
 “Gewöhnliche Differentialgleichungen; Elementare Integrationsmethoden,” Enzyklopädie der mathematischen 

Wissenschaften, mit Einschluss ihrer Anwendungen, eds. Burkhardt, Wirtinger, and Fricke, B. G. Teubner, Leipzig, 

1899-1916, Art. II A 4b., pp. 232-293. 

 

ORDINARY DIFFERENTIAL EQUATIONS. 

ELEMENTARY INTEGRATION METHODS. 

BY 

E. VESSIOT 

IN LYON 

 

TRANSLATED BY 

D. H. DELPHENICH 

________ 

 

TABLE OF CONTENTS 

 
   Page 

1.  Fundamental problems. Definitions.   3 

2.  Historical overview. Formal theories of integration.   4 

3.  Introducing new variables. Equivalence problems. Rational integration theories.   5 

  First-order equations.  

4.  Method of separation of variables.   6 

5.  Method of Euler multipliers.   8 

6.  Lie’s method.   8 

7.  Discussion. Comparing transcendents. Algebraic integration. 10 

8.  Jacobi and Riccati equations. 10 

9.  Unsolved equation. Integration by differentiation. 12 

10.  Geometric interpretations. Use of homogeneous coordinates. 14 

  Systems of first-order equations. General theories.  

11.  Systems of multipliers. 15 

12.  The Jacobi multiplier. 17 

13.  Lie‘s method: Integrating systems with known transformation groups. 18 

14.  Integrating systems for which one knows differential or integral invariants. 21 

15.  Systems of variation. 23 

  Special theories for nth-order equations.  

16.  Method of Euler multipliers. 24 

17.  Cases in which one lowers the degree. 25 

18.  Lie’s theory. Equations that admit groups of point transformations. Generalizations. 26 

19.  Unsolved equations. Types of integrable equations. 27 

 



Vessiot – Ordinary differential equations. Elementary integration methods. 2 
 

   Page 

  Special classes of equations and systems of equations.  

  a) The nth-order linear equation.  

20.  General concepts. Fundamental systems of solutions. 28 

21.  Equations with constant coefficients. Lagrange equations. D’Alembert’s method. 29 

22.  Equations with a right-hand side. Method of variation of constants. 31 

23.  Lowering the order of the equation. Common solutions to two linear equations. 32 

24.  Equation with a given fundamental system. Symbolic methods. 33 

25.  Rational differential functions of solutions of a fundamental system. Invariant functions. 

Transformation. 

 

34 

26.  Associated equations. Adjoint equation. 36 

27.  Second-order equations. 37 

  b) Linear systems.  

28.  Extension of the foregoing theories to systems of linear equations. 38 

  c) Lie systems and generalizations.  

29.  Lie systems. Their various definitions. Their integration theory. 41 

30.  Most general system with fundamental solutions. Higher-order equations with fundamental 

systems of first integrals. Generalization of Lie systems. 

 

43 

31.  Systems of partial differential equations with fundamental solutions. Application. 45 

32.  Various classes of equations. 46 

  Equivalence problems.  

33.  Formulation of the problem. Introduction of differential invariants. General methods. 47 

34.  Invariants of linear equations. 48 

35.  Invariants of various classes of equations. 49 

  Rational theories of integration.  

36.  Domain of rationality. Irreducibility. 51 

37.  Rational theories of integrating linear equations. 52 

38.  Extension of the theory to Lie systems. Theory of J. Drach for arbitrary systems of first-order 

equations. 

 

55 

________ 

 

 

BIBLIOGRAPHY 

 
 The general textbooks on differential and integral calculus (cf., pp. 56). Namely, Euler, Inst. calc. integr. 1, 2, 4. 

Lacroix, Traité 2. C. Jordan, t. 3. E. Picard, t. 3. J. Boussinesq, Cours d’analyse infinitésimale, Paris 1887, and the 

textbooks of Forsyth and Koenigsberger that were cited on pp. 190 (in Enzkyl. math. Wiss.). In addition, G. Boole, 

Treatise on differential equations, Cambridge and London 1865 (with supplementary volume). 

 

 For linear equations, in particular: 

 

F. Klein, Autogr. Vorlesungen über höhere Geometrie 2, Göttingen 1893, and Über lineare Differentialgleichungen 

2. Ordnung, Göttingen 1894. 

L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, Leipzig 1895/98. 

L. Sauvage, “Théorie générale des système différentiels linéaires et homogènes,” Toulouse Annales 8 and 9, also 

separately, Paris 1895. 



Vessiot – Ordinary differential equations. Elementary integration methods. 3 
 

 For Lie’s theory: 

 

S. Lie, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, edited and 

published by G. Scheffers, Leipzig 1891. 

 

 For integration by definite integrals, one can cf., II B 3, for algebraic integration, and above all, the function-

theoretic methods, cf., II B 5. For approximation methods, cf., II A 4 a (esp. no. 4) and 7a, as well as the articles on 

astronomical mechanics in volumes IV and V. For the form of curves that are defined by differential equations, cf., 

III D 8. For mechanical integration, cf., II A 1, no. 61. 

__________ 

 

 

 1. Fundamental problems. Definitions. – The problems that the theory of differential 

equations addresses were given before in II A 4a, no. 1. Here, we shall add only: 

 One understands the general integral of an nth-order system: 

 

(1)      idx

dx
 = i (x, x1, …, xn)  

to mean a solution: 

 

(2)      xi = i (x | a1, …, an)  (i = 1, 2, …, n) , 

 

that depends upon n arbitrary constants a1, …, an essentially. The functions i are not defined 

completely, because one can replace the ai in them with n arbitrary functions of n other arbitrary 

constants, i.e., one performs the most general point transformation in the ai . 

 A. Cauchy (1) and C. G. J. Jacobi (2) showed that the problem that is thus posed is not separate 

from that of integrating the homogeneous linear partial differential equation: 

 

(3)     L f  
1

1

( , , , )
n

i n

i i

f f
x x x

x x


=

 
+

 
  = 0 

 

(cf., II A 4a, no. 6 and 16; II A 5, no. 11). One knows, in fact, that since Lagrange (3), the solutions 

to the equations (3) for the constants will give a fundamental system of solutions of (3), i.e., a 

system of n independent solutions to that equation. Conversely, one obtains the general integral of 

(1) when one sets n functions z1 (x, x1, …, xn), …, zn (x, x1, …, xn) that define a fundamental system 

of solutions to (3) equal to arbitrary constants. Moreover, one derives the most general system of 

integrals from a particular one by performing the most general point transformation on the z. 

Equation (3) is said to be equivalent to the system (1) or associated with it. Any equation that one 

obtains by setting a solution of (3) equal to an arbitrary constant a first integral or simply an 

integral of (1). For brevity, one also often calls such a thing a solution in its own right. 

 The nth-order differential equation: 

 
 (1) C. R. Acad. Sci. Paris 2 (1836), pp. 85; Oeuvres (1) 5, pp. 236. He referred to (3) as the characteristic equation.  

 (2) J. f. Math. 23 (1841), 1-104; Ges. Werke 4, pp. 149.  

 (3) Cf., II A 5, footnote 58.  
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(4)  
n

n

d y

dx
 = 

1

1
, , , ,

n

n

dy d y
F x y

dx dx

−

−

 
 
 

 

 

will be converted into an nth-order system when one sets: 

 

(5)    y = x1 ,  
dy

dx
 = x2, …, 

1

1

n

n

d y

dx

−

−
 = xn . 

 

They then define only a special class of nth-order systems for the theories of integration. A first 

integral of (5) is then a relation 
1

1
, , , ,

n

n

dy d y
x y

dx dx


−

−

 
 
 

 = a that is fulfilled by any solution of (5) 

for a corresponding value of the constant a. In general, a relation: 

 

(6)  
1

1 21
, , , , , , ,

n

kn

dy d y
x y a a a

dx dx


−

−

 
 
 

 = 0 

 

that is fulfilled by any solution of (5) for corresponding values of the a will be called a kth integral 

of kth-order integral. Finally, the general integral of (5) is defined by a relation of the form  (x, y, 

a1, …, an) = 0, and as a result, it will represent a family of n planar integral curves. Those 

definitions can be adapted immediately to arbitrary systems of higher order. 

 

 

 2. Historical overview. Formal theories of integration. – Originally, the goal that was set 

was that of integrating the system (1) by means of functions q that would contain a finite number 

of symbols for algebraic operations and “elementary transcendents” (i.e., “explicit integration”). 

In that form, except for entirely special cases, the problem is insoluble, which emerged from the 

investigations of N. H. Abel and J. Liouville into transcendents (II B 2) that are defined by 

equations of the form dy / dx = f (x). However, the mathematicians of the Eighteenth Century were 

already convinced of that impossibility and then had to address a broader problem: the integration 

by quadratures, in which one demands only that the q can be expressed by a finite number of 

algebraic operations and indefinite integrals. The methods of separation of variables (no. 4) and 

the integrating factor (no. 5) relate to that problem. The fact that the new problem is not soluble, 

in general, was accepted for a long time, and was first proved by J. Liouville (nos. 8 and 37) (cf., 

II B 5). In fact, the goal of the classical integration theories was only the reduction of the system 

(1) of order n to a simpler problem of the same kind in well-defined cases. Thus, in the classical 

cases, the reduction of order of the problem led to the integration of an equation of lower order 

and to quadratures. With the method of Euler multipliers for higher-order equations, one lowers 

the order by one unit as soon as the multiplier is known. The method of Jacobi multipliers allows 

one to finalize the integration by quadratures under certain assumptions. 

 It was only in the last few years that anyone considered the nature of the auxiliary system to 

which one reduces the given system to be an essential element of the simplifications to be achieved. 
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That new viewpoint is the result of the ongoing discovery of numerous properties of various 

classes of equations whose investigation gradually became an important part of the general theory. 

Namely, the linear equations (II B 4), the canonical systems of dynamics (IV), and finally, the 

Ricatti equation (viz., the simplest first-order equation that cannot be integrated by quadratures). 

 The general theory of transformation groups (II A 6) that S. Lie addressed and its appendix, 

the theory of differential invariants, have decisively required the general theories of integration, 

as well as the investigation of special classes of equations. Lie’s theory of the integration of systems 

that admit known transformation group (no. 13) not only allows one to reduce most classical 

methods to one principle, but also to infer precise consequences on the nature of the auxiliary 

system that suffices for the integration of the given system from the structure of the group that one 

assumes to be known. At the same time, Lie systems or systems with fundamental solutions (no. 

29) were introduced, of which the linear systems and the Ricatti equations are only very special 

cases, and for which there exist actual methods of integration. Finally, the canonical systems of 

dynamics are also special cases of very general systems whose investigation is connected with that 

of the infinite groups. 

 Finally, the totality of those formal integration theories emerges from the following two 

problems: 

 

 1. Derive the greatest possible benefit from previously-known general properties of a system 

of differential equations. 

 

 2. Define special classes of differential equations and investigate their properties. 

 

 

 3. Introducing new variables. Equivalence problems. Rational integration theories. – The 

oldest and most general integration method is the method of introducing new variables or the 

transformation of the differential system. It consists of the search for a transformation of (n + 1)-

dimensional space: 

 

(7)    x  = F (x, x1, …, xn) , ix  = Fi (x, x1, …, xn)   (i = 1, 2, …, n) 

 

that will convert the system (1) into a system of a special form that has already been integrated. 

The method, when understood in that way, is so vague that it hardly deserves the name of a method: 

Two arbitrary systems (1) can be converted into each other by infinitely-many transformations (7). 

Nevertheless, it has not only yielded numerous special results, but one can say, with S. Lie, that it 

defines the common basis for all formal integration theories that only have the goal of making it 

more precise in the individual cases. In fact, each of those theories examines a special integration 

problem: It follows from the special circumstances of the problem that the given system can be 

converted into a system that has already been integrated by transformation that belong to a special 

set of such things. The properties of that set of transformations determines the nature of the 

integrations that are required for the solution of the given problem. Lie could undertake a 



Vessiot – Ordinary differential equations. Elementary integration methods. 6 
 

systematic investigation of the present integration problem by starting from the general principle 

that any integration problem is equivalent to a transformation problem (4). 

 The transformation method actually leads to precisely-posed questions then when one needs 

to decide whether two differential systems of the same class can be transformed into each other 

with the help of a transformation in a (finite or infinite) group whose transformations convert all 

systems of that class into systems of the same class. The solution of that equivalence problem is 

closely connected with the theory of differential invariants (no. 33). 

 Finally, let the term rational integration theories (5) refer to certain new theories whose goal 

is to specify the nature of the simplifications that permit the integration of a given special system 

in comparison to that of the most general system of the same class. More precisely, one must 

answer the following three questions: 

 

 1. When is a system to be regarded as a special system of the given class, and what sort of 

different categories of special systems include that class? 

 

 2. What simplifications suggest themselves for the integration of each of those categories? 

 

 3. How can one methodically decide whether a given system is special, and indeed, which 

category it belongs to? 

 

 The second question falls within the scope of the formal integration theories. We shall pass 

over the third one here, since, on the one hand, it presently admits no definitive answer in most 

cases, while on the other hand, it requires the tools of the theory of functions of complex variables. 

 

 

First-order equations. 

 

 4. Method of separation of variables. – The simplest system (1) is the one that consists of a 

first-order equation (n = 1): 

(8)      ( , )
dy

x y
dx

−  = 0 

or more symmetrically: 

(8.a)     
( , )

dx

x y
 = 

( , )

dy

x y
. 

 

The general integral is z (x, y) = a when z is the integral of the equivalent equation: 

 

(9)  L (f)  ( , )
f f

x y
x y


 

+
 

 = 0 , 

or 

 
 (4) Leipziger Berichte 47 (1895), pp. 269; ibid. 48 (1896), pp. 390.  

 (5) J. Drach (Paris thesis 1898, pp. 30) used the expression logical integration in an analogous sense.  
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(9.a) A (f)  ( , ) ( , )
f f

x y x y
x y

 
 

+
 

 = 0 , 

 

resp. Leibniz and his immediate school have investigated the case in which  is a product of a 

function of x and a function of y. The equation can then be written as: 

 

(10) P (x) dx + Q (y) dy = 0 , 

 

and its general integral is: 

 

(11) ( ) ( )P x dx Q y dy+   = const., 

 

in which only the given quadratures are to be performed. In this case, one says that the variables 

in equation (8) have been separated. 

 The method of separation of variables, which Leibniz’s school based upon that remark, 

consists of effecting the conversion of the given equation into another one in which the variables 

are separated by the introduction of new variables. It is achieved, inter alia, for the homogeneous 

equation: 

(12) 
dy

dx
 = 

y

x


 
 
 

 

 

by means of the substitution y = u x (Joh. I Bernoulli) and for the linear equation: 

 

(13) 
dy

dx
 = A (x) y + B (x) 

 

by means of the substitution y = exp ( )u A x dx  (Jac. I Bernoulli). One generalizes the method 

when one seeks to reduce the given equation into a case that has been resolved already [e.g., (12) 

or (13)] by the introduction of new variables. Mention should be made of the equation of Jac. I 

Bernoulli: 

(14) 
dy

dx
 = A (x) y + B (y) 

1my− +
, 

 

which is reduced to a linear equation by the substitution u = 
my  (6) 

 

 

 
 (6) For the bibliography of this subsection, one might cf., e.g., Lacroix, Traité 2 or M. Cantor, Geschichte der 

Mathematik 3, Leipzig 1898, Chap. 100. 
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 5. Method of Euler multipliers. – A second method (7) is based upon the fact that the integral 

z is defined by an identity of the form: 

 

(15)    dz = M (x, y) [ (x, y) dy –  (x, y) dx] . 

 

Hence, if one knows the multiplier or integrating factor M (x, y) then one will get z by a quadrature. 

The general determination of a multiplier is no easier than that of an integral, because it will require 

the integration of the equation: 

(16)     
( ) ( )M M

x y

  
+

 
 = 0 . 

 

Euler showed that its general solution is M = M0  (z0), if M0 means any multiplier, z0 is a first 

integral, and  is an arbitrary function. It then follows that the quotient of two multipliers will be 

an integral when it is not a constant. 

 In certain special cases, the form of the equation can lead one to look for multipliers of a special 

form that can actually be determined then. For example, if the linear equation (13) has a multiplier 

then the function will be one of only x and can then be determined by a quadrature: M = 

exp Adx−  . In that way, Euler could successfully apply his method to not only those examples 

that his predecessors had treated by separation of variables, but also to many other ones. For 

example, he found various integrable cases for the equation (8): 

 

(17) y dy + [A (x) y + B (x)] dx = 0 . 

 

 However, Euler’s most fruitful idea was to treat the inverse problem, i.e., look for equations 

that have multipliers of a given form. He then obtained numerous special results that were, of 

course, almost all very specialized (9). 

 

 

 6. Lie’s method. – S. Lie remarked (10) that most of the equations that could be integrated by 

the foregoing methods could be converted into themselves by a one-parameter group of 

transformations, and therefore by an infinitesimal transformation. Thus, equation (12) admits the 

group: x  = m x, y  = m y, and (13) admits the group y  = y + exp Adx . He was then led to the 

following problem: One knows a one-parameter group that leaves equation (8) invariant (in terms 

of its finite equations). What benefit can one derive from that fact for its integration? Lie showed 

 
 (7) L. Euler, N. Comm. Petr. 8 (1760), pp. 3 and ibid. 17 (1772), pp. 105, as well as Inst. calc. int. 2. – The idea 

of a multiplier seems to go back to A. Clairaut, Paris Hist. 1739 and 1740. 

 (8) Equation (17) has been examined many times since then. For instance, N. H. Abel (Oeuvres 2, pp. 26); 

Minding, Petersbourg Mem. (7) 5 (1862), pp. 1; V. Z. Elliot, Ann. éc. norm. sup. (3) 7 (1890), pp. 101; Korkine, 

Math. Ann. 48 (1897), pp. 317. 

 (9) Here, let us list: N. Alexeyev, Intégration des équations différentielles, Moscow 1878; A. Winckler, Wiener 

Ber. 99 (1890), pps. 475, 875. 

 (10) For all of the concepts from the theory of continuous transformation groups that appear here, one might confer 

II A 6. 



Vessiot – Ordinary differential equations. Elementary integration methods. 9 
 

that it would suffice to put the group into its canonical form X  = X, Y  = Y + t. In terms of those 

new variables, equation (8) will have the integrable form dY / dX =  (X). The reduction of the 

group to its canonical form generally requires a quadrature (11). 

 Later (12), Lie took up the problem again under the assumption that only one infinitesimal 

transformation in the group that takes equation (8) or (8.a) into itself: 

 

(18)    T (f)  ( , ) ( , )
f f

x y x y
x y

 
 

+
 

 

 

is known. He found that in this case, the reciprocal value of  =   –   is a multiplier of  dy – 

 dx. A quadrature will then suffice to integrate the equation. The most general infinitesimal 

transformation that leaves (8.a) [(9.a), resp.] invariant is defined by an identity of the form (13): 

 

(19)    (A f, T f)   (x, y)  A (f) 

 

that produces a system of partial differential equations for the determination of , . One can 

simplify that investigation by considering only transformations of the form T f   (x, y) f / y, 

which is not an essential restriction. However, the condition that 1 /  must be a multiplier of (8) 

will then be such a thing. Lie’s method is then precisely equivalent to that of Euler (no. 5). 

However, it is generally easier to apply. Lie derived a geometric interpretation of the multiplier 

from it (14). 

 Finally, Lie presented his method in yet another form (15): The identity (19) shows that the 

equations: 

 

(20)     A f = 0 , T f = 1 

 

have a common solution. It will be obtained by a quadrature that will also lead to the multiplier 

1/  . Equations (20) are the analytical translation of Lie’s first method, which systematized the 

method of separation of variables (no. 4). One will then have the connecting link between the two 

classical methods, as well. 

 Following Euler’s example, Lie also treated the inverse problem: Determine all first-order 

equations that admit a given one-parameter group. One can give the general solution here, namely: 

 (J0, J1) = 0, if  means an arbitrary function, J0 is the invariant of the group, and J1 is its first-

order differential invariant. Those two invariants can be calculated by elimination as soon as one 

knows the finite equations of the group (16). 

 

 
 (11) F. Klein and S. Lie, Math. Ann. 4 (1871), pp. 50.  

 (12) Christ. Förh. (1874), pp. 242. 

 (13) For the definition of the Jacobi bracket expression, one might confer II A 6, no. 5. 

 (14) Loc. cit., Cf., Lie-Scheffers, Differentialgeichungen, Chap. 9, where there are also various applications.  

 (15) Cf., e.g., Lie-Scheffers, p. 96. 

 (16) Lie-Scheffers, p. 138. 
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 7. Discussion. Comparing transcendents. Algebraic integration. – As one sees, the three 

basically-equivalent methods that were discussed have a certain character of indeterminacy in 

common: It lies in the foregoing search, whether it be for the transformation that leaves the 

equation invariant, or the search for a multiplier, or the search for an infinitesimal transformation 

that leaves the equation invariant. They have, in fact, produced only very few results. Their main 

uses are in the definition of types of integrable equations, the most interesting of which were found 

already in Euler’s integral calculus. 

 On the other hand, in regard to these methods, it should be remarked that they frequently mask 

the true nature of the integral, since they aspire to an integration by quadratures directly. Thus, the 

method of separation of variables gives the integrals of the equations: 

 

(21)   
( ) ( )

dx dy

P x P y
+  = 0  (P is a polynomial degree 1 or 2), 

 

(22)   
( ) ( )

dx dy

P x P y
+  = 0 (P is a polynomial degree 1, 2, 3, or 4) 

 

in transcendental form, while those integrals are actually algebraic. That will follow from the 

theory of exponential and circular functions for (21) and (22) when P has degree 1 or 2. When P 

has degree 3 or 4, Euler had proved that for (22) when P has degree 3 or 4, and that equation then 

bears his name. He developed a theory from that, which goes by the name of the comparing 

transcendents, and which includes the germ of the theory of elliptic functions (II B 6 a). Various 

processes for integrating Euler’s equation were given later. The true basis for the aforementioned 

theorem lies in Abel’s theorem (II B 2), which also leads to generalizations. 

 Furthermore, one can confer the algebraic integration of first-order equations in Article II B 

5. 

 

 

 8. Jacobi and Ricatti equations. – Among the specialized investigations that do not fall 

within the purview of the general methods, the most important ones are: 

 

 The equation of C. G. J. Jacobi (17): 

 

(23)   P (x, y) dx + Q (x, y) dy + R (x, y) (x dy – y dx) = 0  

 

(P, Q, R are first-degree polynomials) has the integral: 

 

(24) 2 1 2 1 2 1U V W
     − − −

 = const., 

 

 
 (17) J. f. Math. 24 (1842), pp. 1; Ges. Werke 4, pp. 256. 
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in which U, V, W are first-degree polynomials, and 1, 2, 3 mean the roots of a third-degree 

equation. J. A. Serret (18) gave the form of the integral for the cases in which that auxiliary equation 

had equal roots with the help of d’Alembert’s method (no. 21). The investigations of G. Darboux 

(19) into algebraic integrals of first-order equations are connected with that. 

 The Ricatti equation: 

 

(25)    
dy

dx
 = 2( ) ( ) ( )A x y B x y C x+ +  

 

gets its name from the special case: 

 

(26)    2dy
a y

dx
+  = mb x   (a, b constants) 

 

that was examined by Count J. Ricatti (20). The latter can be integrated by elementary functions 

when m = − 
4

2 1

k

k 
 (k is a positive whole number) that have a close relationship to Bessel functions 

(II B 4 b, no. 44), moreover. The general Ricatti equation cannot be integrated by quadratures. 

That fact was exhibited for the special equation (26) by J. Liouville (20.a) and also follows from the 

corresponding theorems on linear equations (no. 37), as well as Maximovich’s (21) determination 

by quadratures of integrable classes of equations of the form: dy / dx = F (x, y,  (x), …, n (x)) 

(, …, n are undetermined functions, and F is a well-defined function of its arguments). The 

general integral of the Riccati equation has the form: 

 

(27)     y = 
( ) ( )

( ) ( )

c x x

c x x

 

 

+

+
 , 

 

when c means the integration constant. In other words, the double ratio of any four particular 

integrals is constant. That property, which is characteristic of the Ricatti equation, seems to have 

first been emphasized only in recent years (22). However, it is implied immediately from fact that 

Euler already knew that one can convert the equation into a linear one by the substitution y = y1 +
1u−
 when one knows a particular integral y1 . 

 

 

 
 (18) Calc. diff. et int. 2, pp. 431.  

 (19) Bull. soc. math. (1878), pp. 72.  

 (20) Acta erud. (1722). D’Alembert, Berl. Hist. (1763) [70], pp. 242, had already used the name in the more 

general sense that is now customary.   

 (20.a) J. de math. 6 (1841), pp. 1. 

 (21) C. R. Acad. Sci. Paris 101 (1885), pp. 809.  

 (22) E. Picard, Ann. éc. norm. (1) 6 (1877), pp. 341; Ed. Weyr, Prague Abh. (6) 8 (1875) [77], pp. 30. The 

importance of Ricatti’s equations was already implied by O. Bonnet’s studies of ruled surfaces. Cf., G. Darboux, 

Théorie des surfaces 1, Chap. 2 and E. Picard, Traité d’ analyse 2, pp. 329.  
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 9. Unsolved equation. Integration by differentiation. – If a first-order differential equation 

is given in unsolved form: 

(28)     , ,
dy

F x y
dx

 
 
 

 = 0 

 

then if one is to be able to apply the general methods, one must first solve it for dy / dx = y , in 

general. That solution might be impracticable. One often avoids it by an extension of the 

transformation method by which one applies a transformation that also includes y . One calls that 

integration by differentiation. The oldest of those transformations (23) consists of introducing y  

in place of one of the old variables, e.g., y. One must then eliminate y and dy from (28) and the 

equations: 

(29)  dy y dx−  = 0 , dF  
F F F

dx dy dy
x y y

  
+ +

  
 = 0 . 

 

One will then get a first-order differential equation in x and y . One seeks its general integral 

( , , )V x y a  = 0, and one will then need only to eliminate y  from F = 0 and V = 0. That 

transformation achieves the goal for the d’Alembert equation: 

 

(30)     ( ) ( ) ( )x y y y y    + +  = 0 , 

 

since it converts that equation to one of the linear type. A special case of that is the Clairaut 

equation (24): 

 

(31) y − a x +  (a) = 0 . 

 

Above all, one always applies it when F = 0 can be solved for y (or x, mutatis mutandis). 

 More generally, when F, G, H are three independent functions, one can set: 

 

(32)    X = ( , , )G x y y , Y = ( , , )H x y y . 

 

One eliminates the equations dX = dG, dY = dH from those equations (which are derived from 

them) and x, y, y , dx, dy, dy  from (28) and (29). If V (X, Y, a) = 0 is the general integral of the 

transformed equation in X, Y then one must still eliminate y  from F = 0 and V = 0. Such a 

transformation can be applied, e.g., when ( , , )F x y y = 0 represents a rational surface in x, y, y  

(25). 

 
 (23) J. d’Alembert, Berl. Hist. (1748).  

 (24) A. Clairaut, Paris Hist. (1734). A generalization of it is in E. Goursat, Bull. soc. math. 23 (1895), pp. 88; 

An investigation of the transformation into y  is in L. Raffy, ibid., pp. 50. 

 (25) Halphen, C. R. Acad. Sci. Paris 87 (1878), pp. 241. – ( , )F y y  = 0 is treated similarly when F = 0 represents 

a rational curve. 
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 In particular, one can apply contact transformations (III D 7), i.e., the most general 

transformations that take any first-order equation into another first-order equation, and at the same 

time, take any solution of the former into a solution of the latter. In order to avoid any 

complications in that, one must understand a solution of F = 0 to mean any element-manifold M1 

(II A 5, no. 9) whose first-order elements all fulfill the equation F = 0 (26). One can then 

conceptualize the integration problem as follows: Find a contact transformation that reduces F = 

0 and Y = 0. For the calculations, that will emerge from the search for a first integral of (29) that 

is different from F, i.e., a solution of the equation (27): 

 

(33)      [F, f] = 0 , 

 

which is equivalent to that system (no. 1). That is because when ( , , )U x y y  is that solution, the 

desired transformation will be: 

(34)    X = U ,  X = F ,  Y   = :
F U

y y

 

  
, 

and the general integral of F = 0 is defined by F = 0, U = a. 

 The method of S. Lie (28) is given in that form. However, for some time now, the process of 

integration by differentiation has been in practice, in which one replaces the equation F = 0 with 

the second-order system (29). Since one already knows a first integral of that, namely F, one is 

close to an application of the method of Jacobi multipliers (no. 12) to it. The investigations of J. 

Liouville (29), Malmstén (30), E. Laguerre (31) relate to that and yield integrable types that include 

arbitrary function by quadratures. Lie’s theories (on equations that admit a given infinitesimal 

contact transformation) give analogous types (31). A. Mayer (32) determined the condition for an 

equation that includes an arbitrary function to be capable of being converted into one of the linear 

type by a contact transformation that is independent of that arbitrary function. 

 Equations of the form: 

( ( , , ), ( , , ))U x y y V x y y    = 0  

 

are immediately integrable when U, V are two first integrals of a second-order equation (33). Their 

general integral is defined by the equations U = a, V = b,  (a, b) = 0, between which one must 

eliminate y . The condition that U, V must satisfy is [U, V] = 0, such that the result can be derived 

from the foregoing method of Lie (34). 

 

 

 
 (26) Cf., e.g., Lie-Engel, Transformationsgruppen 2, Chap. 1, § 8. 

 (27) For the definition of the Poisson bracket expression [ ], cf., II A 5, no. 24.  

 (28) J. de math. 20 (1855), pp. 143.  

 (29) J. de math. (2) 7 (1862), pp. 314.  

 (30) Bull. soc. math. 6 (1878), pp. 224 (Oeuvres 1, pp. 409).  

 (31) Cf., e.g., Lie-Scheffers, Berührungstransformationen 1, pp. 111. 

 (32) Leipziger Ber. (1890), pp. 491.  

 (33) J. Lagrange, Leçons sur le calcul des fonctions, Leçon 16; Oeuvres 10, pp. 220. 

 (34) Cf., e.g., Lie-Engel, Transformationsgruppen 2, Chap. 1. 
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 10. Geometric interpretations. Use of homogeneous coordinates. – it is often advantageous 

to replace a first-order equation with a system of equations. Even for the normal form (8.a), one 

often replaces it with the system (35): 

 

(34)    
dx

dt
 =  (x, y) ,  

dy

dt
 =  (x, y) , 

 

and from the Lie standpoint, that amounts to the same thing as determining the finite equations of 

the one-parameter group that is generated by the infinitesimal transformation (9.a). Another 

example of that is given by the use of homogeneous coordinates (36): The first-order differential 

equation expresses a relationship between an arbitrary point on an integral curve and its tangent at 

that point, and as a result, it can be brought into the doubly-homogeneous form: 

 

(35)      (x, y, z | u, v, w) = 0 , 

 

in which x, y, z mean the homogeneous coordinates of the point, and u, v, w are those of the tangent. 

The “solved” equation corresponds to the case in which  has the form: 

 

(36)    A (x, y, z) u + B (x, y, z) v + C (x, y, z) w , 

 

in which A, B, C are homogeneous and have the same degree m (37). One can replace that equation 

with the system: 

 

(37)     dx : dy : dz = A : B : C , 

 

i.e., with the associated equation: 

(38)     
f f f

A B C
x y z

  
+ +

  
 = 0 . 

 

One must seek a homogeneous integral of order 0 of that. To that end, one can determine a 

multiplier  that satisfies the Jacobi relation: 

 

( ) ( ) ( )A B C

x y z

    
+ +

  
 = 0 . 

 

If one is careful about ensuring that it is homogeneous of order – (m + 2) then the differential: 

 

 
 (35) Cf., e.g., the methods of integrating the Euler equation (no. 7) that L. Euler (Inst. calc. int. 4, pp. 481), J. 

Lagrange (Oeuvres 2, pp. 6), and G. Darboux employed. 

 (36) A. Clebsch, Göttinger Abh. (1872) and Math. Ann. 5 (1872), pp. 427 (cf., Clebsch-Lindemann, Geometrie 

1, Leipzig 1876, pp. 963), G. Darboux, Bull. soc. math. 6 (1878), pp. 68; cf., also Fouret, C. R. Acad. Sci. Paris 78 

(1874), pp. 837. 

 (37) m = 1 gives the Jacobi equation (no. 8); cf., A. Clebsch and P. Gordan, Math. Ann. 1 (1869), pp. 359.  
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A B C

x y z

dx dy dz

  

 

will be an exact differential (II A 2, no. 43). One will get the desired general integral when one 

integrates that differential. 

 For the relationships between that and Clebsch’s theory of connections, one can cf., III C 10. 

 S. Lie gave another geometric interpretation (38): He considered ( , , )F x y y  = 0 to be the 

equation of a surface on which the curves that belong to the linear complex dy y dx−  = 0 are to 

be determined. One can develop the theory of singular integrals (II A 4a, no. 20) synthetically by 

starting from that remark. 

 

 

Systems of first-order equations. General theories. 

 

 11. Systems of multipliers. – The classical process of integrating the general system (1) 

consists of successively lowering the order of the system. To that end, one seeks a first integral 

1 2( , , , , )nz x x x x  = a and uses it to eliminate one of the unknowns (e.g., xn) from the system (1). 

One will thus obtain a system of order (n – 1) in x, x1, …, xn−1 that one further treats in the same 

way. When regarded in that way, the integration will decompose into n successive operations, 

namely: Determine one integral of an nth-order system, one integral of an (n – 1)th-order system, 

etc., and finally, an integral of a first-order equation. – More generally: If one knows k first 

integrals of (1) then one can reduce it by elimination to order n – k . 

 The search for a first integral z can take place with the help of a system of multipliers, because 

since it is defined by an identity of the form: 

 

(39)     dz = 
1

[ ]
n

i i i

i

dx dx 
=

−  , 

 

it can be obtained by a quadrature as soon as the multipliers i are determined in such a way that 

the right-hand side of (39) becomes a complete differential. C. G. J. Jacobi (39) has investigated 

those multipliers [which are an immediate generalization of the Euler multipliers (no. 5)]. Their 

general determination is no easier than the integration of the given system. Jacobi made an 

interesting application to the nth-order linear system: 

 

(40)   
1

( ) ( )
n

i ik h i

h

dx a x x b x dx
=

 
− + 

 
  = 0 (i = 1, 2, …, n) . 

 
 (38) Cf., e.g., Lie-Scheffers, Berührungtransformationen 1, pp. 182. In a somewhat-modified form, cf., L. 

Autonne’s “Untersuchungen über algebraische Integration,” C. R. Acad. Sci. Paris 105, Nov. 1887. 

 (39) J. f. Math. 23 (1842), 1-104; Ges. Werke 4, pp. 236; Euler worked with such multipliers for n = 2 and n = 3, 

but without asserting their existence in general. 
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Here, one can look for the i as functions of only x, because they are themselves determined by a 

likewise-linear system, namely, the adjoint (40) system to the given one, namely: 

 

(41) 
1

( )
n

i j ji

j

d a x dx 
=

+  = 0 . 

 

If the system (40) is homogeneous, i.e., all bi (x) are identically zero, then the two systems (40) 

and (41) are mutually reciprocal, so each of them is the adjoint of the other. 

 Ordinarily, one restricts oneself to a choice of the i such that the linear homogeneous 

combination of equations (1): 

(42)     
1

( )
n

i i i

i

dx dx 
=

−  = 0 

 

becomes an “exact equation” (II A 5, no. 19). One sees from this that their left-hand sides depend 

upon only two functions u, v of the variables x, x1, …, xn, and their differentials du, dv. One thus 

obtains a first-order equation between u and v whose integration will yield a first integral of the 

system (1). Since one deals with only the ratios of the i in that, one can choose one of them 

arbitrarily. J. d’Alembert (41) applied that method to the linear system (40). When he set n = 1 and 

looked for 1, …, n−1 as functions of x alone, he brought the combination (42) into the form: 

 

(43)   
1 1 1

1 1 1

n n n

i in nn i in nn h h

i i h

du
u a a b b x

dx
 

− − −

= = =

   
− + − + −    

   
    = 0 , 

with: 

(44)   

1

1

1

1 1

, ,

1 1

,

( 1,2, , 1).

n

i n n

i

n n
h

h i ih nh h i i n n n

i i

u x x

d
a a a a

dx

h n




  

−

−

=

− −

= =


= +


  

 = + + − +  
 

 = −





   

 

The combination (43) will become an exact equation when one determines 1, …, n−1 from the 

equations h = 0 (h = 1, 2, …, n – 1), which define a system of order n – 1 (42). If it is integrated 

then what will remain is a linear equation in u, and the integration will be completed by two 

quadratures. 

 One can further reduce a recently-proposed method of A. Guldberg (43) for integrating an nth-

order ordinary differential equation to this method. 

 
 (40) Jacobi, J. f. Math. 27 (1844), pp. 199 and 29 (1845), pp. 213 and 333; Ges. Werke 4, pp. 319. 

 (41) Berl. Hist. (1748) [50], pp. 283; cf., also Paris Hist. (1768) and (1769).  

 (42) For the properties of such systems, cf., no. 29.  

 (43) C. R. Acad. Sci. Paris 121 (1895), pp. 49.  
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 In the general case, the partial differential equations that i must satisfy will be complicated. 

However, it will suffice to know a particular (or even singular) solution of them. Thus, in the case 

where the aik are constant, the method of d’Alembert will lead to the goal when one takes constant 

values for the i that satisfy the equations h = 0. That remark is true for the Euler multiplier (no. 

5). 

 

 

 12. The Jacobi multiplier (44) is likewise a generalization of Euler’s, but from a whole 

different viewpoint. Let the system (1) be given in the symmetric form: 

 

(45)  0

0 0 1( , , , )n

dx

x x x
 = 1

1 0 1( , , , )n

dx

x x x
 = … = 

0 1( , , , )

n

n n

dx

x x x
, 

 

such that the associated equation (3) will be: 

 

(46)    A f  
0 0 1

0

( , , , )
n

n

i i

f
x x x

x


=




  = 0 . 

 

When z1, z2, …, zn define a fundamental system of solutions of A f = 0, there will exist (II A 5, no. 

15) a multiplier M that satisfies the identity (45): 

 

(47) M  A f = 1

0 1

( , , , )

( , , , )

n

n

f z z

x x x




 , 

 

which might also be f. Conversely, when M, z1, z2, …, zn satisfies such an identity, they will define 

a fundamental system of solutions of A f = 0. That identity is then the definition of Jacobi multiplier 

of system (45). It is equivalent to the linear partial differential equation: 

 

(48)     
0

( )n
i

i i

M

x



=




  = 0 . 

 

(For n = 1, one gets back to the Euler multiplier.) Here as well, the quotient of two multipliers is 

an integral, and the singular solutions of the system satisfy the equation 1M −  = 0. If one introduces 

new variables y0, y1, …, yn into the system in place of the x0, x1, …, xn then: 

 

(49)     N = 0 1

0 1

( , , , )

( , , , )

n

n

x x x
M

y y y




 

 

 
 (44) The theory is developed in the reference that was cited in footnote 39, along with most of the applications.  

 (45) For the notation of functional determinants, one might cf., I B 1 b, no. 19.  
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will be a multiplier of the transformed system. If k of the yi are first integrals of the given system 

then the transformed system will reduce to one of order n – k, and N will be a multiplier of the 

reduced system. For k = n – 1, that result will lead to the theorem of the last multiplier: When one 

knows n – 1 integrals and a multiplier, the last integral can be determined by a quadrature. If one 

assumes, in addition, that one of the variables does not appear explicitly in the equations of the 

system then either the penultimate integral can be determined by a quadrature or the last one can 

be determined without a quadrature. This last result implies the principle of the last multiplier for 

dynamics. 

 Jacobi applied that theory to the linear system (48), which admits the multiplier: 

 

(50)     M = 
1

exp
n

hh

h

a dx
=

 
− 

 
  . 

 

He further derived from it that the integration of the equation: 

 

(51)    
2

2
( ) ( , )

d y dy
A x B x y

dx dx
+ +  = 0  

 

requires only one quadrature as long as one knows a first integral. However, the most important 

applications relate to the canonical equations of W. R. Hamilton: 

 

(52)    idx

dt
 = 

i

H

y




, idy

dt
 = − 

i

H

x




  (i = 1, 2, …, n), 

 

in which H is a function of x1, x2, …, xn, y1, y2, …, yn, and t. It admits a constant as a multiplier. It 

includes the equations of mechanics (IV 7) as special cases, as well as those of the calculus of 

variations (II A 9), and the equations of the characteristics of first-order partial differential 

equations (II A 5, no. 28, et seq.). 

 Malmstén (46) obtained a formally more general result by a combination of the theory of 

multipliers and the method of permutation of variables and carried out numerous applications, 

namely, to equations of orders 3 and 2, as well as to first-order equations with the use of the method 

of differentiation (no. 9). For example, the equations 
( , )d y y

dx

 
 = ( , )y y   and 

( , )d y y

dx

 
 = 

( , )y y y   can be integrated by quadratures as soon as one knows a first integral. 

 

 

 13. Lie method: Integrating systems with known transformation groups. – If a system (45) 

is given then it can happen that as a result of the nature of the problem that leads to that system or 

as a result of the form of its equations, one knows transformations that take the system to itself and 

 
 (46) J. de math. (2) 7 (1862), pp. 257. For the applications of the Jacobi method, one might also cf. Andreyevski, 

C. R. Acad. Sci. Paris 68 (1869), pp. 716 and A. Winckler, Wiener Ber. 80 (1879), pp. 948. 
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depend upon arbitrary constants. One derives infinitesimal transformations that leave the system 

invariant from them by differentiation. Thus arose the problem that S. Lie (47) posed: Integrate the 

system (45) when one knows q infinitesimal transformations: 

 

(53)    Xh f  
0 1

0

( , , , )
n

hi n

i i

f
x x x

x


=




  (q = 1, 2, …, h) 

 

that leave the system invariant. The condition for the system to admit the infinitesimal 

transformation X f is: As long as z is an integral of A f = 0, X f must also be an integral, and as a 

result, an identity of the form: 

 

(54)    (X f, A f)   (x0, x1, …, xn)  A f 

 

must exist. When the system admits X1 f and X2 f, it will also admit the infinitesimal transformation 

(X1 f, X2 f). Finally, when an identity of the form: 

 

(55)   Xq (f)  
1

0 1 0 1

0

( , , , ) ( ) ( , , , )
q

h n h n

h

u x x x f x x x f
−

=

+ X A  

 

exists, each of the functions uh will be either a constant or an integral of A f = 0. On the basis of 

those theorems, one can, in certain cases, increase the number q of known infinitesimal 

transformations that leave the system invariant and include a certain number of first integrals 

without integration, with the help of which one can lower the order of the system. Furthermore: 

When X f leaves the system invariant, X f +  (x0, x1, …, xn) A f will have the same property, no 

matter what  might be. As a result of that, one can assume that the term with f / x0 is missing 

X1 f, …, Xq f . After making all of those simplifications, one will be dealing with an analogue of 

the original problem in which, however, the infinitesimal transformations define a finite group G 

whose order is equal to at most the order of the system. We can then assume that the same thing is 

true for the Xk f, and that the equations A f = 0, X1 f = 0, …, Xq f = 0 are mutually independent. 

Therefore, if q < n then one can determine the n – q integrals of the complete system A f = 0, X1 f 

= 0, …, Xq f = 0, which requires the prior integration of an ordinary system of order n – q. When 

one then lowers the order of A f = 0 with the help of those first integrals, one will come back to 

the case in which the order of the group is equal to that of the system. We shall then assume that 

q = n. 

 In that case, one will next have the general theorem that the determinant: 

 

 
 (47) Christ. Forh. (1874), pp. 255; Math. Ann. 11 (1877), pp. 464 and esp. ibid., 25 (1885), pp. 71; cf., Lie-

Scheffers, Differentialgleichungen, Chaps. 20 and 24.  
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(56)       

0 1

10 11 1

0 1

n

n

n n nn

  

  

  

 , 

 

which is not identically zero, is the inverse value of a Jacobi multiplier (no. 12) of the system. 

However, once more: 

 

 When the group G is not simple (II A 6, no. 17), one can arrive at a series of problems of the 

same type in which systems of lower order and simple groups will appear. When the group G is 

simple, the integration of the system will be equivalent to that of an auxiliary system that belongs 

to a special class that is defined by the structure of the group.  

 

Lie first proved that result under the assumption that one knows the finite equations of the group 

G. To that end, let G1 be a maximal invariant subgroup of G of order n1 . One introduces 1 = n – 

n1 independent invariants of that group G1 as new variables. They are defined as functions of the 

independent variables (e.g., x0) by a system of order 1 for a simple group that one can denote by 

G / G1 (
48). If that system has been integrated then one can use its first integrals to lower the order 

of (45). In that way, the system will reduce to a system of order n1 with a group that is holohedrally 

isomorphic to G1, and which can once more be treated similarly. If one then has a normal 

decomposition G, G1, G2, …, Gm of G, then if nk is the order of Gk and nk−1 – nk = k , one will, as 

a result, have to integrate a series of auxiliary systems of orders 1, 2, …, k , resp. The kth one of 

them (k = 1, 2, …, m) admits a group of order k and the structure of Gk−1 / Gk [for which the 

determinant that is analogous to (56) is non-zero]. All normal decompositions of G deliver the 

same numbers k and the same structures for their simple auxiliary groups, apart from their 

sequence. 

 The nature of the auxiliary system is easier to understand than another method that goes back 

to E. Vessiot (49), in principle, and it has the additional advantage that it employs only the 

infinitesimal transformations of G. Let 
1 1 f +X , 

1 2 f +X , …, Xn f be those of G1 . One will then 

have: 

(57)    (Xi , Xk) = 
1 1

1

1 1

n

iks s ikj j

s j

c c


 +

= =

+ X X  (i, k = 1, 2, …, 1) 

 

identically, in which the constants ciks define the structure of the simple group (G / G1). Let: 

 

 
 (48) One can reduce the order of that auxiliary system when one introduces the invariants of a subgroup of G that 

includes G1 in place of the invariants of G1 . One derives all of the first integrals that yield the auxiliary system in the 

text from the one thus-determined by differentiation [Lie, Math. Ann. 25 (1885), pp. 71, cf., infra no. 37.] 

 (49) Toulouse Ann. 8 (1894), H, pp. 29; cf., Lie-Scheffers, Differentialgleichungen, pp. 554 and 568. 
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(58)    Yk f = 
1

1

( , , )
p

kl p

l i

f
y y

y


=




   (k = 1, 2, …, 1) 

 

be any group 1 with that structure, so (Yi , Yk) = 
iks sc Y . If one then integrates the complete 

system (II A 5, no. 13): 

(59)  A f = 0 , X1 f = Y1 f , …, 
1
fX  = 

1
fY , 

1 1 f +X  = 0 , …, Xn = 0 , 

 

one will get p integrals of A f = 0. Since they include the arbitrary y, they will give 1 independent 

first integrals of A f = 0 for every p. When one introduces them as new variables, one lowers the 

order of (45), and at the same time, succeeds in making the group G1, just like that of the 

transformed system, include only the n1 preserved variables. The first reduction is completed with 

that, and one can continue in the same way. Furthermore, if one integrates the system (59) using 

the method of A. Mayer (II A 5, no. 17) then one will arrive at one equation of the form: 

 

(60) 
1

1

( )k k

k

f
t f

t



=


+ 


 Y  = 0 , 

which is equivalent to a system: 

(61) ldy

dt
 = 

1

1

1

( ) ( , , )k kl n

k

t y y



=

   (l = 1, 2, …, p), 

 

which is the asserted form for the auxiliary system. The order of that system will be as small as 

possible when one chooses 1 to be a group with the given structure in the fewest-possible 

variables. One will then obtain a canonical type of auxiliary system that corresponds to the 

structure G / G1 . From a different viewpoint, one can always choose 1 to be a linear group, e.g., 

the adjoint group to the structure G / G1 (II A 6, no. 15). The application of Lie’s theory can always 

be done in such a way that all of the auxiliary systems are linear. If 1 = 2 = … = m = 1, i.e., the 

group is integrable, then the integration will be carried out by mere quadratures (50). 

 E. Cartan (51) had treated the group-theoretic problems upon whose solution the application of 

Lie’s method depends: The determination and properties of the normal series of subgroups, the 

reduction of the structure to a group in canonical form, and the determination of the simplest 

auxiliary systems. 

 

 

 14. Integrating systems for which one knows differential or integral invariants. – In order 

to simplify the system (45), one can also benefit from some other facts. For example, one can 

assume that one knows any system of partial differential equations that can be satisfied by the 

 
 (50) Lie, Math. Ann. 25 (1885), pp. 71. One will also find the stated reducibility to linear systems for a large 

number of cases there. – Lie had repeatedly assured us [e.g., Leipziger Ber. 47 (1895), pps. 262 and 506] that his 

theory would yield all simplifications of the integration that would follow from the assumptions. However, he had 

never published a complete proof of that. 

 (51) E. Cartan, Paris thesis 1894 and Am. J. Math. 18 (1896), pp. 1.  
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integrals of a suitably-chosen fundamental system of A f = 0. E. Vessiot (52) treated that case on 

the basis of Lie’s theories: The assumption is equivalent to that of knowing certain differential 

invariants of the infinitesimal transformation A f, from which one can generally derive new ones. 

The integration can be reduced to that of a system G of partial differential equations whose most 

general solution can be derived from a particular one by the most general transformation of a 

certain finite or infinite group G (no. 31). Vessiot also showed that the assumption is equivalent to 

the following one: One knows the differential equations of a finite or infinite group G that leaves 

A f = 0 invariant. One can next seek to determine that group then, and one will then be addressing 

the problem in no. 13. 

 One can further assume that one knows integral invariants of A f. One understands that to 

mean simple or multiple integrals of the form (53): 

 

(62)  I = 
2

0 1 0 1 12

0 1 0

, , , , , , , ,k n k
n k

k

x x x
x x x dx dx dx

x x x
−

−

   
  

   
    

 

that remain unchanged under all transformations of the one-parameter group that is generated by 

A f. The meaning of those integral invariants for the integration of A f = 0 was clarified by H. 

Poincaré (54). He mainly examined first-order integral invariants that are entire functions of the 

derivatives and made some application to the equation of celestial mechanics. Of his results, one 

should mention: If I = 0 1

0

( , , , )
n

k n k

k

x x x dx
=

  is an integral invariant then 
0

n

k k

k

 
=

  will be a 

first integral. In order for I = 
1

0 1 0 1( , , , )
n

n nM x x x dx dx dx
+

   to be an integral invariant, it is 

necessary and sufficient that M should be a Jacobi multiplier (no. 12) for A (f) = 0. G. Koenigs (55) 

investigated the relationship between the existence of integral invariants of the form k kdx  

and the reducibility of the system (45) to a canonical system by means of a point-transformation. 

His results were obtained previously in a different formulation by S. Lie (56), who has since then 

also shown (57) how his theory of differential invariants gives the key to the general determination 

of integral invariants. The difference between the two problems is that there do not necessarily 

exist integral invariants of each multiplicity and order, such that one must distinguish different 

classes of equations here. Each problem that is obtained in that way can be treated systematically 

using the methods if Lie. Basically, one will always be led to the determination of a group from its 

differential equations. Among the cases the Lie treated in detail, one should mention the case of a 

 
 (52) C. R. Acad. Sci. Paris 128 (1899), pp. 544. One can also link the problem with the theories of J. Drach (no. 

38). 

 (53) If  includes the derivatives of xk, xk+1, …, xn with respect to x0, x1, …, xk−1 up to any order m then I will be 

a k-fold integral invariant of order m. 

 (54) Acta math. 13 (1890), pp. 46 and Méthodes nouvelles de la mécanique céleste 3, Paris 1899, pp. 1.  

 (55) C. R. Acad. Sci. Paris 121 (1895), pp. 875.  

 (56) Norw. Arch. 2 (1877), pp. 10.  

 (57) Leipziger Ber. 49 (1897), pps. 342 and 369. – Other investigations of integral invariants: C. Żorawski, 

Krakow. Ber. (1895); E. Cartan, Bull. soc. math. 24 (1896), pp. 140; A. Hurwitz, Göttinger Nachr. (1867), pp. 71. 
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second-order system for which one knows a double first-order integral invariant: One will then get 

either a Jacobi multiplier, or a multiplier and the determination of a first integral by a first-order 

equation, or a multiplier and an integral. 

 

 

 15. Systems of variation. – Poincaré (58) coupled the determination of the integral invariants 

of a system (1) with the study of the system of variation that it is associated with it, i.e., of the 

linear system: 

(63)     kd

dx


 = 

1

m
k

i

i ix




=




   (k = 1, 2, …, n), 

 

that defines the first variations x1 = 1 (x) t, …, xn = n (x) t, which one can attach to the 

particular integral x1 = x1 (x), …, xn = xn (x) when one assumes that x = 0, to simplify. C. G. J. 

Jacobi (59) had already given the theorem for that system: When one replaces x1, …, xn in (63) 

with the general solution of (1), x1 = 1 (x | a1, …, an), the general solution of (63) will be: 

 

(64)     k = 
1

n
k

h

h h

c
a



=




   (k = 1, 2, …, n), 

 

in which c1, c2, …, cn are arbitrary integration constants. 

 That system of variation, which mainly finds its applications in mechanics, is closely linked 

with the determination of the infinitesimal transformations of the form: 

 

(65)     X f = 
1

1

( , , , )
n

k n

k k

f
x x x

x


=




  

 

that leave (1) invariant. In fact, any such infinitesimal transformation will imply a corresponding 

one for (63) from any solution of (1) when one sets k = k (x, x1 (x), …, xn (x)) (k = 1, 2, …, n). 

On the other hand, if one has n first integrals of the system that is composed of (1) and (63) that 

are independent functions of 1, …, n , and one sets them equal to arbitrary constants 1, …, n 

then one will get the equations: 

 

(66)     k = k (x, x1, …, xn | 1, …, n) , 

 

whose right-hand sides will give the most general value of X f when one replaces 1, 2, …, n in 

them with n arbitrary integrals of the system (1) (which can also be constants). 

 

 

 

 
 (58) Méthodes nouv. (footnote 55) 1, Chaps. 4 and 3, Chap. 22.  

 (59) Vorlesungen über Dynamik 12 (Ges. Werke, Suppl.-Bd., pp. 90). Cf., Serret Cours 2, pp. 568. 
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Special theories for nth-order equations. 

 

 16. Method of Euler multipliers. – The most general method for integrating an nth-order 

equation: 

(67)    
n

n

d y

dx
 = 

1

1
, , , ,

n

n

dy d y
F x y

dx dx

−

−

 
 
 

 

 

consists of the search for a first integral that one then treats similarly, etc. To that end, L. Euler (60) 

generalized the concept of a multiplier: His theorem was based upon the determination of the 

conditions under which an nth-order differential function , , , ,
n

n

dy d y
V x y

dx dx

 
 
 

  would be the total 

derivative of an (n – 1)th-order differential function 
1

1
, , , ,

n

n

dy d y
W x y

dx dx

−

−

 
 
 

. They consist of saying 

that one must have: 

 

(68)  
( )

( 1)
n

n

n n

V d dV d dV

y dx dy dx dy

   
− + − + + −   

    
 = 0 ( )

k
k

k

d y
y

dx

 
= 

 
 

 

identically. They were obtained by Euler using the calculus of variations and directly by many 

authors since then (61). If they are fulfilled then one will obtain W by a quadrature. One of them 

says that V must be of first degree in 
( )ny . 

 Now let (67) be given in the somewhat more general form: 

 

(69)  
( )( , , , , )nF x y y y   

( 1) ( ) ( 1)( , , , , ) ( , , , , )n n nA x y y y y B x y y y− − +  = 0 . 

 

Euler’s method then consists of the search for a multiplier 
( 1)( , , , , )nx y y y −M  such that V = M F 

satisfies the conditions (68). If one has V = dW / dx then W = a will be the desired first integral. 

 The partial differential equations that M must satisfy are complicated. However, Euler had 

made some applications to equations of orders 2 and 3. The most interesting of them relates to 

linear equations. When generalized to such an nth-order equation, it will lead to the concept of the 

adjoint equation (62). In fact, if we seek an Euler multiplier z for the linear equation: 

 

(70) 
1

0 1 1
( ) ( ) ( )

n n

nn n

d y d y
p x p x p x y

dx dx

−

−
+ + +  = 0 

 
 (60) Inst. calc. int. 2, pp. 97.  

 (61) Euler, ibid., 3, pp. 425; Condorcet, Du calcul integral; Lexell, Petrop. N. Comm. 15 and 16; Lagrange, 

Calcul des fonctions (Oeuvres 10, pp. 364); J. Bertrand, J. éc. poly., cah. 28 (1841), pp. 364; J. Raabe, J. f. Math. 

31 (1846), pp. 181; F. Joachimsthal, ibid. 33 (1847), pp. 95; Stoffel and Bach, J. de math. (2) 7 (1862), pp. 49; A. 

Winckler, Wiener Ber. 88 (1883), pp. 820. 

 (62) J. Lagrange, Misc. Taur. 3 (1762/65), pp. 179 (Oeuvres 1, pp. 471).  
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that depends upon only x then it must likewise satisfy the linear equation: 

 

(71)   1( ) ( ) ( 1) ( )n

n n n

d
p x z p z p x y

dx
−− + + −  = 0 . 

 

It is called the “Lagrange adjoint” of (70). 

 Moreover, Euler’s method is only a special application of the method of systems of multipliers 

(no. 11). Namely, if V = dV / dx, and one sets: 

 

d V = X dx + Y dy + ( ) ( )n nY dy Y dy + +  

then the expression: 
( )

( ) ( 1) ( ) ( 1) ( 2) ( 1)V ( ) ( )
n

n n n n n ndY
dx Y dy y dx Y dy y dx

dx

− − − − 
+ − + − − 

 
 

2

2
( )

dY d Y
Y dy y dx

dx dx

  
 + + − + − + − 

 
 

 

will be an exact differential of a function of the quantities x, y, y , …, ( 1)ny −  (63), which are 

considered to be independent variables. It will then follow that any Euler multiplier of F = 0 is 

equivalent to a system of multipliers of the equivalent system: 

 

(72)  
( 1)nAdy B dx− +  = 0 , ( 2) ( 1)n ndy y dx− −−  = 0 , …, dy y dx−  = 0 . 

 

 

 17. Cases in which one lowers the degree. – Some cases in which the degree of equation (67) 

can be lowered have been known for a long time (64). The main ones are: 

 

 1. The equation has the binomial form 
n

n

d y

dx
 = f (x) . It can then be integrated by n overlapping 

quadratures that one can also replace with successive ones with the help of partial integration. 

 

 2. One of the variables does not appear explicitly, e.g., y. One lowers the order to (n – 1) when 

one introduces y  as an auxiliary unknown. 

 

 3. y and its derivatives up to 
( 1)ky −

, inclusive, do not appear explicitly. If one introduces 
( )ky  

as an auxiliary unknown then one will have an equation of order n – k. What will then remain is a 

binomial equation of order k. 

 

 
 (63) Cf., e.g., the treatises of Joachimsthal, Stoffel, and Bach that were cited in footnote 61.  

 (64) Cf., the textbooks, as well as Allan Cunningham Mess. 17 (1887), pp. 118 and ibid. 18 (1888), pp. 122.  
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 4. The equation is homogeneous in y and its derivatives: The substitution x = ze  will lead to 

case 2. 

 

 5. The equation is homogeneous in x, y, dx, dy, 2d y , …, nd y . The substitution x = ue , y = 

uv e  will likewise lead to case 2. 

 

 S. Lie remarked (65) that in each of those cases the equation remains invariant under the 

transformations of a finite group, namely, x  = x, y  = y + a in case 2. x  = x, y  = y + a0 + a1 x + 

… + 1

1

k

ka x −

−
 in case 3, and for k = n, in case 1. In case 4, one has x  = x, y  = a y, and in case 5, 

x  = a x, y  = a y . In that way, he was led to the theory of higher-degree equations that admit 

groups of point-transformations in x and y. 

 

 

 18. Lie’s theory. Equations that admit groups of point transformations. Generalizations. 

– An nth-order differential equation (n > 1) generally admits no continuous group of point-

transformations, but if it does then the group will be finite, and when n = 2, it will contain at most 

eight parameters (66). Equations D, with a group G of transformations, decompose into classes 

according to the type of G (II A 6, no. 17). The equations of each class can be converted into each 

other by point-transformations. Since, Lie had determined the different types of point-

transformations, that implies the determination of the associated equations D immediately from 

the theory of invariant functions and equations. In addition to certain exceptional equations that 

can be obtained setting certain determinants equal to zero, the equations D will have the form: 

 

(73)    
2

2
, , , , ,

k

k

d d d
J

dJ dJ dJ

 
  

 

I I I
I  = 0 , 

 

in which J, I mean the two differential invariants of lowest order for G, and  is an arbitrary 

function. Lie gave an integration procedure for each of the types of equation that is obtained in that 

way: One first lowers the order by k units by introducing J and I as variables. What will then 

remain to be integrated is an equation of the form F (J, I) = 0, for which there are certain 

specialized simplifications (integration by quadrature or reduction to linear auxiliary equations). 

As special types, one gets the linear equations and the ones that admit the general projective group. 

The latter were also introduced and investigated by Halphen and Sylvester in their work on 

differential invariants (of the projective group) and reciprocants (I B 2, no. 20). 

 Another remarkable type, namely: 

 
 (65) Göttinger Nachr. (1874); Norw. Arch. 8 (1883), pp. 167, 249, 371; ibid. 9 (1884), pp. 431. The first two 

treatises in Norw. Arch. 8 were reprinted in Math. Ann. 32 (1888), pp. 213. 

 (66) In regard to this question and more general analogous ones, one might cf., Lie, Leipziger Ber. 46 (1894), pp. 

322 and Fr. Engel, ibid., pp. 297.  
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2

3

2

y y

y y

  
−  

  
 =  (x) , 

 

was investigated by H. A. Schwarz (66.a). 

 If any differential equation is given then one can decide whether it is an equation D by 

differentiations and eliminations, and indeed when the defining equations define its group G and 

determine the type to which it belongs. That is an equivalence problem, since one deals with 

deciding whether the equation can be converted into a special equation by a point-transformation. 

However, it can be solved explicitly with the help of differential invariants only in a few cases 

(nos. 33-35). In order to integrate the given equation, one can seek the transformation that converts 

the group G into its canonical form (67). One can also derive the infinitesimal transformations of 

G from its defining equations, which amounts to the integration of a linear auxiliary equation, and 

then apply Lie’s general method for the integration of differential systems with known groups (no. 

13), of which the one that is discussed here is basically only one specialized application. 

 As a result, that theory can be generalized. Thus, Lie (68) had examined the nth-order equations 

that admit a group of contact transformations in the same way. The problem is meaningful for 

only n > 2, because two second-order equations can always be taken to each other by infinitely-

many contact transformations. Their integration requires that of an nth-order linear auxiliary 

equation (except that for n = 3, it will be fourth-order). 

 Above all, Lie’s theory makes it possible for one to discuss the equations that are invariant 

under any group G in arbitrarily-many variables or higher-order system of equations. 

 

 

 19. Unsolved equations. Types of integrable equations. – The methods for treating first-

order equations that are not solved (no. 9) can be easily adapted to nth-order equations. One can 

then set: 

 

(74)   X = 
( )( , , , , )nx y y y   , Y = 

( )( , , , , )nx y y y   , 

 

in which one understands ,  to mean arbitrary functions, and then eliminate x, y, y , …, 
( )ny  

from those equations, the given equations, and the ones that are derived from it by differentiation. 

 In particular, one has a class of equations of the form (69)  (U, V) = 0, in which 
( )( , , , , )nU x y y y  = a and 

( )( , , , , )nV x y y y  = b are two first integrals of an (n + 1)th-order 

equation, that are analogous to the Lagrange equations (no. 9). One will obtain a first integral of 

such an equation when one eliminates 
( )ny  and one of the constants from U = a, V = b and ( , )a b

 
 (66.a) J. f. Math. 75 (1872), pp. 292 (Ges. Abh. 2, pp. 220). 

 (67) S. Lie, in the places that were cited in footnote 65, as well as Math. Ann. 25 (1885), pp. 120.  

 (68) Christ. Förh. 1881, 1882, 1883. 

 (69) Cf., the Note III (by J. A. Serret) in Lagrange’s Leçons sur le calcul des fonctions and J. A. Serret, J. de 

math. 18 (1853), pp. 1.  
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 = 0. One can also generalize an idea of G. Monge (70) and consider equations of the form  (U1, 

U2, …, Un+1) = 0, when U1 = a1, …, Un+1 = an+1 are n + 1 first integrals of the same (n + 1)th-order 

equation. One will get the general integral here when one eliminates y , y , …, ( )ny , and one of 

the constants from U1 = a1, …, Un+1 = an+1 and  (a1, a2, …, an+1) = 0. 

 

 

Special classes of equations and systems of equations. 

 

a) The linear nth-order equation. 

 

 20. General concepts. Fundamental systems of solutions. – Among the special classes of 

differential equations, the earliest one to be examined was that of the linear equations. The 

properties of the nth-order linear homogeneous equations: 

 

(75)   P (y)  
1

0 1 1
( ) ( ) ( )

n n

nn n

d y d y
p x p x p x y

dx dx

−

−
+ + +  = 0 

 

present the greatest analogy to those of the nth-order algebraic equation: 

 

(76)    f (x)  1

0 1

n n

na x a x a−+ + +  = 0 . 

 

Just as the properties of the latter are linked with those of the polynomial f (x), so do the properties 

of the differential expression P (y) depend upon the properties of the polynomial P (y), in which y 

is treated as an undetermined function (71). Hence, Taylor’s formula (I B 1 a, no. 6) corresponds 

to the formula: 

(77) P (y, z) = 
2

( )

2

1 1 1
( ) ( ) ( ) ( )

1 1 2 !

n
n

n

dz d z d z
z P y P y P y P y

dx dx n dx
 + + + +


 

 

here, in which ( )P y , ( )P y , … are derived from P (y) by the same algorithm as the one by which 

( )f x , ( )f x , … are derived from f (x). That formula makes it possible to lower the degree of 

(75) by one unit as soon as one knows a particular solution y1 , because if one sets y = y1 z then the 

equation for z will no longer include z explicitly (72). If y1 likewise satisfies the equations P (y) = 

0, ( )P y  = 0, …, 
( ) ( )nP y  = 0, in other words, if y1, x y1, , …, 1

1

kx y−  are simultaneous solutions of 

(75), then the degree will be lowered by k units: That case corresponds to a k-fold root of (76) (73). 

One can then successively lower the order by k units when one knows k particular solutions. 

 
 (70) Paris Hist. (1783), pp. 719.  

 (71) The first idea for the symbolic representation of such a differential operation goes back to B. Brisson, J. éc. 

polyt. cah. 14 (1808), pp. 197 [and that journal (1804)]. A. Cauchy has explained and extended it [Exerc. de math. 

(1827), Oeuvres (2) 7, pp. 198] He used the notation f (D) y, in which D stands for d / dx. Cf., also the course by 

Sturm, and for more recent studies, the books of Boole. 

 (72) J. d’Alembert, Misc. Taur. 3 (1762/65) [66], pp. 381 in the second pagination.  

 (73) Brasinne, in a note to Sturm’s course.  
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However, one must assume in so doing that those solutions are linearly independent, i.e., they 

cannot be coupled by any homogeneous linear relation with constant coefficients. The condition 

for that is that the determinant: 

(78)     (y1, y2, …, yk) = 

1

1

( 1) ( 1)

1

k

k

k k

k

y y

y y

y y− −

 
 

 

must not be identically zero (74). With the help of the general methods of A. Cauchy (II A 4 a, 

nos. 3, 9, 11) or the specialized procedure of L. Fuchs (II B 4), one can prove that under certain 

conditions that we will assume are always fulfilled here, equation (75) will have systems of n 

linearly-independent solutions; one calls them fundamental systems (75). Any fundamental system 

can be brought into the form: 

 

(79)   y1 = v1 , y1 = 1 2v v dx , …,  yn = 1 2 nv v dx v dx   , 

 

in which none of the functions v1, v2, …, vn is identically zero. 

 J. Lagrange proved that (76) that: 

(80)     y = 
1

n

k k

k

c y
=

  

 

is the general solution, when y1, y2, …, yn define a fundamental system of particular solutions, and 

c1, c2, …, cn are arbitrary constants. That form for the general integral is characteristic of the linear 

homogeneous equations, and it is, in fact, identical to saying that equation (75) [except for the 

infinitesimal transformation 
f

y
y




] admits a group of transformations of the form ( )k

f
x

y





 (k = 

1, 2, …, n). The linear equation then belongs to equations D of no. 18 (77). 

 

 

 21. Equations with constants coefficients. Lagrange equations. D’Alembert’s method. – 

If the ratios of p0, p1, …, pn are constant then equation (74) can be written: 

 

(81)    P (y)  
1

1 1

n n

nn n

d y d y
b b y

dx dx

−

−
+ + +  = 0 , 

 

 
 (74) O. Hesse, J. f. Math. 54 (1857), pp. 227; E. Christoffel, ibid. 55 (1858), pp. 293. 

 (75) The term seems to go back to L. Fuchs [J. f. Math. 66 (1866), pp. 121]. 

 (76) Misc. Taur. 3 (1762/66) [65], pp. 181 with the second pagination. Oeuvres 1, pp. 473.  

 (77) Cf., e.g., Lie-Scheffers, Differentialgleichungen, Chap. 16.  
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in which b1, b2, …, bn are constants. One then calls it an equation with constant coefficients. It can 

be integrated by elementary functions. That is because if one sets: 

 

(82) f (x) = 1

1

n n

nx b x b−+ + +  

 

and lets  denote a constant then one will have: 

 

(83) ( )xP e  = ( )xe f  , ( )xP e  = ( )xe f  , … 

 

Therefore, any root of the characteristic equation f () = 0 will give a solution y = xe , and any 

k-fold root will give k solutions xe , xx e , …, 1k xx e− . One then obtains n solutions and proves 

that they are linearly-independent. One has L. Euler (78) to thank for that result. J. d’Alembert (79) 

treated the case of equal roots by a method that bears his name that is useful in many analogous 

cases (e.g., no. 8). He started from the Euler form of the general integral y = 
1

k

n
x

k

k

c e


=

  with 

unequal  and sought to derive limiting forms for that in the case where the roots coincide. The 

next-simplest case is the one in which only two roots 1 and 2 are allowed to coincide. One must 

then replace the c with functions of the  such that y will be indeterminate for c1 = c2, and one will 

then have to determine its “true values” (II A 1, no. 13). To that end, one writes: 

 

(84)   y = 
2 1 2 1

1

1 2 3

2 1 2 1

n

x x x x
xx

n

e e e e
c e c c c e

   


   

− −
 + + + +

− −
, 

 

in which 1c  = c1 + c2 and 2c  = (2 – 1) c2 can be regarded as the new arbitrary constants. The 

passage to the limit for 2 = 1 poses no difficulty. One likewise passes from the case of a double 

root to that of a triple root, etc. 

 If the constant coefficients are real then one can replace the 2k particular solutions that 

correspond to two conjugate-complex k-fold roots  =    i of the equation f () = 0 with 

solutions of the real form cosh xx e x  , sinh xx e x   (h = 0, 1, 2, …, k – 1). 

 If pk = Ak (x + b)n−k, in which one understands b and the Ak to mean constants (80), then the 

substitution x + b = 
te  will take the equation to one with constant coefficients. 

 G. H. Halphen (81) gave another elementary class of linear equations that can be integrated by 

elementary functions. 

 

 

 
 (78) Misc. Berol. 7 (1743), pp. 193 and Inst. calc. int. 2, sect. 2.  

 (79) Cf., e.g., the article Tangentes in the Dictionnaire des math. der Encyclopédie méthodique. – The process can 

be justified by the theorem of Poincaré (II A 4 a, no. 15). 

 (80) J. Lagrange, Misc. Taur. 3 (1762/65) [66], pp. 190 with the second pagination; Oeuvres 1, pp. 481.  

 (81) C. R. Acad. Sci. Paris 92 (1881), pp. 779. 
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 22. Equations with a right-hand side. Method of variation of constants. – The general form 

of the inhomogeneous linear equation (viz., an equation “with a right-hand side”) is: 

 

(85) P (z) = q (x) . 

 

If one knows a particular integral z0 and sets z = z0 + y then one will get back to P(y) = 0. Thus, 

one will get the general integral: 

z = 0

1

n

k k

k

z c y
=

+   

 

when one adds the general integral to the corresponding equation “without a right-hand side” to z0 

(82). That form for the integral is characteristic of the present class. It corresponds to the situation 

in which (85) admits a group of transformations of the form ( )k

f
x

y





. 

 Conversely: If one knows the general integral of P (y) = 0 then one will get that from (85) by 

quadratures, as J. Lagrange had derived from his method of the variation of constants (83). That is 

a special form of the method of introducing new variables. One initially employs it in order to 

derive a more general solution of an arbitrary system (1) that includes p arbitrary constants a1, a2, 

…, ap from a particular solution. To that end, one replaces p of the xi (e.g., x1, x2, …, xp) with the 

functions u1, u2, …, up that one obtains when one replaces the ai in p of the equations that define 

the known particular solution with the new variables ui . In that form, Lagrange had employed the 

method in order to lower the order of P (y) = 0 when one knows p particular integrals yk, so one 

knows the solution y = 
1

n

k k

k

a y
=

 . Another case in which this method is applicable is: The equations 

of a system (1) include certain parameters m1, m2, …, mr . One knows the general integral for 

special values 0

1m , 0

2m , …, 0

rm  of that parameter. One then introduces new unknown functions 

that take the form of ones that are defined by the general integral equations of that special case 

when one regards the integration constants in them as new variables. In order to apply that method 

here, one forms the equation P (z) = m q (x). For m = 0, one knows the general integral z = 
1

.
n

k k

k

c y
=



It will also be ( )iz  = 
( )

1

n
i

k k

k

c y
=

  for i = 1, 2, …, n – 1 then. The substitution: 

(86)    z = 
1

n

k k

k

u y
=

 ,  ( )iz  = 
( )

1

n
i

k k

k

u y
=

  

leads to the system of equations: 

 

(87)  k
k

k

du
y

dx
  = 0 , …, 

( 2)n k
k

du
y

dx

−  = 0 , 
( 1)n k
k

du
y

dx

−  = m q (x) 

 
 (82) J. d’Alembert, Misc. Taur. 3 (1762/65) [66], pp. 381 in the second pagination.  

 (83) Berl. nouv. mém. (1774) and (1781) (Oeuvres 4, pp. 111; ibid., 5, pp. 123). 
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(in which one can set m = 1). That system can be integrated by n simultaneous quadratures, and 

by a lower number of them in special cases. 

 That result is also true for the binomial equation /n nd z dx  = q (x), in particular. A. Cauchy (84) 

showed that it comes down to the form: 

 

(88)     z = ( , )

x

x d


   , 

if  (, x) is the integral of P (y) = 0 that satisfies the initial conditions y = 0, y  = 0, …, ( 2)ny −  = 

0, ( 1)ny −  = q () for x = . As an application of his theory of residues, he also gave (85) the general 

integral for the case of constant p0, p1, …, pn in an explicit form that one can also obtain directly, 

moreover. 

 Since the integral of P (z) = m q (x) is given by that of (85) (one needs only to replace the z in 

it with z / m), one can replace the equation with a right-hand side with the (n + 1)th-order 

homogeneous equation: 

(89) 
( )

( ) ( ) ( )
dP z

q x q x P z
dx

−  = 0 

 

that one obtains by eliminating m. All n solutions of P (z) = 0 satisfy it. One will then get its (n + 

1)th solution by one quadrature. The two given forms for the method of variations of constants can 

be converted into each other in a completely general way by a similar argument (vg., also II A 4 

a, no. 15). 

 One can also find that result by applying Lie’s method (86). 

 

 

 23. Lowering the order of the equation. Common solutions to two linear equations. – One 

can also lower the order of equation P (y) = 0 whenever one knows another linear equation that 

has solutions in common with the latter. That is implied by a theory (87) that is analogous to the 

theory of the division and greatest common divisors of polynomials (I B 1 a, no. 12). Let A (y), 

( )B y  be two expressions with the same form as P (y), the second of which is not of higher order 

than the first. If one assumes, to simplify, that the first coefficients of all of those expressions 

reduce to 1 then one can determine two analogous expressions Q (y) and R (y), the second of which 

has lower order than B (y), by rational operations, in such a way that one has: 

 

(90)    A (y)  Q (B (y)) +  (x)  R (y) 

 

identically. Every common solution to A = 0 and B = 0 will also be a solution to R = 0 then, and 

conversely. In that way, one will get a linear equation C (y) = 0 whose solutions are all of the 

 
 (84) Oeuvres (2) 7, pps. 40, 198; C. R. Acad. Sci. Paris 8 (1839), pps. 827, 845, 889, 931. Cf., e.g., H. Laurent, 

Traité d’analyse 5, pp. 141. 

 (85) Oeuvres (2) 6, pp. 253, 316 and (2) 7, pp. 40. Cf., the method of Laplace (II B 4).  

 (86) Cf., e.g., Lie-Scheffers, Differentialgleichungen, Chap. 16.  

 (87) G. Libri, J. f. Math. 10 (1833), pp. 135; Brassine, in a note in Sturm’s course.  
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common solutions to A = 0 and B = 0 by a process that is analogous to the determination of the 

greatest common divisor. The assumption can then be replaced by the assumption that P (y) = 0 

admits all solutions to a kth-order linear equation S (y) = 0, and that, as a result, an identity of the 

form P (y) = T (S (y)) exists, in which T (y) means a linear differential expression of order n – k. 

One determines n – k linearly-independent solutions u1, u2, …, un−k of T (u) = 0 and then has to 

integrate the equations with right-hand sides S (y) = uh (h = 1, 2, …, n – k), which requires the 

integration of S (y) = 0 and quadratures (88). 

 One can also derive a process that is analogous to Descartes’s process of ridding an algebraic 

equation of multiple roots (I B 1 b, no. 14) from that. Other methods of eliminating y from A (y) = 

0 and B (y) = 0 were given by G. von Escherich (88.a). 

 

 

 24. Equation with a given fundamental system. Symbolic methods. – The linear equation 

that possess a given fundamental system of solutions y1, y2, …, yn is: 

 

P (y)   (y1, y2, …, yn) = 0 , 

 

with the meaning for  that was given in (78) (89). One will then obtain expressions for the ratios 

pi : p0 in in terms of y1, y2, …, yn and their derivatives from that in the form of quotients of 

determinants that correspond to the expressions for the coefficients of an algebraic equation in 

terms of their roots (I B 3 b, no. 1). In particular, one has the formula of J. Liouville (90): 

 

(91) 1

0

p

p
 = − 1 2log ( , , )nd y y y

dx


. 

 

 The equation P (y) = 0 can be brought into yet another form. For p0 = 1 and  (y1, y2, …, yn) = 

k, one has: 

(92)    P (y)  
2 2

1 1

1 1 2 3 1

n n

n n n

d d d d y

dx dx dx dx

−

− −

  

     
 . 

 

If one takes the fundamental system in the form (79) then one will have (91): 

 

(93) P (y)  1 1 1

1 1n n

d d d d
v v v y

dx dx dx dx

− − −

− . 

 

 
 (88) Cf., also L. W. Thomé, J. f. Math. 76 (1873), pp. 273 and G. Frobenius, ibid., pp. 256; ibid., 80 (1875), pp. 

321, and ibid. 85 (1878), pp. 185. 

 (88.a) Wien. Denkschr. 46 (1882), pp. 61 and ibid. 47 (1883), pp. 1. 

 (89) G. Libri, J. f. Math. 10 (1833), pp. 185.  

 (90) J. de math. (1) 3 (1838), pp. 349, cf., Brassine, loc. cit.; E. Christoffel, J. f. Math. 55 (1858), pp. 296. The 

theorem had already been found by N. H. Abel, J. f. Math. 2, pp. 2 (Oeuvres 1, pp. 251) for the case of a second-order 

equation. 

 (91) G. Frobenius, J. f. Math. 76 (1873), pp. 256 and ibid. 77 (1873), pp. 245.  
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 As G. Floquet showed (92), it follows from these results that one can write symbolically: 

 

(94)     P (y) = An An−1 … A1 (y) 

 

when one sets A (B (y)) equal to AB (y). In so doing, one has: 

 

(95)   Ak (y) = k

dy
a y

dx
− , ak = 1 2log ( )kd v v v

dx
 = 

1

log k

k

d

dx −




. 

 

Formula (94) corresponds to the decomposition of a polynomial into linear factors. For the 

equation with constant coefficients (no. 21), the ak are the roots of the characteristic equation. 

Floquet reduced the general case of commuting Ak (I A 6, no. 1) to that of constant coefficients. 

 Those symbolic decompositions give new methods (92.a) for integrating equations with a right-

hand side (no. 22). In the case of constant coefficients, one has to solve: 

 

(96)   1 1n n

d d d
z

dx dx dx
  −

    
− − −    

    
 = q (x) . 

If one sets: 

(97)     

1
d

a u
dx

−

 
− 

 
 = 

a x a xe e u dx−

 , 

by definition, then one will get: 

 

(98)   z = 

1 1 1

1 2 ( )n

d d d
q x

dx dx dx
  

− − −

     
− − −     

     
. 

 

One proves that that successive quadratures can be separated by means of a formula that is 

analogous to the decomposition of rational functions into partial fractions (I B 1 a, no. 2; II A 2, 

no. 26): 

(99) z = 

1

1

1

( ) ( )
n

k k

k

d
f q x

dx
 

−

−

=

 
 − 

 
 . 

 

Just as for rational functions, that result can be extended to multiple roots of the characteristic 

equation. 

 

 

 25. Rational differential functions of solutions of a fundamental system. Invariant 

functions. Transformation. – Even the theorem of the rational functions of the roots of an 

 
 (92) Ann. éc. norm. sup. (2) 8 (1879), Suppl. (Paris thesis), pp. 49. Cf., also, E. Grünfeld, J. f. Math. 98 (1885), 

pp. 333. 

 (92.a) Cf., Footnote 71. 
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algebraic equation (I B 3 b) has its analogue in the theory of differential equations. The most 

general fundamental system 1y , 2y , …, ny  to equation (75) can be derived from a special y1, …, 

yn by means of the equations: 

(100)     iy  = 
1

n

ik k

k

a y
=

   (i = 1, 2, …, n), 

 

which define the general homogeneous linear group  (II A 6, np. 20). That group then plays the 

same role here that the group of permutations of n symbols plays for an nth-order algebraic 

equation. As functions of the y and their derivatives, the pk / p0 are differential invariants of the 

group , and every differential invariant of  that is constructed from y and its derivatives is a 

function of only the pk / p0 and its derivatives. Moreover, if it is a rational function of the y, its 

derivatives, and the x then its expression in terms of the pk / p0 , their derivatives, and x will be 

rational. Any relative differential invariant of  is the product of a rational function of the 0/kp p  

and their derivatives with 1 0exp /p p dx−   (93). 

 More generally, let R be a differential function that is formed rationally from y1, …, yn, their 

derivatives, and x. Its properties are coupled with those of its group (94), i.e., that subgroup G of  

under which the form of that function remains unchanged. The function that is derived from R by 

an arbitrary transformation of  (one calls it the “general value” of ) is the general solution of a 

rational differential equation  (R) = 0 whose coefficients are rational functions of the pk / p0 , 

their derivatives, and x. One calls  (R) = 0 a transform or resolvent of P (y) = 0. It has order 
2n r− , if r is the number of parameters of G. 

 Let S be another differential function of the same nature as R, and let H be its group. If H is 

contained in G completely then R can be expressed rationally in terms of S, the pk / p0, their 

derivatives, and x. In general, R satisfies a rational differential equation whose coefficients are 

rational functions of S, the pk / p0, their derivatives, and x, and its order is equal to the difference 

between the number of parameters of H and the greatest common subgroup of G and H (94). 

 If S does not admit any transformation of  besides the identity transformation then any 

function R (so each of the integrals y1, …, yn, as well) can be expressed rationally in terms of S, 

the pk / p0, their derivatives, and x. In particular, that is true for the function S = u1 y1 + u2 y2 + … 

+ + un yn , in which the ui mean undetermined functions of x. It satisfies a linear homogeneous 

equation of order 
2n  (general resolvent) (95). 

 If one takes: 

(101)   z = R (y) = 
1 2

1 21 2
( ) ( ) ( )

n n

nn n

d y d y
u x u x u x y

dx dx

− −

− −
+ + + , 

 

 
 (93) These theorems go back to P. Appell, Ann. éc. norm. sup. (2) 10 (1881), pp. 400. 

 (94) E. Vessiot, Paris thesis 1892 [Ann. éc. norm. sup. (3) 9, pp. 197]. – The theorems can be adapted to an 

arbitrary domain of rationality (no. 36). 

 (95) E. Picard, C. R. Acad. Sci. Paris 96 (1883), pp. 1131 and Toul. Ann. 1 (1887), A.  
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in which one understands u1, u2, …, un to mean rational functions of x, the pk / p0, and their 

derivatives, then one will get a linear resolvent Q (z), which has order n, in general, like P (y). The 

solutions of P (y) = 0 and Q (z) = 0 correspond to each other by way of the relation z = R (y), and 

also by way of a inverse relation of the same form y = S (z). One then has the analogue of the 

Tschirnhausen transformation here (I B 2, no. 19). Two linear differential equations P (y) = 0 and 

Q (z) = 0 are said to have the same type (96) when they are connected to each other in that way. 

 

 

 26. Associated equations. Adjoint equation. – From the aforementioned, the simplest 

resolvents are the ones that are satisfied by the minors of the determinant  (y1, …, yn). That 

determinant itself satisfies the first-order equation (91). All of those same minors that are 

constructed from m rows of  satisfy one and the same equation and defines a fundamental system 

of solutions for it. If one replaces the m rows with m other ones then one will get equations of the 

same type (no. 25). For every m, one can then confine oneself to the study of the equation that 

1 2( , , , )ny y y  satisfies. It is called the (n – m)th associate of P (y) = 0. The solutions to a 

fundamental system for it are (except for m = 1 and m = n – 1) coupled by entire homogeneous 

relations with constant coefficients. The properties of those associates have been dealt with many 

times (97). Among other things, they facilitate the investigation of the reducibility of linear 

equations (nos. 36 and II B 4). 

 One ordinarily replaces the (n – 1)th associate with the (easily-derived) equation for which a 

system of fundamental solutions is: 

 

(102)    zk = 1 1 1

1 2

( , , , , , )
( 1)

( , , , )

n k n k k

k

y y y y

y y y

+ − +
−


 . 

 

C. G. J. Jacobi (98) showed that it is identical to the Lagrange adjoint (99) ( )P z = 0, where: 

 

(103) ( )P z   
0

( )
( 1)

kn
k n k

k
k

d p z

dx

−

=

−  

 

is called the expression adjoint to P (y). Its properties are derived from the identity: 

 

(104) ( ) ( )z P y y P z−   
( , )dP y z

dz
. 

 

 
 (96) H. Poincaré, Acta math. 5 (1884), pp. 212. Cf., L. Schlesinger, Lineare Diff.-Gl. 2, pp. 118. 

 (97) L. Fuchs, Berl. Ber. (1888), pp. 1115; A. B. Forsyth, Trans. London Math. Soc. 179 (1888), pp. 420; J. 

Cels, Ann. éc. norm. sup. (3) 8 (1891), pp. 341; E. Borel, ibid. 9 (1892), p. 63; E. Grünfeld, J. f. Math. 115 (1895), 

pp. 328; A. Gutzmer, Habilitationsschrift, Halle, 1896. 

 (98)  J. f. Math. 92 (1846), pp. 189 (Ges. Werke 2, pp. 127). 

 (99) Cf., no. 16 and N. H. Abel, Oeuvres 2, pp. 47.  
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The adjoint to the adjoint is once more the original equation. With the help of the fundamental 

system (102), the solution of the equation with a right-hand side P (y) = q (x) can be represented 

in the explicit form: 

(106)     z = 
1

( )
n

k k

k

y q x z dx
=

  . 

 

 The general form of the even-order expressions that are identical to their adjoints is (100): 

 

(107) P (y)  ( )Q Q y  . 

 

Those of the odd-order equations that are equal and opposite to their adjoints are (101): 

 

(108) P (y)  
( )dQ y

Q
dx

 . 

 

If P (y) = M1 M2 … Mk (y) , and 1M  , 2M  , …, kM   are the adjoints of M1, M2, … Mk , resp., then 

( )P z  = 1 1 ( )k kM M M z−
    (102). 

 Those relationships admit a geometric representation (103). One considers the equations xi = 

( )iy x  (i = 1, 2, …, n), in which one understands y1, …, yn to mean a fundamental system of 

solutions P (y) = 0, to be equations of a curve in (n – 1)-dimensional space in homogeneous 

coordinates. The transition from one fundamental system to another can be interpreted as a 

transformation of the homogeneous coordinates. One can then say that from the projective 

viewpoint, the equation P (y) = 0 defines a certain integral curve. The adjoint equation gives that 

curve dualistically. The associated equations give it in the various types of tangential coordinates 

that exist in Rn−1 . That representation is also useful for other questions (104). Furthermore, it should 

be observed that knowing an integral curve will give only the ratios of the integrals. In order to 

determine the integrals themselves will require yet another quadrature. 

 

 

 27. Second-order equations. – The second-order equation: 

 

(109) P2 (y)  
2

0 1 22

d y dy
p p p y

dx dx
+ +  = 0 

 

 
 (100) C. G. J. Jacobi, J. f. Math. 17 (1837), pp. 68 (Ges. Werke 4, pp. 39). Cf., footnote 98. Cf., G. Frobenius, J. 

f. Math. 85 (1877), pp. 192; G. Darboux, Théorie des surfaces 2, pp. 109. The self-adjoint equations are important in 

the calculus of variations (cf., II A 9). 

 (101) G. Darboux, Théorie des surfaces 2, Paris, 1889, pp. 121. 

 (102) L. W. Thomé, J. f. Math. 76 (1873), pp. 277; G. Frobenius, ibid., pp. 263; E. Grünfeld, ibid. 98 (1885), 

pp. 333. 

 (103) E. Borel, Ann. éc. norm. sup. (3) 9 (1892).  

 (104) G. H. Halphen, Paris sav. [étr.] (2) 28 (1884), pp. 115; S. Lie, Christ. Förh. (1883), no. 12.  
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has special properties. Its transform in z = d log y / dx is a Ricatti equation. If it is integrated then 

that will require the quadrature 1 0exp /p p dx−  . Conversely, if one sets z = − 
1 dy

C y dx
 in the 

Ricatti equation dz / dx = A + B z + 2C z  then one will obtain an equation P2 (y) = 0 for y (105). 

Those theorems can be adapted to nth-order linear equations and their transforms in d log y / dx. J. 

Liouville used that transformation to prove that for  (x) = 2( 1)n n x−+ , the equations: 

 

(109.a)     
2

2
2 ( )

d z dz
h x z

dx dx
+ +  = 0  

 

can be integrated by elementary functions when h is a constant and n is a whole number (105.a). 

Most of the known cases can be reduced to that integrability case (105.b). 

 Above and beyond that, Moutard (106) exhibited all equations of the form (109.a) that have an 

integral that takes the form of an entire rational function of the parameter h. Its solution is based 

upon the consideration of certain consequences of equations P2 (z) = 0 that are such that as soon 

as one knows a particular integral of one of them, all of the foregoing ones can be successively 

integrated (106.a). That method is related to the Laplace method for second-order linear partial 

differential equations (II A 5, no. 59). It is analogous to a method that J. Cel (107) used for the nth-

order linear equation by which the results that belong to P (y) = 0 will be obtained by alternately 

forming the Lagrange adjoint of each equation and its first-row adjoint [i.e., the transform in 

11
1, , : ( , )n

n

dydy
y y

dx dx

− 
  

 
 ]. 

 For the behavior of the integrals of second-order linear differential equation in the real 

domain, the locations of their zeroes, etc., one might cf., II A 7 a. For special classes of such 

equations and functions that satisfy them, cf., II B 4 and 4 b. 

 

 

b) Linear systems. 

 

 28. Extension of the foregoing theories to systems of linear equations. – The linear systems 

(108) whose general form is: 

 
 (105) Cf., e.g., G. Darboux, Théorie des surfaces 1, Paris, 1887, pp. 23. 

 (105.a) J. de math. 6 (1841), pp. 1. Cf., also L. Euler, Misc. Taur. 3 (1762/65), II pp. 60. 

 (105.b) For such cases, cf., inter alia, Hargreave, Trans. London Math. Soc. (1848), pp. 31, as well as the book by 

Boole. 

 (106) C. R. Acad. Sci. Paris 80 (1875), pp. 729. 

 (106.a) Cf., L. Euler, Misc. Taur. 3 (1762/65), pp. 88. 

 (107) Ann. éc. norm. sup. (3) 8 (1891), pp. 341; C. R. Acad. Sci. Paris 115 (1892), pp.1057; ibid. 116 (1893), pp. 

176. 

 (108) The investigation goes back to J. d’Alembert [footnote 42]. Cf., Natani, Die höhere Analysis. L. 

Königsberger, Lehrbuch, Chap. III. L. Sauvage, Toul. Ann. 8 and 9 (1894/95). 
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(110) 
1

( )
n

i
ik k

k

dx
a x x

dx =

−   = bi (x) 

 

have properties that are similar to those of the linear equations. We first consider the homogeneous 

system: 

(111) 
1

( )
n

i
ik k

k

dx
a x x

dx =

−   = 0 . 

 

It possesses a fundamental system that is constructed from n solutions xi = xhi (x) (h, i = 1, 2, …, 

n) whose determinant  = | xhi | is not identically zero. The general solution is: 

 

(112) xi = 
1

n

h h

h

c x
=

   (i = 1, 2, …, n), 

 

with n arbitrary constants ch . That form for the general solution is characteristic of the linear 

systems. If one knows one or more particular solutions then one can lower the order of the system, 

e.g., with the method of the variation of constants (no. 22). m solutions (m  n) are linearly 

independent when the mth-order determinants that are constructed from them are not all identically 

zero. 

 If the aik are constant then there will be solutions of the form xi = x

im e  (i = 1, 2, …, n), in 

which the  are roots of the characteristic equation: 

 

(113) f ()  

11 11 1

16 22 2

1 2

n

n

n n nn

a a a

a a a

a a a







−

−

−

 , 

 

and the mi are constants whose ratios can be calculated from first-degree equations. If f () has 

only simple roots then the integration will be complete with that. The case of multiple roots 

basically depends upon Weierstrass’s theory of elementary divisors (I B 2, no. 3) (109). One can 

also use d’Alembert’s multiplier method (no. 11) and its method of passing to the limit (no. 23). 

The method of Laplace (110) and the residue calculus of Cauchy (111) give other forms for the 

solution. Furthermore, the question is closely related to the question of the canonical forms for 

linear transformations (whether finite or infinitesimal) (112). 

 
 (109) L. Sauvage, loc. cit. and J. de math. (3) 10 (1884), pp. 387.  

 (110) Cf., e.g., E. Picard, Traité d’analyse, 3, pp. 395. 

 (111) A. Cauchy, C. R. Acad. Sci. Paris 8 (1839), pp. 827, 845, 889, 930. Cf., e.g., H. Laurent, Traité d’analyse 

5, pp. 294; another presentation can be found in J. Collet, Grenoble Ann. 6 (1894), pp. 309. 

 (112) Lie-Engel, 1, pp. 585. 
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 Vaschy (113) succeeded in treating the case of an unsolved system of n homogeneous equations 

with constant coefficients and n unknown functions with the use of symbolic notation. The 

symbolic form of the results was the same as in the theory of first-degree equations. 

 The inhomogeneous system (110) can be integrated by quadratures as soon as one has 

integrated the corresponding homogeneous one (111) (113.a). One can prove that by the method of 

variation of constants (no. 22), Cauchy’s method (II B 4), or by applying the adjoint system (no. 

11). 

 One can also couple those results with Lie’s theory (no. 13). The system (110) admits a group 

of the form: 

(114)     Xk (f) = 
1

( )
n

ki

i i

f
x x

x=




    (k = 1, 2, …, n), 

 

while the system (111) admits X f = 
1

n

i

i i

f
x

x=




 , in addition. (Cf., no. 29). 

 One can define the linear system that has n given n-tuples of functions of x, xi = xki (x) (k, i = 

1, 2, …, n) for a system of fundamental solutions. It reads: 

 

(115)     

1

1 11 1

1

k k nk

n

n n nn

dx dx dx

dx dx dx

x x x

x x x

 = 0  (k = 1, 2, …, n). 

 

The expressions for the aki in terms of the xki and their derivatives can be inferred from that. They 

are invariants of the homogeneous linear group of order 
2n : 

 

  
kjx  = 

1

n

kh hj

h

c x
=

    (k, j = 1, 2, …, n), 

 

which plays the role of the group  in no. 22 here. All of the theories in no. 22 can be adapted with 

almost no modification (114). Among the transformed systems, one will find Jacobi’s adjoint 

systems (no. 11): 

(116) 
1

n
i

ki k

k

dz
a z

dx =

+   = 0  (i = 1, 2, …, n). 

 

A fundamental system of solutions for it is given by: 

 

 
 (113) C. R. Acad. Sci. Paris 116 (1893), pp. 491; cf., C. Jordan, Cours d’analyse 3. 

 (113.a) E. Vessiot, Toul. Ann. 8 (1894), H pp. 29. 

 (114) C. G. J. Jacobi, Werke 4, pp. 403. 
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(117) zi = zhi = 
1

hix



 
    (h, i = 1, 2, …, n). 

 

Liouville’s formula (91) corresponds to (114.a): 

 

(118) 
1 d

dx




 = − 

1

n

ii

i

a
=

  

here. 

 

 

c) Lie systems and generalizations. 

 

 29. Lie systems. Their various definitions. Their integration theory. – The linear systems 

are a special case of Lie systems (115), whose general form is: 

 

(119) idx

dt
 = 1 2

1

( ) ( , , , )
r

k ki n

k

t x x x 
=

   (i = 1, 2, …, n). 

 

In that way, the r independent infinitesimal transformations: 

 

(120) Xk f = 
1

( )
r

k k

k

f
t X f

t


=


+


 = 0 

 

will define “the group G that is associated with the system (119).” The equivalent partial 

differential equation (no. 1) is: 

(121)  f  
1

( )
r

k k

k

f
t X f

t


=


+


  = 0 . 

 

The system (199) will be linear when G is included in the general linear group and linear and 

homogeneous when G is included in the homogeneous linear group. It will reduce to a Ricatti 

equation (no. 8) when G is the projective group in one variable, and to one of the systems k = 0 

(no. 11) to which the application of d’Alembert’s multiplier method to systems of linear equations 

will lead when G is the projective group in n – 1 variables. In their general forms, such systems 

will appear as auxiliary systems in Lie’s theory of the integration of systems with known groups 

(no. 13). 

 If the k (t) are constants then equations (119) will define the finite equations of a 

transformation of G in canonical form. Lie showed (116) that the determination of those canonical 

equations will require at most quadratures when one knows the finite equations of G in any form. 

 
 (114.a) C. G. J. Jacobi, Werke 4, pp. 403. 

 (115) Math. Ann. 25 (1885), pp. 124.  

 (116) Cf., e.g., Lie-Engel 3, pp. 624.  
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That is a generalization of the theorem on linear equations with constant coefficients. Another 

special case of it is the integrability of the Jacobi equation (no. 8). 

 Lie has also (116) emphasized the meaning of those equations for his theory of integration and 

gave some suggestions for the use of knowing first integrals or particular integrals or relations 

between them. 

 Such systems will once more appear as the most general systems with fundamental solutions, 

i.e., ones whose general integral can be written in the form: 

 

(122)  xi = i (x11, …, x1n ; x21, …, x2n ; … ; xp1, …, xpn | c1, c2, …, cn) (i = 1, 2, …, n). 

 

in which the x11, …, x1n ; … ; xp1, …, xpn mean p arbitrary (but subject to inequalities) solutions, 

that define the integral, which one calls a fundamental system. Furthermore, c1, …, cn are the 

integration constants, and the functions  do not include t explicitly and do not depend upon the 

choice of fundamental system. Those systems were determined for n = 1 (117) under the assumption 

that the  are algebraic by L. Königsberger (118), and without that restriction by E. Vessiot (119). 

The general case was treated by A. Guldberg (120), E. Vessiot (121), and S. Lie (122). 

 G. Bohlmann (123) had also found the Lie systems again by asking the question of what classes 

of systems admit the integration methods, i.e., systems of the form: 

 

(123) idx

dt
 = Hi (x1, …, xn | 1 (t), …, r (t))  (i = 1, 2, …, n) 

 

(in which the k mean undetermined functions of their arguments, but the Hi are well-defined ones) 

that have general integrals of the form: 

 

(124) i (x1, …, xn | u1 (t), …, ur (t)) = ci  (i = 1, 2, …, n), 

 

in which the nature of the functions  depends upon only that of the H, while the ui will be 

determined analytically as soon as one assigns special forms to the  (e.g., by means of differential 

equations whose coefficients are defined by the k and their derivatives). 

 Finally, yet another characteristic property of the system (119) is that one can bring its general 

integral into a form such that the integration constants in it appear in the same way as the variables 

in the finite equations of the group G. That is, if those finite equations are: 

 

(125)  ix  = fi (x1, …, xn | a1, …, ar)  (i = 1, 2, …, n) 

 
 (117) Ed. Weyr had already given some results for this case. Cf., Prague Abh. (6) 8 (1875/76).  

 (118) Acta math. 3 (1883), pp. 1.  

 (119) Ann. éc. norm. sup. (3) 10 (1893), pp. 53. 

 (120) C. R. Acad. Sci. Paris 116 (1893), pp. 964; J. f. Math. 115 (1895), pp. 111.  

 (121) C. R. Acad. Sci. Paris 116 (1893), pp. 1112. 

 (122) Ibid., pp. 1233; Leipziger Ber. 45 (1893), pp. 341; ibid. 48 (1896), pp. 394. Cf., also Lie-Scheffers, 

Transformationsgruppen, Chap. 24.  

 (123) J. f. Math. 43 (1894), pp. 207; ibid. 115 (1895), pp. 89. 
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then the general integral of (119) will have the form: 

 

(126) xi = 0 0

1 1( , , | ( ), , ( ))i n rf x x a t a t   (i = 1, 2, …, n), 

 

in which the 0

1x , …, 0

nx  are arbitrary constants, and the ak (t) are defined by the Lie auxiliary 

system: 

(127)    kda

dt
 = 

1

1

( ) ( , , )
r

j jk r

j

t a a 
=

    (k = 1, 2, …, r), 

 

for which the associated group is the first parameter group of G (II A 6, no. 14). E. Vessiot (124) 

derived a theory of the integration of Lie systems from that remark, which one can regard as an 

application of the method of variation of constants, and under the assumption that the finite 

equations of G are known: Two Lie systems are equivalent, i.e., integrating the one will imply that 

of the other, when the associated groups are holohedrally isomorphic and the functions k (t) are 

the same in both systems. The integration of the system (119) comes about with the help of the 

adjoint linear system: 

(128) sde

dt
 = 

1 1

( )
r r

k iks i

k i

t c e
= =

     (s = 1, 2, …, r), 

 

for which the associated group is the adjoint group (II A 6, no. 15) to G. After that auxiliary 

integration, one will have to perform at most some possible quadratures, namely, when G includes 

distinguished infinitesimal transformations. If G is not simple then one can also replace the 

integration of (119) by a sequence of Lie systems with simple groups. 

 The theorems of no. 25 concerning linear systems can be adapted to all Lie systems. 

 If one assumes that the finite equations of G are not known then the integration of (119) will 

include the determination of those finite equations as a special case, which is a problem for which 

Lie (125) gave some essential results. E. Vessiot (126) reduced the general case to the Lie theory that 

was presented in no. 13 by first determining the group of infinitesimal transformations of the form 

( )k kt f X  that leave the system (119) invariant (cf., no. 28). In particular, one concludes from 

this that the integration of (119) can always be reduced to that of auxiliary linear systems when G 

is transitive (II A 6, no. 11), and also when G is intransitive, as long as one has calculate their 

invariants. 

 

 

 30. Most general system with fundamental solutions. Higher-order equations with 

fundamental systems of first integrals. Generalization of Lie systems. – One can extend the 

concept of differential systems with fundamental solutions when one allows the independent 

 
 (124) Toul. Ann. 8 (1894), H.  

 (125) Cf., e.g., Lie-Engel 3, pp. 518, 798, etc.  

 (126) Toul. Ann. 10 (1896), G. 
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variable to appear explicitly in the expression for the general solutions in terms of particular 

solutions. However, one must then introduce an additional hypothesis, except for n = 1. A system: 

 

(129)     idx

dt
 = Hi (x1, …, xn, t)   (i = 1, 2, …, n) 

 

is a system with fundamental solutions when one knows relations of the form: 

 

(130)  xi = i (x11, …, x1n ; … ; xp1, …, xpn ; t | c1, …, cn)    (i = 1, 2, …, n) 

 

that will give the general integral as soon as one replaces x11, …, x1n ; … ; xp1, …, xpn in them with 

p particular solutions, and are arranged in such a way that the equations: 

 

(131)  
kjx  = j (x11, …, x1n ; … ; xp1, …, xpn ; t | ak1, …, akn)   

(k = 1, 2, …, p ; j = 1, 2, …, n) 

 

define a group whose parametric equations are independent of t. All transforms of the linear 

equations (127) and Lie systems fall within the scope of that definition. Such systems can always 

be integrated by means of auxiliary Lie systems (128). 

 A. Guldberg (129) generalized Lie systems in a different way by looking for higher-order 

systems of equations that admit fundamental systems of first integral. They are the systems: 

 

(132)    
p

i

p

d x

dt
 = 

1

1
1 1

, , , , , ,
p

n
i n p

d xdx
H t x x

dt dt

−

−

 
 
 

 (i = 1, 2, …, n) 

 

whose general can be put into the form: 

 

(133)  
1

1

p

n

p

d x

dt

−

−
 = i (11, …,  1n ; … ; s1, …, sn ; t | c1, …, cn)   (i = 1, 2, …, n), 

 

while the equations: 

 

(134)  
1

1

p

n

p

d x

dt

−

−
 = 

2

1
1 2

, , , , , ,
p

n
ki n p

d xdx
t x x

dt dt


−

−

 
 
 

 (i = 1, 2, …, n ; k = 1, 2, …, s), 

 

represent s particular first integrals. The determination and integration of such systems is likewise 

linked with the theory of transformation groups. 

 
 (127) Vessiot, Thesis, pp. 31.  

 (128) Vessiot, Toul. Ann. 8, H, pp. 30; cf., a theorem of T. Levi-Civita, Lomb. Rend. (1895).  

 (129) C. R. Acad. Sci. Paris 117 (1893), pp. 215.  
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 A third generalization of Lie systems is provided by infinite groups, namely, systems of the 

form (130): 

(135)  idx

dt
 = i (x1, …, xn | t)   (i = 1, 2, …, n) 

 

where the family of infinitesimal transformation that depend upon the parameter t: 

 

(136)     Xi f = 
1

1

( , , | )
n

i n

i i

f
x x t

x


=




  

 

is contained completely within an infinite group G (that is different from all points-

transformations). The canonical systems of mechanics (no. 12) belong to that class, inter alia. The 

arbitrary constants also appear in the general integral here in that same way that the variables 

appear in the finite equations of the group G. One can also say: The equivalent equation: 

 

(137)     L f  i

f
f

t


+


X  = 0 

 

has n solutions that satisfy the defining equations for the finite transformations of G (cf., no. 14). 

 

 

 31. Systems of partial differential equations with fundamental solutions. Applications. – 

From a more-general standpoint, a system of fundamental equations is any system G of partial 

differential equations: 

(138)   
2

1 1
1 1 2

1 1

, , , , , , , , , ,n
k m n

m

zz z
F x x z z

x x x

  
 

   
 = 0 

 

whose general solution emerges from a particular one by the general transformation zi = 
0 0

1( , , )i nz z  of a (finite or infinite) group G (131). The system of defining equation for the finite 

transformations of G are a special case of that. In general, a system G is nothing but a system that 

admits the group G and whose solutions can be permuted transitively by G. The construction of 

all such systems thus depends upon determining the types of groups G and the general theory of 

differential invariants. Except for certain exceptional systems, they will be obtained when one sets 

a system of suitably-chosen differential invariants equal to given functions of x1, …, xm . 

 If the group G is finite then the integration of G will fall within the scope of the problems that 

were treated before. If the group G is infinite and not simple then the integration of G can be 

reduced to a sequence of systems of the same type that correspond to simple group. Those simple 

groups can also be obtained from the normal decomposition of G into a sequence of groups, each 

of which is a distinguished maximal subgroup of the previous one (II A 6, nos. 6, 17). The number 

 
 (130) E. Vessiot, C. R. Acad. Sci. Paris 125 (1897), pp. 1019.  

 (131) S. Lie, Leipziger Ber. (1895), pp. 261 and J. Drach, Paris thesis 1898, pp. 90. 



Vessiot – Ordinary differential equations. Elementary integration methods. 46 
 

and structure of them are independent of the decomposition that one applies, up to the ordering of 

the sequence (132). If G is infinite and simple then one seeks to reduce the number of unknown 

functions z1, z2, …, zm to a minimum. In that way, one will then come to systems G that one can 

regard as not further reducible and as the structure of the canonical system that corresponds to G 

(133). 

 We already encountered the system G in no. 14. Lie (131) had further reduced the following 

general problem to the integration of such systems: Integrate the equation X f = 0 when one knows 

the defining equations of a group G and the general form of its infinitesimal transformations and 

X f is any infinitesimal transformation of G. That problem subsumes, as special cases, the general 

theory of Lie systems (no. 29), Lie’s theory of no. 13, the system at the conclusion of no. 27, and 

the first-order partial differential equations (II A 5, IV). The theory of Jacobi multipliers (no. 12) 

is also subordinate to it: Knowing a multiplier M of the system (45) will give the equivalent 

equation: 

(139)     X f  i

i i

f

x





M  = 0 , 

 

in which X f is an infinitesimal transformation of the group of point-transformations that leaves 

the volume unchanged. In that way, Lie could prove that the theory of last multiplier gives the 

complete simplification that results from knowing a multiplier M for the integration of the system. 

He had also once more carried out the integration of an nth-order system when one knows a 

multiplier and an infinitesimal transformation from the same viewpoint (134): Either one derives 

one or more first integrals from it, or one completes the integration by two quadratures once one 

has determined n – 2 first integrals, or one obtains the last integral with no quadrature once one 

has determined n – 1 first integrals. 

 

 

 32. Various classes of equations. – The foregoing classes of differential systems were all 

obtained when one sought to generalize one or the other of the following two main properties of 

linear equations: 

 

 1. They possess fundamental systems of solutions, i.e., their solutions are not mutually-

independent transcendents, in a certain sense. 

 

 2. One knows how the arbitrary constant are included in the general integral. 

 

 The closer consideration of the second property has led to the examination of other classes of 

equations: For example, second-order equations whose general integral is a linear fractional 

 
 (132) J. Drach, Paris thesis 1898, pp. 104.  

 (133) Lie discussed this latter point very unclearly.  

 (134) Math. Ann. 11 (1877), pp. 508; Norw. Arch. 9 (1884), pp. 441.  
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function of the two integration constants (135) and the higher-order equations with general integrals 

of the form: 

(140)     
( )

( )

k k

k k

a u x

b v x




, 

 

in which the constants ak, bk are coupled by a suitable number of homogeneous relations (136). P. 

Painlevé showed (137) that any system (1) whose general solution depends upon the arbitrary 

constants rationally can be integrated by auxiliary linear systems. More generally, he also 

examined the systems (1) whose general solution depends upon the constants algebraically (II B 

5). 

 One also seeks to generalize the peculiar form of the general integral to the Jacobi equation 

(no. 8), e.g., one treats equations whose general integral has the form (138): 

 

(141)    
1

( ) [ ( )] i

q
m

i i

i

M x x t
=

−  = const. 

 

 Other classes shall be spoken of in what follows. 

 

 

Equivalence problems. 

 

 33. Formulation of the problem. Introduction of differential invariants. General methods. 

– Let a class C of nth-order differential systems (1) be defined by the general form of its systems, 

in which the right-hand side of the general system of the class depends upon a certain number of 

arbitrary elements (functions or parameters) in a well-defined way. It further gives a (finite or 

infinite) transformation group G of a type such that each of its transformations transforms each 

system in C into a system of the same class in such a way that any system in C can be taken to any 

other system by a transformation of G. Two systems in C are then called equivalent (under G) 

when there is at least one transformation of G that will take the one to the other. The equivalence 

problem will require the search for necessary and sufficient conditions for two systems in C to be 

equivalent (139). The solution of that problem depends upon the determination of the differential 

invariants of class C under the group G. Any transformation of G corresponds to a transformation 

of the arbitrary elements upon which the general system of the class depends. Those 

 
 (135) Hazzidakis, J. f. Math. 90 (1881), pp. 174; E. Vessiot, Toul. Ann. 9 (1895), F. 

 (136) P. Appell, C. R. Acad. Sci. Paris 12 and 19/11 (1888); ibid. 24/3 (1890); J. de Math. (2) 5 (1889), pp. 361; 

P. Rivereau, Paris thesis 1890.  

 (137) C. R. Acad. Sci. Paris 116 (1893), pp. 173 and leçons de Stockholm, pp. 392. 

 (138) Minding, Petersbourg Mém. (7) 5 (1862), pp. 1; Elliot, Ann. éc. norm. sup. (3) 7 (1890), pp. 101; 

Koyalovich, Diss. Petersbourg (1894); Sonin, Petersbourg Bull, (1895); Korkin, Math. Ann. 48 (1897), pp. 317 and 

C. R. Acad. Sci. Paris 122, 123 (1896); P. Painlevé, ibid. and leçons de Stockholm. Cf., also E. Haentzschel, J. f. 

Math. 112 (1893), pp. 148; W. Heymann, ibid. 113 (1894), pp. 94. 

 (139) The introduction of the extended group (II A 6, no. 13) shows that one must only deal with a special case of 

the general problem of the equivalence of two manifolds under a group. Cf., S. Lie, Christ. Förh. (1883), (1884); Lie-

Scheffers, Kontinuierliche Gruppen, Chap. 23, § 4. 
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transformations define a group  that is isomorphic to G, and one deals with the differential 

invariants of that group  (140). They can all be derived by differentiation from a finite number of 

fundamental invariants by means of certain differential parameters. The equivalence of two 

general systems of a class is expressed by setting a finite number of invariants of the one system 

equal to the corresponding invariants of the other (141). 

 That method, which is very convenient for the discussion of equivalence conditions, has the 

disadvantage that it will yield the invariants in complicated forms that are usually irrational or even 

transcendental. For that reason, one likewise seeks systems of rational invariants (if they exist) by 

applying the other methods or special processes that are appropriate to each case. In that way, the 

absolute invariants (which are the only ones that have been spoken of up to now) take the form of 

quotients of powers of relative invariants, in general, i.e., ones that are reproduced by the general 

transformation of G but multiplied by a fact that depends upon only the arbitrary elements of that 

transformation. 

 Those equivalence theorems are useful for integration insofar as for each special system of the 

class C that one has integrated, they will produce a category of likewise-integrable systems, 

namely, the ones that are equivalent to it. 

 

 

 34. Invariants of linear equations. – The oldest example of the foregoing theory is defined 

by the linear equations: 

 

(142)   
1 2

1 21 2

( 1)
( ) ( ) ( )

1 1 2

n n n

nn n n

d y n d y n n d y
p x p x p x y

dx dx dx

− −

− −

−
+ + + +


 = 0 . 

 

One will then obtain a new analogy with the theory of algebraic equations (the invariant theory of 

binary forms, II B 2). The arbitrary elements are the coefficients p1, p2, …, pn here. The group G 

is the infinite group: 

 

(148)    y  = y   (x) ,  x  =  (x)   (,  arbitrary). 

 

One must assume that n  3, because two equations (142) will always be equivalent under that 

group for n = 1 and n = 2. It is the enveloping group of point (and also contact) transformations in 

x, y that leave classes of equations (142) invariant (142). 

 The relative invariants that E. Laguerre introduced (143) are reproduced but multiplied by a 

power of /dx dx  whose exponent is called the index of the invariant. Fr. Brioschi laid the 

 
 (140) For the concept of differential invariants and its history, one might cf., I B 2, no. 20. – The general concept 

is due to S. Lie, Math. Ann. 24 (1884), pp. 537. 

 (141) The fact that a finite number of fundamental invariants will always suffice was proved by A. Tresse, Paris 

thesis 1893, pp. 42 [Acta math. 18 (1894), pp. 1]. 

 (142) Lie, Christ. Förh. (1881).  

 (143) C. R. Acad. Sci. Paris 88 (1879), pp. 116 and pp. 224. Cf., also Cockle, Quart. J. of Math. (1876). 
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foundation for their determination (144). G. H. Halphen (145) undertook their general investigation 

by connecting them with his earlier investigations of projective differential invariants of curves in 

the plane and space. Two equations (142) that are equivalent under the group (143) have, in fact, 

the same integral curves (no. 26), and they are defined only up to a projective transformation. The 

projective-invariant properties of the integral curves are then expressed by invariant properties of 

the differential equation under the group. Halphen gave a method for defining invariants by means 

of a relation between the equations of order two and n, the concept of the weight and its relation 

to the index, the general form of the invariants of weight 3, 3 , and later (146) the general form of 

the invariants for n = 4. For the applications to the integration, Halphen used a reduced form with 

p1 = 0, 3 = 1. He investigated the integration of those equations that can be reduced to equations 

with constant coefficients by transformations (143) or to ones whose general integral is a single-

valued function (that is expressible by rational or elliptic functions). 

 A. R. Forsythe (147) applied another normal form (which was used already by Cockle for n = 3 

and by Laguerre for the general case). It is defined by p1 = 0, p2 = 0 and will be obtained by 

integrating second-order auxiliary equations and a quadrature. In that reduced form, one will obtain 

explicit expressions for n – 2 invariants 3, 4, …, n, whose weights, which are given by the index, 

are linear in the pk and their derivatives. Those expressions are independent of n. They are  0 

when the general integral of (142) is the general nth-order binary form of two independent solutions 

of a second-order equation. (142) can then be integrated by means of one second-order auxiliary 

equation. The invariants 3, …, n are rational and entire in the coefficients of (142). In the general 

case, they consist of a linear part that was determined by Fr. Brioschi (148) and a part whose terms 

all have p2 or one of its derivatives as a factor.  

 Equations (142), which admit transformations of the (143), define a special category. They 

were treated by P. Appell (149). Their determination is implied by Lie’s general theorems (no. 18). 

One can reduce them to equations with constant coefficients (150). 

 

 

 35. Invariants of various classes of equations. – R. Liouville (151) investigated the classes of 

equations: 

(144)    
dy

dx
 = 2 3

0 1 2 33 3c c y c y c y+ + +  

 

(c0, c1, c2, c3 are arbitrary functions of x) under the group: 

 

 
 (144) Bull. soc. math. 7 (1879), pp. 105.  

 (145) Paris sav. [étr.] (2) 28 (1884), pp. 1. 

 (146) Acta math, 3 (1883), pp. 325. 

 (147) Trans. London Math. Soc. 179 (1888), pp. 377.  

 (148) Acta math. 14 (1890/91), pp. 233.  

 (149) Acta math. 15 (1891), pp. 281. 

 (150) For the application of the invariants of linear equations, one can also cf., L. Berzolari, Ann. di mat. (2) 25 

(1897).  

 (151) C. R. Acad. Sci. Paris 6/9 (1886) and 12/9 (1887); Amer. J. Math. 10 (1888), pp. 283. 
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(145)    x  =  (x) , y  = y   (x) +  (x) 

 

and gave the law for defining a sequence of entire rational relative invariants. P. Appell (152) 

undertook that investigation again with the help of the reduced form dY / DX = 3Y  + I (X), in 

which X and I are absolute, but irrational, invariants. One and the same equation F (I, dI / dx) = 

0 is true for all mutually-equivalent equations of the class, and it can be put into rational form with 

the help of the invariants of R. Liouville. Both authors gave different cases of integrability, namely, 

reducibility to constant coefficients and to special equations that can be solved by quadratures or 

a Riccati equation. Elliot (153) studied the singular case in which the polynomial c0 + 3 c1 y + 
2 3

2 33c y c y+  has a double root y. It led to the equation y dy = dx + x X (x) (no. 5). 

 More generally, P. Appell (152) examined the classes of equations: 

 

(146)    
dy

dx
 = 

( )

( )

n

p

P y

Q y
 = 0 1

0 1

n

n

p

p

a a y a y

b b y b y

+ + +

+ + +
 

 

(the ak, bk are arbitrary functions of x and p  n – 2). He employed the reduced form that is defined 

by an−1 = ap+1 = 0, an = bp = 1. For p = n – 2, another reduced form is required. Appell mainly 

applied that result to equations that are reducible to ones with constant coefficients. 

 P. Painlevé (154) studied the class of equations (146) under the group: 

 

(147)    x  =  (x) , y  = 
( ) ( )

( ) ( )

y x x

y x x

 

 

+

+
 

 

(, , , ,  are arbitrary), which is a problem that is not essentially different from the previous 

one. He first used a canonical form that is analogous to Appell’s in order to determine the equations 

of the class that admit subgroups of (147). Those equations can be integrated by quadratures, 

except for the Riccati equations. Since that canonical form has the disadvantage that there are 

infinitely-many equivalent reduced forms, Painlevé gave the means for constructing other ones 

that did not have that disadvantage. The solution of the equivalence problem is made easier by 

that. As Painlevé showed, that theory can be extended to the first-order equations that are rational 

in y and dy / dx and have undetermined coefficients that depend upon x. 

 P. Appell (155) and P. Rivereau (156) examined the higher-order homogeneous equations with 

undetermined coefficients that are entire rational in y and its derivatives under the group (143) 

using the method of reduced forms. The main applications related to equations that are reducible 

 
 (152) J. de math. (4) 5 (1889), pp. 361.  

 (153) Ann. éc. norm. sup. (3) 7 (1890), p. 101. 

 (154) C. R. Acad. Sci. Paris 110 (1890), pp. 840; Mém. sur les équations diff. du 1er ordre, Paris, 1890 [Ann. éc. 

norm. sup. (1892)]. 

 (155) J. de math. (4) 5 (1889), pp. 361. 

 (156) Paris thesis 1890.  
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to such things with constants coefficients, equations that admit an Euler multiplier that depends 

upon x alone, and finally, equations with general integral of the form (140). 

 The behavior of the equation: 

 

(148)    y  = 3 2

0 1 1 0a y a y b y b  − + −  

 

(a0, a1, b0, b1 are undetermined functions of x and y) under the group of all point-transformations 

in x and y was investigated. S. Lie (157) gave the conditions for it to be equivalent to y  = 0 and 

reduced the integration in that case to that of a third-order linear equation. R. Liouville (158) gave 

the law for constructing the rational relative invariants of that equation, various reduced forms for 

them, several cases of integrability, and finally applications to the theory of geodetic lines. A. 

Tresse (159) rediscovered those results with Lie’s methods. 

 E. Vessiot (160) studied the invariants and the reduced forms of the equations: 

 

(149)   
2 3 2( )a y y y b y c y y d y p x q x r x s    − + + + + + + +  = 0  

 

under the group (147). 

 C. Żorawski (161) determined the invariants for the general first-order equation under the 

infinite subgroups of the group of all point-transformations in x and y. 

 Finally, A. Tresse (162) gave very complete results on the invariants of the general equation y  

= ( , , )F x y y  under the group of all point-transformations. He introduced relative invariants that 

were reproduced but multiplied by powers of two well-defined factors. One can construct an 

absolute from those three invariants. Those invariants are rational. One can construct all of them 

in succession with the help of four of them and three differential parameters. In addition to the 

general equivalence conditions, Tresse derived the conditions for a second- order equation to admit 

1, 2, 3, or 8 independent infinitesimal transformations from that. Equation (148) is a special case. 

However, only the case of equations that are reducible to y  = 0 is actually singular since all 

invariants are equal to zero for them. 

 

 

Rational theories of integration. 

 

 36. Domain of rationality. Irreducibility. – The rational theories of integration are duplicates 

of Galois’s theory of equations (I B 3 c). Their common principle is the replacement of the search 

 
 (157) Norw. Arch. 8 (1883), pp. 372.  

 (158) C. R. Acad. Sci. Paris 28/11 (1887) and J. éc. polyt. cah. 59 (1889), pp. 7.   

 (159) Paris thesis 1893 [Acta math. 18 (1894), pp. 1].  

 (160) Toul. Ann. 9 (1895), F. The same equation was examined from a different viewpoint by E. Picard, J. de 

math. (4) 5 (1889), pp. 277 and G. Mittag-Leffler, Acta math. 18 (1894), pp. 233. 

 (161) Krakow. Ber. 26. 

 (162) Preisschriften der Jablonowski’schen Gesellschaft, Leipzig 1896. 
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for one solution in isolation with the search for a fundamental system of solutions (no. 30). The 

success of that is then connected with the existence of such systems. 

 The definition of a special equation rests upon the concept of the rationality domain (163) (I B 

3 c, no. 1, and footnote 2). Such a domain [R] is defined by a certain number of elements that 

define its basis, and a certain number of fundamental operations. The elements here are: all 

constants, certain independent or dependent variables, and certain well-defined or undetermined 

functions of those variables. When no other operations are given, the operations here are the 

rational algebraic operations and differentiation. Any function that can be derived from the 

elements of its basis by a finite number of fundamental operations belongs to the rationality domain 

[R]. If the basis includes no function, but only independent variables, then [R] is the absolute 

rationality domain. If one derives another domain [ ]R  from a domain [R] in such a way that one 

adds a certain number of functions to the basis for [R] then one says that: One has adjoined those 

functions to the domain [R] (I B 3 c, no. 7). 

 A rational (164) differential equation 
( )( , , , , )nF x y y y  = 0 is called irreducible in a domain 

R (that includes x and y) when it is irreducible in the algebraic sense (I B 1 b, no. 5) and when it 

has no common integral with any likewise-rational equation of lower order; otherwise, it is 

reducible. The original idea of extending the concept of irreducibility to differential equations 

belongs to G. Frobenius (165), while the foregoing form of the definition belongs to L. 

Königsberger (166). Among the results of the latter, let us mention the following two: 

 When a rational equation has one solution in common with an irreducible equation, all 

solutions of the latter will satisfy the former. 

 When two rational equations have common solutions, there will be an irreducible equation that 

is satisfied by all of those common solutions, and only them. One obtains it by an algorithm that 

is analogous to that of the greatest common divisor. 

 One occasionally restricts the concept of irreducibility by imposing other conditions than 

rationality on the equations in question, e.g., that they must be linear and homogeneous. In the 

latter case, and upon restricting oneself to the absolute rationality domain, one will, in fact, be in 

a position to decide whether a given equation is or is not reducible (167). 

 

 

 37. Rational theories of integrating linear equations. – The nth-order linear equation was the 

first one for which a rational theory of integration was developed, which is a new analogy between 

that equation and the nth-order algebraic equation. We assume that its coefficients p1, p2, …, pn are 

given functions of x. By definition, they belong to the rationality domain in question [R]. In 

addition, that domain includes the variable x and the undetermined functions y1, y2, …, yn, and can 

include other given functions of x, as well. With that, we have defined what we understand to mean 

a rational differential function V of the y. If we replace y1, y2, …, yn in such a thing with the 

 
 (163) E. Vessiot, Paris thesis 1892.  

 (164) That is, F shall belong to the domain R.  

 (165) J. f. Math. 76 (1873), pp. 234; 80 (1875), pp. 183.  

 (166) J. f. Math. 91 (1881), pp. 199; 92 (1882), pp. 291. Cf., also his textbook, pps. 61 and 155. 

 (167) J. Bendixson, Stockholm Öfv. 49 (1892), pp. 279; E. Beke, Math. Ann. 45 (1894), pp. 278.  
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integrals 0

1 ( )y x , …, 0 ( )ny x  of a fundamental system that is chosen once and for all then V will go 

to a function V0 (x) that one calls the numerical value of V. It might or might not be rational in [R]. 

 One now performs a linear homogeneous substitution with constant coefficients in V : 

 

(150)     yi = 
1

n

ik k

k

c y
=

    (i = 1, 2, …, n). 

 

V goes to a new rational differential function V  that has a numerical value of 
0V . When V  is 

identical to V as a function of all the indeterminates that appear in it, one says: V is formally 

invariant under (150). When 
0V  is identical to V0 as a function of x alone, one says: V is 

numerically invariant under (150). V can be numerically invariant under (150) without being 

formally invariant (168). 

 An equation is said to be special in [R] when any rational differential function V has a rational 

numerical value. The various types of special cases that are possible by that definition are obtained 

from the fundamental double theorem: In regard to its relationship to the rationality domain R, the 

equation corresponds to a subgroup of the general homogeneous linear group in n variables with 

the following two properties: 

 

 1. Any rational differential function V whose numerical values is rational admits all 

transformations of G numerically. 

 

 2. Any function V that admits all transformations of G numerically has a rational numerical 

value. 

 

 That group is called the transformation group or rationality group of the equation (169). Any 

special equation G is characterized by such a group. Moreover, since the fundamental system 
0

1 ( )y x , …, 0 ( )ny x  can be chosen arbitrarily, G is defined only up to a linear homogeneous 

transformation, in other words, only its type is defined. One can also say: Any special equation is 

characterized by a known (170) relation of the form: 

 

1
1, , , , ,n

dy
x y y

dx

 
  

 
 =  (x) 

 

 
 (168) F. Klein stressed the importance of that distinction in autogr. Vorlesungen über höhere Geometrie 2 (1893), 

pp. 299. Cf., also E. Beke, Math. Ann. 49 (1897), pp. 573. 

 (169) The concept of the transformation group of a linear equation is due to E. Picard [C. R. Acad. Sci. Paris 96 

(1883), pp. 1131 and Toul. Ann. 1 (1887), A]. He was led to it by investigating the reducibility of the general resolvent 

(no. 25). Picard’s first formulation of the fundamental theorem was completed by E. Vessiot (Paris thesis 1892). 

Since its analysis also gave rise to certain difficulties, Picard [C. R. Acad. Sci. Paris 121 (1895), pp. 789; Traité 3, 

pp. 536] completed his proof in such a way that he arrived at the formulation in the text. 

 (170) For the actual determination of the rationality group, one might cf., F. Marotte, C. R. Acad. Sci. Paris 124 

(1897), pp. 608; ibid., 126 (1898), pp. 715, and Paris thesis 1898, pp. 44. 
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that is fulfilled by the solutions of a fundamental system, in which  is a function of V that 

(formally and numerically) admits all transformations of G and no other ones, and  (x) belongs 

to the domain [R].  is called a characteristic invariant of G. 

 The integration method (171) that arises from this consists of successively reducing the group 

G by adjoining new functions of x that are defined by auxiliary equations to [R]. Let G1 be a 

distinguished maximal subgroup of G, and let 1 be a characteristic invariant of G1 . 1, as a 

function of , satisfies a rational differential equation. If it has been integrated then the adjunction 

of one of its integrals will suffice to reduce the rationality group to G1 . One will arrive at the same 

result when one adjoins all integrals of the equation that is satisfied by a characteristic invariant of 

any subgroup of G that includes G1 as a function of . That fact allows one to use lower-order 

equations. Those auxiliary equations have fundamental systems of solutions. One can then replace 

their integration (no. 30) with that of a linear auxiliary equation whose transformation group is 

simple and isomorphic to G / G1 (
172). 

 If the group reduces to G1 then one proceeds likewise. 

 The significance of this method comes from the following theorem: 

 

 If the complete integration of a rational auxiliary equation reduces the group G then it will 

reduce to an invariant subgroup (173). 

 

There can then be no method that is more advantageous than the foregoing one. In particular, one 

concludes from this that P (y) = 0 is integrable by quadratures if and only if its rationality group 

is an integrable group (II A 6, no. 17) (174). P (y) = 0 is algebraically integrable if and only if its 

rationality group includes only a finite number of transformations (174). 

 The integration method that was just discussed is closely connected with the following 

problem: Integrate the equation P (y) = 0 (or an nth-order linear system) when one knows that the 

solutions of a fundamental system fulfill one or more relations of the form Fk (y1, y2, …, yn) = 0 (k 

= 1, 2, …, m). Most often, one examines the case in which those relations are algebraic and 

homogeneous. G. Darboux (175) showed the role that was played by the covariants of the systems 

of algebraic forms Fk in that way. Laguerre and, in fact, Halphen (176) have investigated the 

relationship between the problem and theory of invariants of linear differential equations, 

especially quadratic relations. L. Fuchs (177) treated the problem from a function-theoretic 

viewpoint. His results along that direction were completed by Wallenberg (178). E. Picard (179) 

showed how the problem was implied very naturally by the theory that was developed just now. 

 
 (171) Vessiot, thesis, pp. 39.  

 (172) Vessiot, Toul. Ann. 8 (1894), H, pp. 29.  

 (173) For the case in which the auxiliary equation possesses fundamental systems of solutions, one has the theorem 

of Vessiot, Thesis, pp. 44; more generally, Picard, Traité 3, pp. 562. 

 (174) Vessiot, Thesis, pps. 43, 46, 68. 

 (175) C. R. Acad. Sci. Paris 90 (1880), pps. 524, 596.  

 (176) Cf., footnotes 143 and 145.  

 (177) Acta math. 1 (1882), pp. 321; Berliner Ber. (1882), pp. 703 and (1890), pp. 469. Cf., L. Schlesinger, Diss. 

Berl. 1887. 

 (178) J. f. Math. 113 (1894), pp. 1; ibid., 114 (1895), pp. 181.  

 (179) Traité 3, pp. 550.  
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Finally, S. Lie (180) showed that one could treat the question quite completely when one reduced it 

to the study of a differential system that admits a known transformation group. 

 

 

 38. Extension of the theory to Lie systems. Theory of J. Drach for arbitrary first-order 

equations. – E. Vessiot (181) showed that the essential points of the foregoing theory could be 

adapted to any class of Lie system (no. 29). One can also restrict oneself to the case in which the 

associated group G is simply transitive. The simply-transitive group that is reciprocal to it (II A 6, 

no. 10) then plays the same role as the general linear group in the foregoing theory. 

 E. Picard (182) made some statements about the means for extending the method to equations 

of arbitrary order, which allowed him to arrive at the general theorems in no. 37. 

 Finally, J. Drach (183) sketched out a rational theory of integration for the general system (1), 

or rather, the associated partial differential equation (3). The group that arises is that of all point-

transformations: 

 

(151)     iz  = Fi (z1, z2, …, zn)  

 

that give the relationship between any fundamental systems of solutions of L f = 0 and the most 

general such systems. One must consider rational differential functions V that are constructed from 

z1, z2, …, zn , and their partial derivatives with respect to x1, x2, …, xn . The properties of each of 

them are linked with the nature of the subgroup of (151) that leaves it invariant. In particular, one 

has theorems that are analogous to the theorem of symmetric functions and Lagrange’s theorem 

(I B 3 c, no. 16). 

 A system (1) is special when (3) is compatible with any system of relations that one obtains 

when one sets any function V equal to a rational function of x, x1, …, xn . The character of each 

special system is specified by the fact that a subgroup G of (151) exists whose differential 

invariants will all include rational values in x, x1, …, xn as soon as one replaces the indeterminates 

z1, z2, …, zn in them with the solutions of certain fundamental systems of (3). That subgroup is the 

rationality group of (1). 

 That yields yet another integration method that consists of the progressive reduction of that 

rationality group to distinguished subgroups that is consistent with a normal decomposition of that 

group. The auxiliary systems that appear are general systems of partial differential equations with 

fundamental solutions (no. 31). The groups that are associated with it are simple, and their structure 

is defined by the normal decomposition of G. 

 

_________ 

 
 (180) Leipziger Ber. (1891), pp. 253; ibid. (1896), pp. 396.  

 (181) Toul. Ann. 8 (1894), H, pp. 21.  

 (182) C. R. Acad. Sci. Paris (1895).  

 (183) C. R. Acad. Sci. Paris 8/5 (1893), 14/1 (1895), 26/10 (1897); Paris thesis 1898. Drach gave some 

consideration to the logical essence of the integration problem and the definition of transcendents. Moreover, he 

generalized the concept of reducibility for arbitrary differential systems. Cf., also Vessiot, C. R. Acad. Sci. Paris 128 

(1899), pp. 544. 


