  = const. are obtained by integrating ordinary differential equations [equations (33), and then 

the complete system (28)]. 

 

 2. Suppose that the invariant  has order one. One has 
s




 = 

t




 = 0, and the condition that 

P1 = 0 will reduce [see equation (9)] to: 

 

(34) X1  + m1 X2  = 0 . 

 

 Thus, consider the multiplicities that satisfy  = const., which is a first-order partial differential 

equation. They satisfy the following equations (see no. 23, the definition of X1 and X2): 

 

  0 = 
x




 = X1  + [x –  (x, y, z, p, q, r, s, t)] 

p




, 
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 0 = 
y




 = X2 . 

 

If one takes (34) into account then one will conclude, after discarding the exceptional case (1) of 

/ p  = 0, that: 

r –  (x, y, z, p, q, s, t) = 0 . 

 

Therefore, all of the integrals of the equation  = const. are integrals of the one that was posed. 

 

 3. Now suppose that the characteristic sheaf {P1, Q1} has two invariants 1, 2, and let 1, 2, 

3, 4, 5, 6 be independent solutions of the equation P1 + v1 Q1 = 0 of any one of the complete 

subsheaves (28). The complete integral of that subsheaf will have the form: 

 

fk (1, 2, 3, 4, 5, 6) = ck  (k = 1, 2, 3, 4, 5). 

 

It will then satisfy an equation of the form: 

 

(35)      (1, 2) = const. 

 

that is obtained by eliminating 3, 4, 5, 6. Now,  (1, 2) is an invariant of the characteristic 

subsheaf {P1, Q1} for any . The methods in the two preceding cases will then provide all of the 

integrals of the second-order equation. 

 

 4. The operations that relate to the first case that was considered will simplify when the two 

characteristic subsheaves separately admit an invariant. Let  be an invariant of {P1, Q1}, and let 

 be an invariant of {P2, Q2}, and suppose that both of them are of second order. The argument 

in the first case proves that if one determines v2 and v1 by the conditions: 

 

P2  + v2 Q2  = 0 , P1  + v1 Q1  = 0 

 

then the system (28) will be complete. One remarks that one knows two integrals  and , 

moreover. The determination of the corresponding complete integral will then depend upon only 

the integration of a third-order ordinary differential equation. 

 

 (1) The exception is apparent only because if one wishes to make that derivative  / p reappear in  then it will 

suffice to make a change of variables (x, y). If one does not make that change of variables then  will become 

indeterminate when one supposes that x, y, z, q, s, t are coupled by  / x =  / y = 0, and it will suffice to write the 

equation r =  in the form A r + B = 0 in order to confirm that it is verified. 
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 That remark will apply (if applicable) concurrently with the considerations of the preceding 

case. 

 

 

 28. Using higher-order characteristics. – The considerations of the first, third, and fourth cases 

that were envisioned in the preceding subsection can be applied with no modification when one is 

dealing with invariants of the characteristic subsheaves of higher order. 

 Indeed, those subsheaves have the form: 

 

(36)     1

1

,
f

R
z

 
 

 
, 2

2

,
f

R
z

 
 

 
. 

 

The variables, when prolonged k times, are: 

 

(37)  x, y, z, p, q, s, t, M1 t, M2 t, 
(2)

1M t , (2)

2M t , …, ( )

1

kM t , ( )

2

kM t . 

 

One has set: 

M1 = 1m
x y

 
+

 
, M2 = 2m

x y

 
+

 
, 

 

and the upper indices indicate the iteration of those operations. The infinitesimal transformations 

R1, R2 are defined entirely by the method of calculation that was given by the approach of no. 26, 

and one must denote the last two of the variables in (37) by the symbols z1 and z2, to abbreviate. 

 Any complete integral (when prolonged k times) is defined by a system of the form: 

 

(38)   V1 = R1 + 1

1

f

z





 = 0,  V2 = R2 + 2

2

f

z





 = 0, 

 

and since one has an identity of the form: 

 

(V1, V2) =  (V2, V1) + (1 – V2 1) 
1

f

z




+ (V1 2 − 2) 

2

f

z




 

 

for arbitrary functions 1 and 2 of the variables (37), in which 1 and 2 and are known functions 

of the variables (37), it will then result that in order for 1 and 2 to correspond to a complete 

integral, it is necessary and sufficient that they should satisfy the conditions: 

 

(39)      V2 1 = 1 , V1 1 = 2 . 

 

 The starting point is then the same as in the preceding subsection, while all of the 

considerations in it will persist as is. 
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 29. First-order characteristics. – Return to the case in which the second-order characteristic 

sheaf {P1, Q1} admits a first-order invariant . To abbreviate the writing, set: 

 

(40)   

,

.

d
p r s Ar B z D u

dx n z p q

d
q s t As Bt C v

dy y z p q

   
= + + + = + + =    


    = + + + = + + =

    

 

 

One has [no. 27]  / y = X2 , and upon taking into account the fact that r = ,  / x = X1 . 

 Equation (34) X1  + m1 X2  = 0 will then indicate that one will have: 

 

(41)     m1 = − 
u

v
 

 

if one takes into account the fact that r = . If one returns to equation (6), which served to define 

m1, then one can conclude that r =  satisfies the equation: 

 

(42) 2 2r r
u u v v

s t

 
− −

 
 = 0 . 

 

The corresponding homogeneous equation: 

 

(43) 2 2f f f
u u v v

r s t

  
+ +

  
 = 0 

admits the integrals: 

 

(44)  = − 
u

v
,  = r +  s,  = s +  t , 

 

and those integrals are coupled by the relation: 

 

(45) A  + B  + C  + D = 0 . 

 

 One then sees that the second-order equation has the form (1): 

 

(46) r +  s = F () , with   = − 
u

v
, 

 
 (1) Here, one implicitly discards the case of equations that are linear in r, s, t. In that case, m1 will not depend 

upon r, s, t, and the equation will have the form  = function of (x, y, z, p, q). 
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and one will have m1 =  when one takes the equation into account. The function F will depend 

upon x, y, z, p, q arbitrarily, and A, B, C, D will also depend upon them. 

 For the converse to be true, it is necessary, moreover, that A, B, C, D should have the property 

that the system: 

: : :
f f f f f f

p q
x z y z p q

       
+ +  

        
 = D : C : A : B 

has at least one solution. 

 More symmetrically, one can say that the equation r =  results from the elimination of  

between two equations of the form: 

 

(47) r +  s = F () , s +  t = G () , 

 

in which the functions  = F,  = G satisfy the identity (45). If one then interprets r, s, t as running 

coordinates (1) then the equations r =  will represent a ruled surface that has a rectilinear director 

of: 

A r + B s + D = 0 , A s + B t + C = 0 . 

 

The generators of the surface, like the director, are parallel to the generators of the cone r t − 2s  = 

0. 

 If one drops the condition that relates to the rectilinear director, while keeping the definition 

of r =  by the two equations (47), in which F and G are arbitrary, then one will find that equation 

(6), which defines the characteristic sheaves, can be written: 

 

( )[ ( ) ( )]m m G s F s  − − + −  = 0 . 

 

Hence, one of the roots is the common solution m1 =  that the two equations (47) will possess 

when one takes into account the second-order equation that is considered, viz., r = . 

 One infers the following consequence from that: 

 The characteristics of the first system {P1, Q1} that generate an integral are trajectories of an 

infinitesimal transformation of the form: 

 

P1 + v1 Q1 = X1 + m1 X2 + u3 X3 + u4 X4 , 

which is a prolongation of: 

 

(48)  X1 + m1 X2 = 1 1 1( ) ( )
f f f f f f

p m p r m s s m t
x z x z p q

        
+ + + + + + +   

        
, 

 

and by virtue of equations (47) and the preceding remark, the latter transformation is written: 

 

 
 (1) Compare GOURSAT, loc. cit., t. I, pp. 195.  
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(49)   Z f = 
1 1 1( ) ( )

f f f f f f
p m q F m G m

x z y z p q

       
+ + + + +  

        
. 

 

 All of the integrals for which m1 is the same function of x, y, z, p, q are then generated (when 

one considers them to be prolonged to only first order) by the trajectories of the corresponding 

transformation (49). 

 That transformation (49) belongs to the family of infinitesimal transformations: 

 

(50)   Z f = ( ) ( )
f f f f f f

p q F G
x z y z p q

  
       

+ + + + +  
        

, 

 

in which  is an arbitrary function of x, y, z, p, q. 

 In that case, one will then have a family of first-order characteristic infinitesimal 

transformations whose trajectories again serve to generate the integral multiplicities of the 

equation (when prolonged to first order), and the preceding analysis will show that the case 

envisioned is the only one for which that can be true. 

 However, the family of characteristic infinitesimal transformations is no longer a sheaf, in 

general. 

 In order for one to have a first-order characteristic sheaf to which all of the transformations 

X1 + m1 X2 that correspond to the integrals, it is necessary and sufficient that F and G must be 

linear and consequently that equations (47) must have the form: 

 

r +  s = a + b  , s +  t = a b  + . 

 

 That is the case in which the ruled surface is a quadric of the type: 

 
2( ) ( ) ( )r t s a r b b s a t a a bb   − − + + − + +  = 0 , 

 

i.e., the case of the Monge-Ampère equation (1). Each of the systems of rectilinear generators of 

the quadric then corresponds to a first-order characteristic sheaf. If is clear that those characteristic 

sheaves are not subsheaves of the sheaf {X1, X2, X3, X4} that is associated with the second-order 

 
 (1) Here, one must reintroduce the linear equations. Since the equation is: 

 

r + (m1 + m2) s + m1 m2 t = K , 

one will have: 

r + m1 s = − m2 (s + m1 t) + K , 

 

and the transformation (48) will belong to the characteristic sheaf: 

 

1 2,
f f f f f f f

p m q K m
x x q z p q p

         
+ + + + −  

         
 . 
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equation, but one can prolong them in such a manner as to recover the second-order characteristic 

subsheaves. 

 

___________ 

 


