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Introduction and summary. 

 

 1. – In 1924, I gave (Bulletin de la Société mathématiques de France, 52, pp. 336-395) (1) a 

new general theory of integration problems that was based upon the consideration of sheaves of 

infinitesimal transformations. 

 Such a sheaf F is comprised of all transformations: 

 

X = 1 X1 + 2 X2 + … + n Xn , 

 

in which the Xi are given transformations: 

 

Xi = 
, 1

1

( , , )
m

i k m

k k

f
x x

x


=




  (i = 1, 2, …, n) , 

 

and the i are arbitrary functions of the variables x1, …, xm . The Xi are supposed to be divergent 

(i.e., independent linear forms in the f / xk) and constitute a basis for the sheaf. The number of 

them n (n  m) is the degree of the sheaf. Two transformations of the sheaf Xf and Yf are said to 

be in involution when their Jacobi bracket (Xf, Yf) belongs to the sheaf. The sheaf is called complete 

if all of its transformations are pair-wise in involution. One will obtain a complete system (in the 

Clebsch sense) when one equates the transformations of a basis for a complete sheaf to zero. A 

fundamental system of integrals of that complete system is then a fundamental system of invariants 

of the sheaf (i.e., all of the transformations of the sheaf). 

 Any integration problem is equivalent to the search for complete subsheaves of a certain sheaf 

F. One will get a complete integral of the problem (2) upon equating a fundamental system of 

 
 (1) In the footnotes that refer to that paper, we shall denote it by the letter M, to abbreviate.  

 (2) That is, one that is composed of a family of integral multiplicities (see the following footnote), such that one 

multiplicity passes through each point (x1, …, xm).  
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invariants of such a subsheaf to arbitrary constants, and one will get all of them when one ignores 

the ones that have a singular character. 

 A transformation of the sheaf F is called distinguished when it is in involution with any 

transformation of the sheaf. The distinguished transformations, when they exist, define a complete 

subsheaf, which will be called distinguished, or rather characteristic, because the integral 

multiplicities of that subsheaf (1) (which have the maximum number of dimensions) are the Cauchy 

characteristics of the problem. 

 If one confines the search for complete integrals to the search for the ones that have the 

maximum number of dimensions (which is, in general, the essential problem) then one will have 

the fundamental theorem that any complete integral is a family of multiplicities that is generated 

by Cauchy characteristics (2), in such a way that the complete subsheaf that provides a complete 

integral contains the characteristic subsheaf, and its invariants are invariants of a distinguished 

subsheaf, or in other words, characteristic functions. 

 

 

 2. – When a sheaf F is not complete, the set of brackets (Xf, Yf) of its transformations, when 

taken pair-wise, constitutes a sheaf F   that contains F: It is the derived sheaf of F. Similarly, F   

will have a derived sheaf, and so on. The sequence of successive derived sheaves of F terminates 

with a last derived sheaf, which is complete, and its integration will provide the invariants of F. 

Of course, they will exist only if the degree of the last derived sheaf is less than the number m of 

variables. 

 If the basis for the derived sheaf F   is taken in the form: 

 

X1, X2, …, Xn ;  Z1, Z2, …, Zn 

 

then one will have some identity-congruences for the brackets (Xi, Xk) of the basis transformations 

of F that are structure formulas and take the form: 

 

(Xi, Xk)  
, ,

1

n

i j k j

j

c Z
=

   (mod F) (i, k = 1, 2, …, n) . 

 

 The congruence sign (mod F) indicates that the difference between the two sides of the 

equation is a transformation of F. The nature of the sheaf, from the standpoint of integration, 

depends essentially upon its structure, and possibly on the structures of its successive derived 

sheaves, because it is by comparing structures that one will see whether one can pass from one 

sheaf to another by a change of variables. 

 

 

 
 (1) An r-dimensional multiplicity is an integral multiplicity of a sheaf when it admits r (divergent) transformations 

of that sheaf.  

 (2) Of course, that implies that those characteristics must exist to begin with. 
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 3. – The present paper is dedicated to the simplest case (1), namely, the one in which the derived 

sheaf F   has degree n + 1 when the degree of F is n. The structure formulas then have the simple 

form: 

 

(1)    (Xi, Xk)  ci, k Z  (mod F) (i, k = 1, 2, …, n), 

 

in which Z is an arbitrary transformation of the derived sheaf (that does not belong to F). 

 If the number of variables is m = n + 1 then the integration of the sheaf is equivalent to that of 

a Pfaff equation, i.e., to the Pfaff problem: As is known, it contains the problem of integrating 

system of first-order partial differential equations in one unknown function. In a note to the 

Comptes rendus de l’Académie des Sciences (2), I summarized my method and results that relate 

to that case. It will be included in what follows. 

 In general, let m = n + p (p  1) be the number of variables, and set n = 2s + r, when 2s denotes 

the rank of the skew-symmetric determinant whose elements are the structure functions ci, k . The 

characteristic subsheaf G has degree r, and the complete subsheaves of maximum degree that 

provide complete integrals will have degree g = s + r. Instead of looking for complete subsheaves 

of degree g, it is preferable in the present problem to seek the complete integrals directly, i.e., a 

system of fundamental invariants of those complete subsheaves. For each of them, those invariants, 

or complete integral elements, are s + p in number. From the fundamental theorem on Cauchy 

characteristics, which was recalled above, all of them must be characteristic functions. 

 Furthermore, one can make a system of fundamental invariants of the given sheaf F figure in 

each complete integral. An essential result is that for s > 1, those invariants of F will be p – 1 in 

number, or in other words, that the derived sheaf F is complete. If one introduces those invariants 

as new variables then one will come down to the case of m = n + 1, i.e., to the Pfaff problem. 

However, it is pointless to make that change of variables, and all that remains is to find the other 

s + 1 elements of the complete integral. 

 One can take one of them to be an arbitrary characteristic function, namely, . In order to 

construct the others, it will suffice to remark that they are invariants of any distinguished 

transformation of the subsheaf of F (of maximum degree) that has  for its invariant. Those 

distinguished transformations, among which one will find those of F, define a sheaf of degree r + 

1: It will then suffice to find one of them that does not belong to the characteristic G of F. In order 

to have a simple formula, one chooses X+1, X+2, …, Xn (n = 2s) to be some distinguished 

transformations in the basis for F, and the desired transformation will be, in the form of a bordered 

determinant: 

 

 
 (1) The case that corresponds to it in the theory of Pfaff systems was studied by Cartan [Bulletin de la Société 

mathématique de France 29 (1901), pp. 233], and previously by E. von Weber [Münchener Sitzungsberichte 25 (1895), 

pp. 423]. 

 (2) C. R. Acad. Sci. Paris 184 (1927), pp. 143.  
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(2)   

1 1, 1

,1 ,

1

1

0

c c X

c c X

X X



   







 

−

−
 , with  = 

1,1 1,

,1 ,

c c

c c



  

 . 

 

I represent that expression by {, f} and call it the bracket of the two functions  and f : Indeed, it 

is a generalization of the Poisson bracket [, f]. With that notation, the rule for constructing a 

complete integral can be stated as follows: One takes an arbitrary invariant u1 of the characteristic 

complete sheaf G, then an arbitrary invariant u2 of the (complete) sheaf that is the sum of G and 

{u1, f}, then an arbitrary invariant u3 of the (complete) sheaf that is the sum of G, {u1, f}, and {u2, 

f}, and so on. Finally, take an arbitrary invariant u0 of the (complete) sheaf that is the sum of G, 

{u1, f}, …, {us, f}. The last sheaf is any one of the complete subsheaves of F of (maximum) degree 

g = s + r. The elements of the corresponding complete sheaf are u0, u1, …, us, and the invariants 

of F. 

 One recognizes the sequence of integrations in the Clebsch method, as applied to the Pfaff 

problem. 

 

 

 4. – If one introduces the elements u0, u1, …, us of a complete integral as new variables then 

the basis for the sheaf will reduce to the canonical form: 

 

(3)   Ui f = 
0

i

i

f f
v

u u

 
+

 
, Vi f = 

i

f

v




, 

1

f

z




, …, 

r

f

z




 (i = 1, 2, …, s) . 

 

The variables v1, …, vs, which are thus introduced, will be called the polar elements that are 

associated with the complete integral. They are defined by the identity: 

 

(4)     {u0, f} − 
1

{ , }
s

i i

i

v u f
=

   0  (mod G) . 

 

 The complete integral that includes polar elements is defined by the following bracket 

relations, in which  is an undetermined factor: 

 

(5)   

0

0

{ , } 0, { , } 0,

( , ) 0, ( , ) 0,

{ , } , { , } ,

i i k

i k i k

i i i i

u u u u

v v u v

v u v u v 

= =


= =
 = =

  (i, k = 1, 2, …, s ; i  k) . 

 

 The reduction of the given sheaf F to the canonical form (3) reduces the integration of F to that 

of the canonical sheaf U1, …, Us, V1, …, Vs in the 2s + 1 variables u0, u1, …, us, v1, …, vs . That 

problem is equivalent to the determination of all contact transformations of (s + 1)-dimensional 
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space. The preceding results will provide all of the fundamental principles of that theory of contact 

transformations in a very simple manner. 

 

 

 5. – The case of s = 1 enters into the general theory only if the derived sheaf F   of F is 

complete. However, it is another case in which the general solution of the problem of integration 

of F (for s = 1) is once more given by explicit formulas. That is when the degrees of the successive 

derived sheaves increase by one unit when one passes from each of those derived sheaves to the 

following one. I have then recovered the equivalent of a theorem of Cartan (1) under hypotheses 

that are a little more general. 

 

 

 6. – The result that were summarized above (no. 4) imply that the passage from one complete 

integral (comprised of polar elements) to another can be done by a contact transformation. The 

general determination of the complete integrals must then depend upon an automorphic differential 

system (2), which corresponds to the general group of transformations of (s + 1)-dimensional space. 

 The automorphic systems to consider, when reduced to the canonical form that exhibits a 

fundamental system of differential invariants of the group, have the following first-order 

equations: 

 

(6)     [xi, xk]u, v = ik (x0, x1, …, x2s)  (i, k = 0, 1, 2, …, 2s), 

 

and a complementary equation: 

 

(7)    
1 0 1 1 2

0 1 1 2

( , , , , , , )

( , , , , , , )

s s s s

s s s

x x x x x

u u u v v
 + +

+




 =  (x0, x1, …, x2s) . 

 

In those equations,  is an undetermined factor to be eliminated. The Poisson brackets [xi, xk]u, v 

are taken with respect to u0, u1, …, us ; v0, v1, …, vs, which are considered to be independent 

variables. 

 Moreover, equation (7) is an integrability condition for equations (6), and one can calculate  

without integration when one knows the ik . 

 Conversely, such a system will correspond to a Pfaff problem. If one introduces the generalized 

bracket: 

(8)     {, f} = 
2 2

,

0 0

s s

i k

i k i kx x

 


= =

 

 
 , 

 

 
 (1) Bulletin de la Société mathématique de France 42 (1914), pp. 14-15. 

 (2) See my article in Acta mathematica 28 (1904), pp. 311.  
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in which equations (6) express the idea that the passage from the x to the u, v reduces to canonical 

form the sheaf F that is defined by the transformations {xi, f}. The integrability conditions are 

obtained by means of the identity: 

 

(9)     ({, f}, {, f})  {, }  Z f  (mod F) , 

 

in which ,  are arbitrary functions, and Z f is an (undetermined) infinitesimal transformation that 

does not depend upon the choice of those functions. Once those conditions are fulfilled, the 

integration method that is summarized in no. 3 will provide the u, v as functions of the x: One uses 

the bracket (8), but one shows that it is basically no different from the bracket that was defined in 

no. 3. 

__________ 
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I. – Search for complete integrals. 

 

 1. Structure of the sheaf. – Let F be the sheaf in question, let n be its degree, let X1, X2, …, Xn 

be a basis for that sheaf, and let x1, x2, …, xm be variables. Set m = n + p and one has p  1. The 

structure formulas have the form: 

 

(1)    (Xi, Xk)  ci,k Z  (mod F) (i, k = 1, 2, …, n) , 

 

whose structure coefficients are coupled by the relations: 

 

(2)     ci,k + ck,i = 0  (i, k, = 1, 2, …, n) . 

 

The bracket of the two arbitrary transformations of F : 

 

(3)      U = 
1

n

i i

i

u X
=

 ,  V = 
1

n

i i

i

v X
=

  

will then be: 

 

(4)      (U, V)   (u | v) Z (mod F), 

 

in which  is the alternating bilinear form: 

 

(5)      (u | v) = ,i k i k

i k

c u v  = ,

( , )

( )i k i k k i

i k

c u v u v−  . 

 

 In formulas (1) and (4), Z is an arbitrary transformation of the derived sheaf F   of F. If one 

changes that transformation then  will be multiplied by a factor. 

 If one takes another basis for F : 

 

(6)      hX   = ,

1

n

h i i

i

w X
=

  (h = 1, 2, …, n) 

 

then the transformations (3) will take the forms: 

 

(7)     U = 
1

n

h h

h

u X
=

  ,  V = 
1

n

h h

h

v X
=

  , 

  

in which the u are deduced from the u, and the v , from the v, by the same linear transformation 

that is contragredient to (6): 
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(8)    ui = ,

1

n

h i h

h

w u
=

 ,  v = ,

1

n

h i h

h

w v
=

   (i = 1, 2, …, n). 

 

 The form  is then found to be transformed in such a manner that one has: 

 

(9)     ,i k i k

i k

c u v  = ,i k i k

i k

c u v   , 

 

and that identity will define the new structure coefficients 
,i kc . 

 One can arrange that the transformation (6), or what amounts to the same thing, the 

transformation (8), reduces , and consequently, the structure of F, to a canonical type. Since, 

from the foregoing,  can be multiplied by an arbitrary factor, it is the equation  (u, v) = 0 that 

is what is basically reduced to a canonical form. If one interprets X1, …, Xn as coordinates then the 

determinants (ui vk – uk vi) are the coordinates of the line that is the intersection of the planes U = 

0, V = 0, and  (u, v) is then interpreted as the equation of a linear complex. It is well-known that 

the canonical form is then: 

 

(10)    = 1 2 2 1 3 4 4 3 2 1 2 2 2 1s s s su v u v u v u v u v u v− −
           − + − + + − . 

 

 One can obtain it as follows: Introduce the derivatives: 

 

(11)   ui
  = ,

1

n

i k k

k

c v
=

 , vi
  = ,

1

n

k i k

k

c u
=

 = − ,

1

n

i k k

k

c v
=

 . 

 

The determinant  of the ci,k, which is the Hessian of  and the determinant of the coefficients of 

one and the other series of derivatives, is skew-symmetric, from (2). Let 2s be its rank, which is 

even, as one knows. If s is zero then the ci,k will all be zero, so  will be identically zero, and the 

sheaf F will be complete. That case will be discarded. 

 If the ci,k are not all zero then one can suppose that c1,2  0, and so 1u
  and 1v

  will be two 

linearly-independent forms. Set: 

(12)      =  − 
1 2 2 1

1,2

1
( )u v u v

c
     −   . 

From (11), that form  is bilinear and alternating, and its derivatives are: 

 

(13)     ui
  = ui

  − 
,2 1 ,1 2

1,2

1
( )i u i uc c

c
  −   . 

 

One concludes from this that 1u
 , 2u

  are identically zero and that for i = 3, 4, …, n, the ui
  are 

coupled by just as many independent relations as the ui
  are for i = 1, 2, 3, …, n. As far as the 
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second point is concerned, it is obvious that any relation between the ui
  will give a relation 

between the ui
  with the same coefficients for i = 3, 4, …, n. The converse is also true because a 

relation: 

1

n

i ui

i


=

  = 0 

will imply a relation: 

1 1 2 2

3

n

i ui u u

i

  
=

   +  +   = 0 , 

 

and the coefficients 1 and 2 are zero because they are, up to a factor of  c1,2 , the coefficients of 

v1 and v2 in that identity. Moreover, if there are several relations 
,k i ui   = 0 then the matrix of 

coefficients k,3, …, k,n will not be zero because there is no relation of that type between just 1u
  

and 2u
 . 

 Hence,  does not contain u1, u2, v1, v2, and the rank of its Hessian is fewer by two units than 

the rank of the Hessian of . Having established that, make the change of variables: 

 

(14)  1u  = 1

2,1

1
v

c
 ,      2u  = 2

2,1

1
v

c
 ,      1v  = 1

2,1

1
u

c

−
 ,      2v  = 2

2,1

1
u

c

−
  

 

in order to replace u1, u2, v1, v2 . It is indeed cogredient, from (11), and it will give: 

 

(15)      = 1 2 2 1u v u v   −  +  . 

 

 If one operates on real quantities then one can suppose that c1,2 > 0 , even if it means exchanging 

the roles of 1u
  and 2u

 , in such a way that the reduction will be real. 

 We can now operate on  as we did on , and so on, and if the rank of the Hessian  of  is 

2s then we will get the form of type (10) that we have asserted. We point out that it admits a well-

known homogeneous linear group and can consequently be obtained in an infinitude of ways. 

 It will be convenient to change the notation by writing A1, A2, …, As for 1X  , 3X  , …, 2 1sX −
 , 

B1, with B2, …, Bs for 2X  , 4X  , …, 2sX  , and C1, C2, …, Cr for X2s+1, X2s+2, …, Xn . One then has 

the canonical basis: 

 

(16)   A1, A2, …, As ;  B2, …, Bs ; C1, C2, …, Cr  (n = 2s + r) , 

 

and upon setting: 

 

(17)  U = 
1 1 1

s s r

i i i i j j

i i j

a A b B c C
= = =

+ +   , V = 
1 1 1

s s r

i i i i j j

i i j

a A b B c C
= = =

  + +   , 
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one will now have: 

 

(18)     (U, V)   (a | b)  Z  (mod F), 

 

with 

(19)      = 
1

( )
s

i i i i

i

a b b a
=

 − . 

 

That is equivalent to saying that the brackets of the transformations of the basis (16) are all 

congruent to zero, except for the brackets: 

 

(20)     (Ai, Bi)  Z (mod F) (i = 1, 2, …, s) . 

 

 In order for U to be a distinguished transformation, it is necessary and sufficient that the form 

(19) must be annulled for any a  and b , so U will reduce to 
1

r

j j

j

c C
=

 , in which the cj are arbitrary. 

The subsheaf of distinguished transformations (1) of F is then the sheaf G with basis C1, …, Cr, so 

it will have degree r = n – 2s if the rank of the determinant of the Ci,k is supposed to be equal to 

2s. 

 The last result can be obtained immediately without using the canonical form by writing that 

the initial form  [equation (5)] is zero for any v. 

 

 

 2. Involutions and complete integrals. – It is easy to discuss the general involutions of degrees 

2, 3, … of the sheaf F by means of the canonical basis (16). Let an arbitrary subsheaf F of degree 

 have a basis that consists of the transformations: 

 

(21)   Vk = 
, , ,

1 1 1

s s r

k i i k i i k j j

i i j

a A b B c C
= = =

+ +     (k = 1, 2, …, ). 

 

The transformations U [equation (17)] in involution with that sheaf are defined, from (19), by the 

linear equations: 

(22)    , ,

1

( )
s

i k i i k i

i

a b b a
=

−  = 0  (k = 1, 2, …, ) . 

 

Those equations will be independent provided that no combination of the Vk reduces to a 

combination of the Cj, i.e., provided that F contains no distinguished transformation of F. Under 

that condition, the sheaf  of transformations U in question will have degree n – , and it will 

obviously contain the sheaf G of distinguished transformations. 

 
 (1) It is what we call the distinguished subsheaf or the characteristic subsheaf of F.  
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 If one supposes, moreover, that F is an involution then  will contain F in such a way that 

one will have n –    + r , which will demand that   s. Conversely, as long as  < s,  will 

contain a subsheaf of degree n – 2 – r that belongs to neither F not G. 

 One concludes from this that: 

 

 1. The general involutions of degree   s do not contain any distinguished transformation of 

F. 

 

 2. The general involutions of degree  > s are deduced from the general involution of degree 

s by appending a – s arbitrary distinguished transformations. 

 

 3. The general involution of maximum degree has degree s + r, i.e., the genus of F is s + r. 

 

 That general involution of maximum degree g = s + r can be put into the solved form: 

 

(23)  Vi = Ai + ,

1

s

i k k

k

p B
=

   (i = 1, 2, …, s), Cj (j = 1, 2, …, r), 

 

and the conditions for involution then reduce to: 

 

(24)     pi,k = pk,i (i, k = 1, 2, …, s). 

 

 From the general theory (1), one knows that the partial differential equations that relate to the 

pi,k and express the idea that the sheaf (23) is complete are compatible, and that they provide all of 

the general complete subsheaves of maximum degree of the sheaf F. 

 The general integral multiplicities of such a complete subsheaf are represented by equations of 

the form: 

 

(25)    h (x1, x2, …, xm) = ch  (h = 1, 2, …, s + p) . 

 

We reserve the name of complete integrals for them. We say that the functions h are the elements, 

and we say: the complete integral (1, 2, …, s+p). We shall restrict the problem of integrating 

the sheaf F to the search for its complete integrals. 

 In the present case, there is some advantage to looking for the complete integrals themselves, 

and not the complete subsheaves for which they are the fundamental invariants. 

 Here are some preliminary remarks in that regard: 

 

 1. The elements of any complete integral are the invariants of the distinguished subsheaf G 

of F. That results from the foregoing, and it is a special case of the general theorem in the theory 

of Cauchy characteristics (2). We say that such invariants are characteristic functions (for F). 

 
 (1) M., nos. 13-14, pp. 362, et seq.  

 (2) M., nos. 18-19, pp. 374, et seq.  
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 2. One can make the invariants of the sheaf F (if they exist) appear among the elements of 

any complete integral. Those invariants will exist when the first of the successive derivatives of F 

that is identical to the following one has degree less than m. It will then be complete (1), and its 

invariants will be those of F. We must therefore look for those of the elements of each complete 

integral that are not invariants of F. 

 

 3. From the preceding remark, one can first look for the invariants of F by integrating a 

complete sheaf. Upon taking them to be new variables, one will reduce the integer p = m – n by as 

many units as there are such (independent) invariants. 

 

 However, it will be preferable to avoid such changes of variables by leaving behind the search 

for other elements of the independent complete integrals in order to search for invariants of F. That 

is what we shall do. We let q denote the number of independent invariants of F. It will be a 

maximum when the derived sheaf F   is complete. We will then have q < m – n, i.e., q < p. 

 

 

 3. Subsheaf of a characteristic function. – Our method is based upon the study of the subsheaf 

of F that admits an arbitrary function  as an invariant. From the preceding remarks, we suppose 

that  is not an invariant of F, but a characteristic function, i.e., an invariant of G. We let F denote 

its subsheaf, i.e., the sheaf of transformations of F that  admits. 

 Take a basis of F to be, on the one hand, the distinguished transformations C1, …, Cr that 

define G, and on the other, any other  = 2s transformations of F, namely, X1, X2, …, X . The latter 

can be considered to be a basis for a subsheaf H of F, and say that F is the resultant (2) of G and 

H. F is itself the resultant then of G and the subsheaf H of H that is composed of all 

transformations of H that  admits: They have the form 
1

i i

i

u X


=

 , with the condition that: 

(26)     
1

i i

i

u X



=

  = 0 . 

 

That condition is not an identity because  is not an invariant of H, since it does not belong to F. 

Therefore, F has degree n – 1. Let us look for the degree of its distinguished subsheaf. 

 All of the transformations C of G belong to it. Indeed, let U be any transformation of F , so 

the transformation (U, C) will admit , since U and C admit it. Now, it belongs to F, since C is 

distinguished in F. Thus, it belongs to F . Q.E.D. 

 

 It results from this that if s = 1 then F will be complete because it has degree n – 1 = r + 1 

since r = n – 2s, in general, and it will contain at least r distinguished transformations, in such a 

 
 (1) M., no. 2, pp. 345.  

 (2) More generally, the resultant of two sheaves is defined by all linear, homogeneous combinations of the 

transformations of one and the other sheaf. One will obtain it by the juxtaposing the bases for the two sheaves when 

they do not have a common subsheaf.  
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way that if one appends an arbitrary transformation of the sheaf to them then the all of the brackets 

of the transformations of the basis thus-chosen will belong to the sheaf. 

 Therefore, suppose that s > 1. I say that F can have no more than r + 1 divergent distinguished 

transformations. Indeed, suppose that there are r + 2. We can then suppose that they are C1, …, Cr, 

X1, X2, and that X3, …, X−1 belong to F . u1 X1 + u2 X2 will then be distinguished for F, provided 

that one has (u1 X1 + u2 X2, X)  0 (mod F), i.e., c1, u1 + c2, u2 = 0, in such a way that F will have 

more than r divergent distinguished transformations, which is a contradiction. Therefore, the 

distinguished subsheaf of F has degree at least r and at most r + 1; we shall see that it has degree 

r + 1. 

 Indeed, consider the derived sheaf F
  of F . It is contained in the derived sheaf F   of F, and 

all of its transformations leave  invariant, since they are brackets of the transformations that  

admits. Now, F   does not leave  invariant, since otherwise  would be an invariant of F. 

Therefore, the degree of F
  is less than the degree of F  , i.e., the degree is equal to at most (n + 

1) – 1 = n. 

 Moreover, that degree is equal to at most the degree n – 1 of F, and one cannot have equality, 

since F has at most r – 1 distinguished transformations (which is a number less than n – 1, since 

r = n − 2s, and s > 1), so it is not complete. Therefore, the derived sheaf F
  of F has degree n. 

Hence, F, which has degree n – 1, has a derived sheaf of degree n. It then results from no. 1 that 

the degree of its distinguished subsheaf has the same parity as n – 1, i.e., the same parity as r + 1. 

Since that degree can be only r or r + 1, from the foregoing, we conclude that it is r + 1. 

 In summary, F has degree n – 1, its derived sheaf has degree n, and its distinguished subsheaf 

has degree r + 1. 

 I now say that the invariants of F are functions of the invariants of F and . 

 I will show that by proving that if F has exactly q independent invariants then F will have q 

– 1. To that end, recall the general notations of no. 1. We can suppose that F is defined by X1, …, 

Xn−1 and that x1, …, xq are invariants of F . X1, …, Xn−1 will then take the solved form, which is 

written: 

(27)    Xi = ,

m

i j

j n qq i j

f f

x x


= ++

 
+

 
   (i = 1, 2, …, n – 1). 

 

If we suppose that x1 =  then the term in f / x1 cannot be missing from Xn, which we can reduce 

to the form: 

(28)    Xn = ,

21

q m

h n j

n j n qh j

f f f

x x x
 

= = +

  
+ +

  
  . 

 

 The derived sheaf F
  of F, which has degree n, is obtained by combining the transformations 

(27) with one of their brackets, which will have the form: 
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(29)     Z f = 
m

j

j n q j

f

x


= +




 . 

 

 Since the derived sheaf F   of F has degree n + 1, it will be obtained by appending Xn, in 

addition. 

 Hence, the brackets (Xi, Xn) for (i = 1, 2, …, 1n − ) must be combinations of the transformations 

(27), (28), (29). Since f / x1 does not appear in them, they will be combinations of (27) and (29), 

i.e., 
2

f

x




, …, 

q

f

x




 must no longer appear in them. It then results that the h are invariants of Xi, 

i.e., functions of only x1, x2, …, xq . 

 However, Xn, and as a result F, will then admit the integrals of the equation: 

 

(30)     
21

q

h

n h

f f

x x


=

 
+

 
  = 0 

 

as invariants, which indeed gives q – 1 independent invariants. 

 

 

 4. Method of integration. – It results from the foregoing that F has the same character as F, in 

the sense that the degree of its derived sheaf is greater by one unit than its own degree. Moreover, 

when one passes from F to F, the number q of independent invariants will become q + 1, the 

degree n will become n – 1, the degree r of its distinguished subgroup will become r + 1, the 

number s = (n – r) / 2 will become s – 1, and the number p = m – n will become p + 1; hence, the 

genus g  s + r will remain constant. 

 One then sees that no matter what the function  might be (provided that it is characteristic), 

it can be chosen to be a complete integral element of F and that the corresponding complete 

integrals will all be complete integrals of F . Moreover, since one can, from the foregoing, argue 

with F as one does with F, one will have in that fact the basic principle for a method of 

constructing complete integrals of F that is the following one: 

 One determines an arbitrary invariant 1 of the distinguished subsheaf G of F, then an arbitrary 

invariant 2 of the distinguished subsheaf G1 of the sheaf F1 that is composed of all transformation 

of F that admit 1 , then an arbitrary invariant of the distinguished subsheaf G2 of the sheaf F2 that 

is composed of all transformations of F1 that 2 admit, and so on. When one has chosen 1, 2, …, 

s−1, one will then be reduced to case of s = 1, in such a way that the following operation, which 

is the adjunction of s, will give a complete subsheaf Fs of degree g = s + r that defines the desired 

complete integral. One will know the integrals 1, 2, …, s−1, and it will remain for one to 

calculate p other ones. One calculates them by starting from the q invariants of F, and it will only 

remain for one to find q – p new invariants of Fs . 

 It is implicit that 1 must not be an invariant of F, that 2 must not be a function of 1 and 

some invariants of F, that 3 must not be a function of 1, 2, and some invariants of F, and so on. 
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 In order to apply the method, one only has to determine the successive distinguished 

subsheaves G, G1, …, Gs, while the last one coincides with Fs, moreover. It results from what we 

have seen that each one will contain the preceding one and will have a degree that is higher by one 

unit. In order to pass from one of those sheaves to the following one, one must then append a 

conveniently-chosen new transformation to it. 

 To that end, we remark that Gk is the resultant of its distinguished subsheaves of 
1

F , 
2

F , …, 

k
F , which we would like to denote by 

1
G , 

2
G , …, 

k
G , respectively. Indeed, we know that Gk 

contains G1, which is nothing but 
1

G . As a result, it will contain 
2

G , …, 
k

G , because Fk is the 

largest subsheaf that is common to 
1

F , 
2

F , …, 
k

F , in such a way that the functions 1, 2, …, 

k will have equivalent roles with respect to them. Therefore, Gk contains Gk−1 and 
k

G , and since 

its degree surpasses that of Gk−1 by one unit, it will be the resultant of Gk−1 and 
k

G , as long as 
k

G  

is contained in Gk−1 . 

 In order to see that the latter situation is impossible, it will suffice to remark that if one 

composes Fk−1 and 
k

F  then one reconstitutes F, because Fk−1 has degree n – k + 1, 
k

F  has degree 

n – 1, and their largest common subsheaf, which is Fk, has degree n – k. The resultant of Fk−1 and 

k
F  will then have degree: 

(n – k + 1) + (n – 1) – (n – k) = n . 

 

Since it is contained in F, whose degree is equal to n, that resultant will coincide with the latter. 

 From that, one sees that if 
k

G  is contained in Gk−1 then it will leave each of the sheaves 
k

F  

and Fk−1 invariant, and consequently their resultant F. Now, that is not true, because that resultant 

is not contained in the distinguished subsheaf G of F. 

 We have then proved that Gk is the resultant of Gk−1 and 
k

G . One then concludes, by 

recurrence, that it is the resultant of 
1

G , 
2

G , …,
k

G , as we first stated. 

 The new transformation that one must append to Gk−1 in order to get Gk will then be a 

transformation of 
k

G , and everything comes down to finding a general transformation of G that 

does not belong to any of the other analogous subsheaves G . Since, from the foregoing, they 

have only G in common, which has degree r, and G has degree r + 1, by definition, it will suffice 

to find a transformation of G that does not belong to G. That is what we shall do in the following 

subsection, and our conclusion will be that if T is one such transformation then Gk will be the 

resultant of G and 
1

T , 
2

T , …, 
k

T , i.e., that its basis will be: 

 

(31)    C1, C2, …, Ck, 
1

T , 
2

T , …, 
k

T . 

 

Upon equating the symbols of those transformations (31) to zero, one will then get the complete 

system, for which k+1 will be one integral (which is distinct from 1, 2, …, k, and the invariants 

of F). 
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 5. The bracket of two functions. – Recall the notations of no. 1 and suppose, as in no. 3, that if 

X1, X2, …, X are  = 2s arbitrary transformations of F then one chooses X+1, …, Xn to be r = n – 

n distinguished transformations. All of the functions ci,k for which i and k exceed  will then be 

zero, and the determinant of the remaining ci,k (i, k = 1, 2, …, ) will be non-zero. 

 The sheaf F is composed of the transformations: 

 

U = 
1

n

i i

i

u X
=

  

 

for which one has U = 0, i.e., since X+1 , …, Xn  are zero, by hypothesis, one will have: 

 

(32) 
1

h h

h

u X



=

  = 0 . 

A transformation: 

V = 
1

n

i i

i

v X
=

  

 

will be a distinguished transformation of F only if it is in involution with all of the transformations 

U that were just defined. That will give the necessary condition for the equation: 

 

(33)     ,

1 1

h k h k

h k

c u v
 

= =

  = 0  

 

to be a consequence of (32), or that one should have: 

 

(34)    ,

1

h k h

k

c u


=

  =   Xh   (h = 1, 2, …, ), 

 

in which  is an auxiliary unknown. 

 That will determine v1, …, v, up to a factor , and leave v+, …, vn arbitrary. One then obtains 

a sheaf whose basis includes not only X+1, …, Xn, but also the transformation that one deduces 

from (34) by supposing that v+ = 0, …, vn = 0. Since that is defined up to a factor, one can take 

its expression to the be following bordered determinant, which corresponds to  = 1, and which 

we call the bracket {, f}: 

 

(35)  {, f} = 

1,1 1, 1

,1 ,

1

1

0

c c X

c c X

X X



   







 

−

−
 , with  = 

1,1 1,

,1 ,

c c

c c



  

 . 
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That is the desired transformation T, because the sheaf that we just obtained has degree r + 1, like 

the subsheaf G, and since the argument that we applied to it implies that it contains G, it will 

coincide with the latter. Moreover, formula (35) makes it obvious that {, f} leaves  invariant, 

because {, } is zero, since it is the skew-symmetric determinant of odd degree ( + 1 = 2s +1). 

 We also point out the skew-symmetry property of the bracket: 

 

(36)     {, f} + {f, } = 0 . 

 

One establishes that by switching the rows and columns in the determinant (35), and then replacing 

each ci,k with ck,i at the same time that one changes  into –  and f into – f. The latter operations 

will change the signs of all elements in the determinant, which was, by definition, multiplied by 

(− 1)+1, i.e., by (− 1), since  = 2s. Since the right-hand side of (35) will then become {f, }, the 

property is established. 

 The bracket {, f} takes a very simple form when one starts from a canonical basis for the 

sheaf. Let (16) be that basis, and recall the preceding calculation, with: 

 

U = 
1

( )
s

i i i i

i

a A b B
=

+   and  V = 
1

( )
s

i i i i

i

a A b B
=

 + . 

 

Equations (34), with  = 1, will then be replaced with the identity in a1, …, as, b1, …, bs : 

 

1

( )
s

i i i i

i

a b b a
=

 −  = ( )i i i ia A b B +  , 

 

so one concludes that ia  = − Bi , ib  = Ai , and consequently: 

 

(37)    {, f} = 
1

( )
s

i i i i

i

A B f B A f 
=

 −  , 

 

because one sees quite easily that  is then equal to 1. 

 In that simple form, upon taking into account formulas (20), one effortlessly verifies that one 

has the formula: 

 

(38)    ({, f}, {, f})  {, } Z (mod F) 

 

for the Jacobi bracket of two transformations of the type {, f}, {, f}. 

 We shall see that this extends to the general case of the bracket (35) by virtue of the property 

of the invariance of the bracket under changes of basis for the sheaf. Here is what that invariance 

consists of: 

 Recall the notations at the beginning of this subsection. Equations (34), with  = 1, which gave 

us {, f}, are equivalent to the single condition: 
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(39)     (U, V)  U   Z (mod F) . 

 

From our calculations, that congruence must be true for any transformation U of the sheaf X1, …, 

X (or the sheaf H of no. 3). However, it will again be true if we adds any distinguished 

transformation C to U, provided that we impose the condition on  that it must be a characteristic 

function, as we shall do. The condition: 

 

(U + C, V)  (U + C)  Z  (mod F) 

 

will then indeed reduce to (39), due to the fact that (C, V)  0 and C = 0. 

 Therefore, the congruence (39) is true for any transformation U of F, and from what we have 

seen, since it is equivalent to the equations of condition (34) (with  = 1), it will define V entirely 

when one wishes that V should belong to H. If one suppresses that restriction then one must append 

an arbitrary distinguished transformation to V. 

 One then sees that the bracket {, f} is thus defined by a property that is independent of the 

choice of basis. However, that must imply that one can then add an arbitrary distinguished 

transformation of the sheaf F to it. In other words, if one changes the basis for F then one will 

modify {, f} by at most the addition of a distinguished transformation of F. That is the stated 

invariance. It is obvious that it implies that the formula (38) will be preserved at the moment when 

one supposes that  and  are characteristic functions. 

 The defining identity (39) further shows that if one changes the transformation Z into another 

one  Z + X of the derived sheaf F   (X being an arbitrary transformation of F) then V will be found 

to be multiplied by , in such a way that the identity (38) will not be modified. 

 Finally, as the formula (35) shows, V is a covariant of the sheaf F relative to any change of 

variables. 

 

 

 6. Bracket relations between the elements of an arbitrary complete integral. – By definition, 

the method that was given in no. 4 for constructing an arbitrary complete integral takes the 

following precise form: 

 If the number of variables is m = n + p (p  1) and the rank of the determinant of the ci,k is 2s 

then one sets n = 2s + r, and r is the degree of a characteristic subsheaf G of F. The elements i of 

a complete integral are s + p in number. They include the possible invariants of F; let the number 

of them be q: It is less than p. Starting from those invariants, one calculates by integrating the last 

of the successive derived sheaves of F: The last derived sheaf is complete. 

 On the one hand, one determines a basis C1, …, Cr for the characteristic subsheaf G, and one 

forms the expression for the bracket {, f}. Having done that, the operations to be performed are 

the following ones: One calculates an invariant 1 of the complete sheaf G, then an invariant 2 of 

the complete sheaf that is composed of G and {1, f}, then an invariant 3 of the complete sheaf 

that if composed of G, {1, f}, {2, f}, and so on. At each operation, it is implied that the new 

element  that one calculates must not be a function of the elements that were calculated before. 
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 Once one has thus arrived at the complete sheaf that is defined by G, {1, f}, {2, f}, …, {s, 

f}, one will know the q invariants of F and the functions 1, 2, …, s as its invariants. One thus 

calculates p – q mutually-distinct invariants, and one will then have all of the elements of the 

complete integral. 

 We remark that the principle of the method basically consists of the fact that the transformation 

{, f} belongs to any complete subsheaf that provides a complete integral that  belongs to. Since 

such a complete subsheaf has degree s + r, it will then result that once one has calculated 1, 2, 

…, s, the operations will be obstructed by the fact that {s+1, f}, {s+2, f}, … can be only 

combinations of {1, f}, …, {s, f}, and some distinguished transformations C1, …, Cr . 

 We finally conclude that from the foregoing, a complete integral is a set of s + p independent 

characteristic functions i that satisfy the bracket relations: 

 

(40)    {i , k} = 0  (i, k = 1, 2, …, s + p) . 

 

I recall that we intend that a “characteristic function” should mean an invariant of the characteristic 

subsheaf G, and add that, from the foregoing, those of the relations (40) for which i has the values 

1, 2, …, s, and k has all indicated values will imply the other ones as consequences. 

 

 

II. – Passing from one complete integral to another. 

 

 7. Reducing a sheaf to a canonical form. – Knowing a complete integral will permit one to 

reduce the given sheaf F to a canonical form by a change of variables. One can then look for other 

complete integrals in that canonical form. That is the topic of the present subsection. 

 Let 1, 2, …, s+p be the elements of any particular complete integral. Take them to be the 

new variables while keeping some of the other variables – for example, x1, x2, …, xs+p – which will 

make 2s + r + p = n + p = m variables, in all. 

 The complete subsheaf whose fundamental invariants are 1, 2, …, s+p is then 
1

f

x




, 

2

f

x




, …, 

s r

f

x +




. It contains the distinguished transformations, which consequently have the form: 

(41)    Cj = 
,

1

s r

j

f

x


 


+

=




   (j = 1, 2, …, r) , 

 

and if the notations are chosen conveniently then one can, on the other hand, keep the 

transformations: 

(42)     
1

f

x




, 

2

f

x




, …, 

s r

f

x +




 

 

to serve as the basis for the subsheaf in question. In order to complete the basis for F, one can take 

the transformations when they have been solved for s of the derivatives f / i , namely: 
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(43)     i = 
,

1

p

i

i s

f f


 


 = +

 
+

 
    (i = 1, 2, …, s) . 

 

 One can take a transformation of the form: 

 

,

1

p

i

s

f


 


= +




  

 

to be the transformation Z of the derived sheaf that appears in the structure formulas (no. 1) and 

solve it for one of the derivatives that enter into it. It might then take the form: 

 

(44)     Z = 
21

p

s s

f f


 


 =+ +

 
+

 
 , 

 

for example. In all of that, one supposes that 1, 2, …, s, s+1 are not invariants of F, which is 

legitimate. 

 Having done that, consider, as in no. 5, the determinant  of the structure functions that 

correspond to the 2s basis transformations (42) and (43). One will have the relations (1): 

 

, k

i

f

x

 
 

 
 = ,k i

i

Z
x




  (i, k = 1, 2, …, s) , 

 

in such a way that the determinant  will reduce to the square of a functional determinant 

1,1 2,1 ,1

1 2

( , , , )

( , , , )

s

sx x x

  


. It will then result that this functional determinant is not zero, and that one can 

take functions i = i,1 (i = 1, 2, …, s) to be the new variables in place of the x1, x2, …, xs . The 

transformations of the basis (42) can then be replaced with: 

 

(45)     i = 
i

f






  (i = 1, 2, …, s) , 

 

and the transformations (43) can be written: 

 

(46)    i = 
1

i i

i s

f f
R

  +

 
+ +

 
  (i = 1, 2, …, s) , 

 

 
 (1) Because the bracket of two arbitrary transformations of F is a combination of transformations of the basis for 

F and the transformation Z. One must always keep that fact in mind in all of this subsection. 
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in which the Ri depend upon only the derivatives 
2s

f

 +




, …, 

s p

f

 +




. 

 We similarly write: 

(47)     Z = 
1s

f

 +




 + R . 

 

 Furthermore, we remark that we must have the structure relations (Cj , i)  0, which implies 

that Cj i = 0. Hence, from the introduction of the i , the derivatives f / i will not figure in the 

Cj, and we can replace them with the transformations: 

 

(48)     
1s

f

x +




, 

2s

f

x +




, …, 

s r

f

x +




, 

 

which will then be the distinguished transformations that serve as the basis for the characteristic 

subsheaf G. We conclude that the variables xs+1, xs+2, …, xs+r have disappeared from the 

coefficients of the transformations Ri because we must have , i

s j

f

x +

 
   

  = 0. Those variables will 

likewise disappear from Z, since we then have , i

i

f



 
 

 
 = Z. Hence, the variables xs+1, …, xs+r 

will now disappear from the calculations. 

 Now consider the structure relations that relate to the brackets (i , k). They lead to the 

identities: 

i

i

R






 = R , i

k

R






 = 0 (i  k, i, k = 1, 2, …, s) . 

 

 Until further notice, we shall exclude the case of s = 1. We conclude that the variables  do 

not enter into the coefficients of R and that one has: 

 

(49)     Ri = R i + Si , 

 

in which the Si no longer depend upon the variables . We can then write: 

 

(50)    i = i i

i

f
Z S




+ +


  (i = 1, 2, …, s) . 

 

 Having said that, we pass on to the brackets (i , k) . Since, from the form of the i , only the 

derivatives 
2s

f

 +




, …, 

s p

f

 +




 can enter into them, they will be identically zero. Now, one has: 

 



Vessiot – On the integration of sheaves of infinitesimal transformations. 22 

 

(i , k) = , , ,i k k i i k

i k i k

f f f f
S S S Z S Z 

   

        
+ + + + − +     

        
 , 

 

and since i and k do not enter into any coefficient of Z or Si , one can conclude that: 

 

,i k

i k

f f
S S

 

  
+ + 

  
 = 0 , ,i

i

f
S Z



 
+ 

 
 = 0 

for all values of i and k. 

 It then results that the sheaf F   is complete, i.e., that the number of independent invariants of 

F, which we have denoted by q, is equal to m – (n + 1) = p – 1. 

 Now, from the calculations that were indicated in no. 6, we can suppose that those invariants 

are found among the , and in other words, that s+2, …, s+p are all invariants of F and F  . In 

other words, R and the Ri are identically zero. 

 Therefore, the changes of variables that we made in this subsection will lead directly to the 

following canonical form: 

 

(51) i = 
i

f






, i = 

0

i

i

f f


 

 
+

 
, Ci = 

s j

f

x +




  (i = 1, 2, …, s ; j = 1, 2, …, r) , 

 

and the chosen transformation Z reduces to: 

 

(52)     Z = 
0

f






. 

 

We have just denoted s+1 by only 0 to simplify the writing. 

 

 

 8. Polar functions of a complete integral. – If we summarize the results that we just obtained 

then we will first see that for s > 1, everything basically takes place as if the number of variables 

were  + 1, the sheaf F had even degree  = 2s, and it had no distinguished transformations, since 

we were no longer concerned with the variables  and . 

 Moreover, the variables  are arbitrary elements, which are s + 1 in number, of an arbitrary 

complete integral under the single condition that none of them should be an invariant of F and that 

no function of those invariants should be such an invariant. 

 We say that the functions i that are associated with the i in the canonical form (51) are the 

polar functions of the i . They are defined by the analysis of the preceding subsection, which gave 

the means to calculate them when one knew the i as soon as one had chosen the complete integral 

element that one took to be 0 . We shall show that, on the other hand, they satisfy some bracket 

relations that characterize them. 

 The basis (51) for the sheaf F is a canonical basis (no. 1), because one has the identities: 
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(53)    (i , i) = Z  (i = 1, 2, …, s), 

 

while the other brackets of the i , i , and Ci are zero. Furthermore, one sees that the congruences 

of no. 1 are equalities here. 

 Upon taking that basis (51) to be the starting point, the general bracket {f, g} will become the 

Poisson bracket: 

(54)    [f, g] = 
1

s

i i

i i i

f g
g f

 =

  
 −  

  
  , 

 

because the i can be interpreted as total derivatives with respect to the i (i = 1, 2, …, s), while 

the i are considered to be the partial derivatives 0 / i   . Regardless of that interpretation, with 

the notation (54), one will have the immediate formulas: 

 

(55)  
0

0

[ , ] 0, [ , ] 0, [ , ] 0,

[ , ] 0, [ , ] 1, [ , ] ,

i i k i k

i k i i i i

     

      

= = =


= = − = −
 (i, k = 1, 2, …, s ; i  k). 

 

One can also write, for i = 1, 2, …, s : 

 

(56)  [i , f] = i ,  [i , f] = − i ,  [0 , f] = − 
1

s

k k

k


=

 , 

so 

(57)     [0 , f] = 
1

[ , ]
s

i i

i

f 
=

 . 

 

 If we return to the general bracket {f, g} that is constructed from an arbitrary basis of F and an 

arbitrary transformation Z of the derived sheaf Z   then from the property of invariance of the 

bracket that was established in no. 5, we will have the identity: 

 

(58)     {f, g}   [f, g]  (mod G), 

 

in which the factor  is defined by: 

(59)      Z  
0

f







 (mod F). 

 

 Formulas (55), (56), (57) then give the following ones, since the  and the  are invariants of 

the characteristic subsheaf G: 

 

(60) 
0

0

{ , } 0, { , } 0, { , } 0,

{ , } 0, { , } , { , } ,

i i k i k

i k i i i i

     

       

= = =


= = − = −
  (i, k = 1, 2, …, s ; i  k). 
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(61)  {i , f}   i ,      {i , f}  −  i ,      {0 , f}  − 
1

s

k k

k

 
=

  (mod G), 

(62) {0 , f}  
1

{ , }
s

k k

k

f 
=

  (mod G). 

 

 The formulas (60), when combined with the hypothesis that the  and the  are invariants of 

G, characterize the system of  and  as being composed of the elements 0, 1, …, s of a 

complete integral and their polar 1, …, s, in which it is intended that one must add some 

independent invariants (of maximum number) from F to the . 

 Indeed, if one takes the variables to be the , the , the invariants in questions 1, 2, …, p−1, 

and r other arbitrary variables z1, …, zr then the transformations of G will have the form: 

 

C = 
1

r

j

j j

f

x


=




 , 

 

since the C, the C, and the C are zero. On the other hand, any transformation of the type {g, 

f} has the expression: 

 

{g, f} = 
0 1 1

{ , } { , } { , }
s s rf f f

g g g z
z

  
    

 
 = = =

  
+ +

  
   , 

 

because the {g, h} are zero, due to the fact that {g, f} is a transformation of F. One can further 

write that as: 

 

(63)   {g, f}  
0 1

{ , } { , }
s sf f

g g 
  

 
 = =

 
+

 
   (mod G) . 

 

 One can profit from the relations (60) to conclude that: 

 

(64) {i , f}   i ,      {i , f}  −  i (mod G), {0 , f}  −
1

s

k k

k

 
=

    (mod G) . 

 

Those equations indeed prove that the i are associated with the i in such a way as to give the 

sheaf F its canonical form (51). Q.E.D. 

 

 Moreover, equations (64) will imply the formula (62), whose importance is just as 

fundamental, because it suffices to define the i . That results from the fact that the complete 

subsheaf that has the i for its invariants has a basis (no. 6) that consists of the transformations 

{1, f}, {2, f}, …, {s, f}, C1, C2, …, Cr . They are then divergent, which excludes the possibility 

of there being two distinct identity-congruences of the form (58). 
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 9. Explicit integration of the canonical sheaf. – It is clear from the foregoing that once one 

knows a particular complete integral, the integration of F will come down to the integration of the 

canonical sheaf, which is composed of the i and the i . With a change of notation, that will be 

the sheaf K that has basis: 

 

(65)   Pi = 
i

f

p




, Xi = 

0

i

i

f f
p

x x

 
+

 
 (i = 1, 2, …, s). 

 

 That sheaf K is the dual (1) of the Pfaff equation: 

 

(65)    dx0 – p1 dx1 – p2 dx2 − … – ps dxs = 0 . 

 

 We can then use some well-known results here. However, it would seem interesting to us to 

deduce everything from our theory of sheaves. 

 One will first get an intuitive solution upon remarking that the sheaf (65) results from the 

prolongation (2) of the sheaf: 

0

f

x




, 

1

f

x




, …, 

s

f

x




 

 

when one considers x0 to be a function of x1, …, xs, and the p to be the partial derivatives 0 / .ix x   

Therefore, in order to get an s-dimensional integral of (65) that depends upon s + 1 arbitrary 

constants, it would suffice to prolong an s-dimensional multiplicity in the space x0, x1, …, xs, when 

that multiplicity depends upon s + 1 arbitrary constants a0, a1, …, as. Hence, one will get the 

solution: 

(66)  x0 = W (x1, …, xs ; a0, a1, …, as), i = 
i

W

x




 (i = 1, 2, …, s), 

in which W is an arbitrary function of its arguments. 

 However, there is good reason to see whether there is no other solution and to argue directly 

with the sheaf K without invoking the notion of prolongation. 

 Therefore, imagine a complete subsheaf K1 of K of degree s. It is defined by s independent 

combinations of the Xi and the Pi . 

 

 1. First suppose that one can solve it for the Xi in such a way that the basis for the subsheaf 

K1 has the form: 

(67)    Xi = 
,

1

s

i j j

j

P
=

   (i = 1, 2, …, s) . 

 

From the known properties of complete systems, one can then solve the complete integral for the 

x0, p1, …, ps , and it will have the form: 

 
 (1) M., no. 4, pp. 346-347.  

 (2) M., no. 15, pp. 367.  
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(68) x0 = W (x1, …, xs ; a0, a1, …, as), pj = j (x1, …, xs ; a0, a1, …, as), (j = 1, 2, …, s). 

 

 We write down that it admits the transformations (67). It will become: 

 

pi = 
i

W

x




, i,j = 

j

ix




  (i, j = 1, 2, …, s), 

 

which must be a consequence of equations (68). One will then find that the necessary and sufficient 

conditions for the possibility of that are the formulas: 

 

j = 
j

W

x




 (j = 1, 2, …, s), 

 

with the condition that the equations (68) thus-constructed can be solved for the constants a0, a1, 

…, as that will then be the solution (66) that was introduced before. 

 

 2. In the second place, suppose that the basis for K1 can be solved for  of the Xi and no more 

(1) (0 <  < s), and suppose, to simplify notations, that they are X1, …, X . One will then have s – 

 independent combinations of P1, …, Ps in K1 . I say that they must be soluble for the P+1, …, 

Ps . 

 Indeed, suppose that the contrary is true: There will be at least one transformation of the form 

1 P1 + …+  P in K1. However, that is impossible, because the brackets with the transformations 

that are solved for X1, …, X will be 1 Z, …,  Z, which are transformations that will not all be 

identically zero and will not belong to K1. 

 The basis for K1 can then be taken in the following form here: 

 

(69)   

, ,

1 1

,

1

( 1,2, , ),

( 1,2, , ).

s

h h h

l l

X X P h

P P l s

 

    
 



  


  

 

−

+

= =

+

=


+ + =



 + = −


 


 

 

 One then concludes that the complete integral can be solved for x0, x+1, …, xs, p1, …, ps . One 

then writes: 

 

(70)  x0 = W0 , x+l = Wl , ph = h  (l = 1, 2, …, s –  ; h = 1, 2, …, s), 

 

The right-hand sides of those equations are functions of x1, …, x, p+1, …, ps , and some arbitrary 

constants a0, a1, …, as . 

 We now express the idea that they admit the transformations (69). That will give the conditions: 

 
 (1) The hypothesis that  = 0 gives the complete integral x0 = a0 , x1 = a1 , …, xs = as . 
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,

1

s

h hp p


  



−

+

=

+   = 
h

W

x




, h,l = l

h

W

x




, 0

l

W

p +




 = 0, h

l

W

p +




 = 0 

 

(for h = 1, 2, …,  and l = 1, 2, …, s – ) , 

and in addition: 

h, = 
hx




, h, = 

lp



 +




 (h,  = 1, 2, …,  ; l = 1, 2, …, s – ) . 

 

 One concludes that one has the general solution: 

 

(71) x0 = W0 ,      x+l = Wl ,      ph = 
1

s

h h

WW
p

x x




 


−

+

=


−

 
       (h = 1, 2, .., s ; l = 1, 2, …, s – ), 

 

in which W0 and Wl are functions of x1, …, xn, a0, a1, …, as, which are arbitrary, with the only 

reservation that those equations (71) can be solved for a0, a1, …, as . 

 

 3. If one sets, with Sophus Lie: 

(72)     W = 0

1

s

W p W


  


−

+

=

−   

then one can replace formulas (71) with: 

 

(73)  x0 = 
1

s W
W p

p



 
  

−

+

= +


−


 , x+l = − 

W

p +




, ph = 

h

W

x




, 

 

(74)   W = functions of p+l , …, ps , x1 , …, x , a0 , a1 , …, as , 

 

in which one has h = 1, 2, …,  ; l = 1, 2, …, s – , as always, and one confirms that one then has 

a complete integral no matter what one chooses W to be. 

 Indeed, express the idea that the system admits the transformation: 

 

(75)     U = 
1 1

s s

i i i i

i i

X P 
= =

+  , 

and we find the conditions: 

 

(76) 
1

s

i i

i

p
=

 = 
2 2

1 1 1 1

s s s

s

W W W
p p

x p x p p

   

     
          

 
− − −

+ + +

= = = =+ + +

   
− −       

    , 

 

(77) +l = − 
2 2

1 1

s

l

W W

p x p p

 

  
      

 
−

+

= =+ + +

 
−

   
   (l = 1, 2, …, s – ), 
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(78) h =  
2 2

1 1

s

h h

W W

p x x p

 

  
   

 
−

+

= = +

 
−

   
    (h = 1, 2, …, ). 

 

 Now, equation (76) will become an identity when one takes into account equations (77) and 

(78), along with equations (73). All that will remain then are equations (77) and (78), which leave 

1, …,  and +1, …, s arbitrary. One will then indeed have a subsheaf of degree s that leaves 

the multiplicity (73) invariant. 

 

 

 10. Continuation. Calculating the polar functions. – We have thus defined the most complete 

general integral by means of formulas (75), which we can think of as including the normal formulas 

(66) for  = s. Since those equations define the functions a0, a1, …, as of the variables x0, x1, …, 

xs ; p1, …, ps, it remains for us to find the polar functions b1, …, bs that they are associated with. 

In order to do that, we need only apply the rule that was given at the end of no. 8, and to that effect, 

we take the brackets with f of the two sides of the identity: 

 

(79)     x0 = W (x1, …, xs ; p1, …, ps) 

 

for the normal case, and for the general case, the brackets of the two sides of the identity: 

 

(80)   x0 = W (x1, …, x ; p+1, …, ps ; a0, a1, …, as) + 
1

s

p x


   


−

+ +

=

 , 

 

which is an immediate consequence of formulas (73). 

 Since the operation {, f} is linear and homogeneous with respect to the derivatives of , one 

can apply the rule for the derivation of composed functions to it. We remark that the bracket is the 

Poisson bracket here, and that the formulas (56) will give: 

 

(81)   {xi , f} = − Pi ,  [pi, f] = Xi , [x0, f] = − 
1

s

i i

i

p x
=

 , 

with the present notations. 

 With the identity (79), we will then get: 

 

− 
1

s

i i

i

p P
=

 = 
1 0

( ) [ , ]
s s

i i

i ji j

W W
P a f

x a= =

 
− +

 
  , 

 

and when one takes formulas (66) into account, that will reduce to: 

 

(82)     
0

[ , ]
s

i

j j

W
a f

a=




  = 0 . 
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 With the identity (80), we will get: 

 

− 
1

s

i i

i

p P
=

 = 
1 1 0 1 1

( ) [ , ] ( )
s s s s

h l i

h l jh l j

W W W
P X a f p P x X

x p a

   

        
 

− − −

+ + + + +

= = = = =+

  
− + + + − +

  
     . 

 

On the other hand, since the bi are defined by the identity: 

 

(83)     [ai, f] = 
1

[ , ]
s

i i

i

b a f
=

 , 

 

from the final result in no. 8, so it will suffice to compare that with (82) to conclude that the bi are 

defined here by the system of equations: 

 

(84)    
0

i

i

W W
b

a a

 
+

 
 = 0  (i = 1, 2, …, s), 

 

which must, of course, be associated with the ones that define a0, a1, …, as, i.e., formulas (66) or 

(73), according to the case. 

 

 

 11. Contact transformations. – Let us combine the formulas that were obtained. Upon putting 

yi in place of ai, qi in place of bi, and changing  into s – , we will get two systems: For the normal 

case: 

(83)   

0 1 0 1

1 0

( , , ; , , , ) ,

, 0 ( 1,2, , ),

s s

i i

i

x W x x y y y

W W W
p q i s

x y y

=


  
= + = =

   

 

 

and for the most general case: 

 

(86)  

0 1 1 1 0 1

1

1 0

( , , ; , , ; , , , ) ,

, , 0

( 1,2, , ; 1,2, , ; 1,2, , ).

s

h l i

h l

x p x W x x p p y y y

W W W W
x p q

p x y y

h l s i s



   






 

+

=

+

+


− =


   

= − = + =
   

 = = − =





 

 

 One and the other of those systems define a transformation of x0, x1, …, xs, p1, …, ps into y0, 

y1, …, ys, q1, …, qs, and it will result from the manner by which we arrived at the sheaf K that this 

transformation will change the sheaf into: 
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(87)   Qi = 
i

f

q




, Yi = i

i s

f f
q

y y

 
+

 
  (i = 1, 2, …, s), 

 

because y0, y1, …, ys is a complete integral and q1, …, qs are polar functions. In other words, the 

transformations in question leave the sheaf K invariant. 

 Conversely, if one transformation of the x0, x1, …, xs, p1, …, ps into y0, y1, …, ys, q1, …, qs 

leaves K invariant, i.e., it permits one to put its basis into the form (87), then it is clear that y0, y1, 

…, ys will be independent invariants of the complete subsheaf Q1, …, Qs , in such a way that they 

are the elements of a complete integral, and the form of the Yi indicates that q1, …, qs are the polar 

elements that are associated with that complete integral. 

 We have thus obtained the general form of the transformations that leave the sheaf K invariant, 

and what amounts to the same thing, the dual Pfaff equation: 

 

dx0 − 
1

s

i i

i

p dx
=

  = 0 , 

 

i.e., the contact transformations of the space x0, x1, …, xs . 

 From the analysis of no. 9, the function W of formulas (86) can be supposed to be linear in p1, 

…, ps: 

 

(86, cont.)    W = W0 − 
1

h h

h

p W


=

 , 

 

in such a way that the formulas (86) include  + 1 point-like relations (into x0, x1, …, xs and y0, y1, 

…, ys), namely: 

 

(86, ter)   x0 = W0 , xh = Wh  (h = 1, 2, …, ), 

 

whereas formulas (85) include only one. 

 Of course, all of that conforms to the classical theory of Sophus Lie. However, we did not find 

formulas (86) in his book. 

 From what we found in no. 8 in regard to the bracket relations that characterize the complete 

integrals [equations (60)], one will immediately conclude, on the one hand, the following theorem, 

which is fundamental to the theory of contact transformations. In order for the equations: 

 

(88)  
0 1 1 0 1 1( , , , ; , , ), ( , , , ; , , )

( 0,1,2, , ; 1,2, , )

h h s s i i s sy y x x x p p q q x x x y y

h s i s

= =


= =
 

 

to define a contact transformation, it is necessary and sufficient that the functions yh and qi should 

satisfy the bracket relations: 
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(89) 
0 0[ , ] 0, [ , ] 0, [ , ] 0, [ , ] 0, [ , ] , [ , ] ,

( , , 1,2, , ; ).

i k i i k i k i i i iy y y y q q y q q y q y q

i k s i k

 = = = = = =


= 
 

 

 It is convenient to recall that those relations, in which  cannot be identically zero, assure the 

independence of the functions yh and qi . Indeed, if one has an identity relation: 

 

(90) F (y0, y1, …, ys ; q1, …, qs) = 0 

 

then it cannot contain the qi because when it is solved for q1, for example, it will take the form: 

 

q1 = G (y0, y1, …, ys ; q2, …, qs) , 

 

and upon forming the bracket of the two numbers with y1, one will conclude that  = 0. Hence, the 

relation (90) cannot contain q1, …, qs, and will contain y1, for example, since it cannot reduce to 

y0 = const., due to the last formulas in (89). Now, if one supposes that one has: 

 

y1 = H (y0, y1, …, ys) 

 

then upon forming the bracket of the two numbers with q1, one will conclude that: 

 

1

0

1
H

q
y


 

− 
 

 = 0 , 

 

which is impossible, because it will be a relation that contains q1, or rather, it will reduce to  = 0. 

 As far as the factor  is concerned, from (59), it is defined by the condition: 

 

(91)     
0 0

f f

x y


 
−

 
  0 (mod K), 

 

in which the first derivative corresponds to the set of independent variables xh, pi, and the second 

one corresponds to the set of new variables yh, qi. 

 Moreover, one can make that more precise by using the obvious identity: 

 

0

f

x




 = 0

1 1 10 0 0 0 0

s s s
i i i

i i i

i i i

y y y yf
q Y Q

y x x x x= = =

    
− + + 

     
   , 

which will give: 

(92)      = 0

10 0

s
i

i

i

x y
q

y x=

 
−

 
 . 
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 In order to apply that to the transformations (85) and (86), it will suffice to differentiate the 

first of the formulas with respect to x0 in both cases, which will give: 

 

1 = 0

10 0 0 0

s
i

i

y yW W

y x y x=

  
+

   
  , 

 

so, upon taking into account formulas (85) and (86), one will have: 

 

1 = 0

10 0 0

s
i

i

i

y yW
q

y x x=

  
− 

   
  . 

One will then have simply: 

(93)       = 

0

1

W

y

 
 

 

. 

 

 We finally remark that the theorem regarding composite functions gives the identities: 

 

  Xi = 
0

1 1 10

s s s

i k i k k i k k i k

k k k

f
X y q X y Y X y Q X q

y = = =

  
− +  +  

  
   , 

 

  Pi = 
0

1 1 10

s s s

i k i k k i k k i k

k k k

f
P y q P y Y P y Q P q

y = = =

  
− +  +  

  
   . 

 

Now, in order for the transformation to be a contact transformation, it must leave the sheaf K 

invariant, which is equivalent to saying that the term in f / y0 must disappear from those formulas. 

One will then have the conditions: 

 

(94)  0

1

s

i k i k

k

X y q X y
=

−   = 0 , 0

1

s

i k i k

k

P y q P y
=

−   = 0  (i = 1, 2, …, s), 

 

which also characterize the contact transformations. 

 One sees, moreover, that the following law by which the contact transformation exchanges the 

transformations of the sheaf is given by the following formulas, in which i = 1, 2, …, s: 

 

(95)  Xi = 
1

( )
s

k i k k i k

k

Y X y Q X q
=

 +  , Pi = 
1

( )
s

k i k k i k

k

Y P y Q P q
=

 +  . 

 

 

 12. Passing from one complete integral to another. – One can interpret the preceding results 

from the viewpoint of the integration of the sheaf F in the following manner: 
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 First, suppose the particular case of r = 0, p = 1, and consequently n = 2s. Hence, knowing one 

complete integral u0, u1, …, us, from which one can deduce the polar functions v0, v1, …, vs, will 

reduce F to the form K. In order to do that, it will suffice to make a change of variables by taking 

the variables u0, u1, …, us ; v0, v1, …, vs in place of the initial 2s + 1 variables. It will then remain 

for one to integrate K, and an arbitrary complete integral is given when one starts from u0, u1, …, 

us ; v0, v1, …, vs, by the formulas for an arbitrary contact transformation in the space of u0, u1, …, 

us. 

 Consequently, if one agrees to extend the meaning of the term complete integral by including 

not only the elements of the complete integral, properly speaking (such as u0, u1, …, us), but also 

the associated polar elements (such as v1, …, vs), one can say that passing from one complete 

integral to another is effected by a contact transformation. 

 From the applications of no. 8, that will still be true when r is not zero and p is greater than 1. 

It is only necessary that the contact transformation in question should depend upon p – 1 invariants 

of F in an arbitrary manner, which will involve just as many arbitrary constant parameters. 

Moreover, those invariants must be appended to the complete integral elements that are provided 

by the contact transformation, even if they are found to be appended to the complete integral 

elements u0, u1, …, us, which are supposed to be calculated first. 

 The result will break down for s = 1 and p > 1 only when F has less than p – 1 distinct invariants, 

i.e., when its derived sheaf F   is not complete. It will then remain for us to study that case, which 

will be the subject of the following section. Recall that when s is greater than 1, F   will always be 

complete, as we saw in no. 7. 

 

 

III. – Study of the exceptional case. 

 

 13. Case in which the second derived sheaf has degree n + 2. – From the analysis of no. 7, we 

obtained the form for F in the case of s = 1 that we called semi-canonical: 

 

(96)   X = 1

0

f f
x Y

x x

 
+ +

 
, X1 = 

1

f

x




, Zi = 

j

f

x




, (j = 1, 2, …, r) . 

 

Since the Zj are distinguished transformations, Y has the form: 

 

(97)     Y = 
1

l f

y


 


=




 , 

 

in which the  do not depend upon the zj but can depend upon all of the other variables t1, t2, …, 

tq that the possible invariants of F might be comprised of. 

 The degree of F is n = 2s + r = 2 + r, and the total number of variables is m = n + 1 + l + q, in 

such a way that l = (p – 1) – q. As we saw in no. 12, the case in which l = 0 (q = p – 1) will occur 

in the general case, because Y will disappear then. We shall see that in the case of l > 0, we can 

also have a canonical form under certain hypotheses that relate to the successive derivatives of F. 
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 The derived sheaf F   is deduced from (96) by appending the transformation (X1, X), i.e.: 

 

(98)    Z = 
0 1

f Y

x x

 
+

 
  

11 1

lY f

x x y



 



=

  
= 

   
  . 

 

Hence, the transformations Zj are once more distinguished for F  . 

 In order to pass on to following derived sheaf F  , we must append (X, Z) and (X1, Z). Hence, 

F   has degree n + 2 or n + 3. We shall examine the case in which it has degree n + 2. 

 The derivative F  , like F, then has a sheaf of degree greater by one unit for its derived sheaf. 

We can then apply the results of our study. Set n  = n + 1 and let r  be the degree of the 

characteristic sheaf of F  . From the remark that was just made, we will have r  r. Hence, n r −

 n – r + 2, since F   is not complete. Hence, n r −  = 2, i.e., the value of s again 1 for F  . 

Moreover, F   can have no other invariants than t1, t2, …, tq , in such a way that the value of l will 

become l  = l – 1 for F  .  By definition, the semi-canonical form of F   is: 

 

(99)  X   = 1

0

f Y
x Y

x x

 
 + +

  
, 1X   = 

1

f

x




, 

f

z




, Zj (j = 1, 2, …, r), 

with 

(100)     Y   = 
1

1

l f

y


 


−

=





 . 

 

The transformation f / z is the new distinguished transformation of F   (other than Zj). Hence, 

the   will not depend upon either the zj or z. 

 Having said that, consider F to be a subsheaf of F  . It will be defined by the Zj , which it 

contains by hypothesis, and two other basis transformations of the form 1 1

f
X X

z
  


  + +


. Those 

two transformations are independent relative to X   and 1X  , or rather f / z belongs to F. 

 Under the first hypothesis, the two basis transformations in question can be taken to have the 

form: 

f
X

z



 +


, 1 1

f
X

z



 +


. 

However, if the bracket of two such transformations that contains 
0

f

x




, but not 

f

x




, then it cannot 

belong to F  . The hypothesis must then be rejected since the bracket of two arbitrary 

transformations of F must belong to its derived sheaf F  . 

 Therefore, F will contain f / z, and its basis can be taken in the form: 

 

(101)    X   = 1X X + , 
f

z




, Z1, …, Zr . 
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It is, moreover, impossible for  to be independent of z without the sheaf (101) being complete. 

Hence, one can take  to be the new variables in place of z, and upon changing the notations, one 

will arrive at a semi-canonical form that is more precise then (96): 

 

(102)  X = 1 2

0 1

f f f
x x Y

x x x

  
+ + +

  
,  X2 = 

2

f

x




, Zj (j = 1, 2, …, r), 

 

in which Y involve only the l − 1 variables y, instead of l: 

 

(103)     Y = 
1

1

l f

y


 


−

=




 . 

 

Moreover, it will result from the way that we arrived at that result that the  will not depend upon 

either the zj or x2 . 

 

 

 14. – Generalization. – That result can be generalized step-by-step. We shall suppose that the 

degrees of F   , F  , …, ( )kF  are n + 1, n + 2, …, n + k, respectively, and we shall see that in those 

cases one can take the semi-canonical form of F to be: 

 

(104)  
1 2

0 1 1

; ;

( 1,2, , ),

k j

k k

f f f f f
X x x x Y Z

x x x x x

j r

−

    
= + + + + +

    
 =

 

with 

(105)     Y = 
1

1

l k f

y


 


− +

=




 , 

 

in which the  do not depend upon either the zj or the x2, x3, …, xk . 

 If that theorem is supposed to be true for k = 1, 2, …, h then it will suffice to prove that it is 

true for k = h + 1. To that effect, we then apply it to F  , which will then be, with a distinguished 

transformation (namely, f / z), moreover: 

 

(106)  X   = 1 2

0 1 1

k

k

f f f f
x x x Y

x x x x −

   
   + + + + +

      
, 

k

f

x




, 

f

z




, Zj , 

with 

(107)     Y   = 
1

l k f

y


 


−

=





 . 

 

 In order to deduce F, it will suffice to associate Zj with two transformations of the form: 
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k

f f
X

x z
  

 
 + +

 
, 

 

and one will see, as above, that one can deduce a combination that contains only f / z . Since 

those two transformations are then: 

k

f
X

x



 +


, 

f

z




, 

 

one will confirm that  can be taken to be the variable in place of z by reasoning as in no. 13, and 

all that will remain is to make a change of notations in order to obtain the stated result. 

 The converse of that theorem is true, because since F has the form (104), one will deduce F   

by appending the bracket ,
k

f
X

x

 
 

 
, i.e., 

1k

f

x −




. One will then get the following form for F  : 

 

1 1

0 2

k

k

f f f
x x Y

x x x
−

−

  
+ + + +

  
;    

1k

f

x −




, 

k

f

x




; 

1

f

z




, …, 

2

f

z




. 

 

Since Y does not depend upon xk−1 and xk, one similarly passes on to F   by appending 
2k

f

x −




, and 

so on, up to ( 1)kF − , which is: 

 

(108)   1

0

f f
x Y

x x

 
+ +

 
,      

1

f

x




, 

2

f

x




, …, 

k

f

x




; 

1

f

z




, …, 

2

f

z




. 

 

 Finally, ( )kF  is deduced from (108) by appending 
0 1

f Y

x x

 
+

 
. 

 On the other hand, we remark that all of the successive derived sheaves have q invariants, like 

F, and that as a result, their degree cannot exceed the limit: 

 

m – q = n + p – q = n + l + 1, 

 

and must attain it. It will then be the case that k = l + 1, and since ( )kF  has degree n + k, it will be 

complete, and furthermore, from (105), Y will disappear from formula (104), and if it so happens 

that k = l then since ( )kF  has degree n + k (i.e., n + l), ( 1)kF +  must have degree n + l + 1, i.e., n + k 

+ 1, and it will be complete. 

 Therefore, either the reduction can be continued up to k = l + 1 = p – q and given the canonical 

form: 
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(109)  1 2 1

0 1

l

l

f f f f
x x x

x x x x
+

   
+ + + +

   
;    

1l

f

x +




 ; 

1

f

z




, …, 

r

f

z




 

 

or the reduction will stop before k has attained the value l, and one will have the semi-canonical 

form (104), in which the variables y are at least two in number. 

 In the first case, the degrees of the successive derived sheaves will increase by one unit until 

the last one ( 1)lF + . In the second case, the degrees of the successive derived sheaves will increase 

by one unit up to ( )kF  inclusive (k < l), and ( 1)kF +  will have degree n + k + 2, i.e., its degree will 

be greater by two units than that of ( )kF . 

 As for the manner by which that reduction is accomplished, one first reduces ( 1)kF −  to the form 

(108), which one can do by integrating a complete system (see no. 7). One then passes from ( 1)kF −  

to ( 2)kF − , and so on, by the method that was presented in the proof of the present (direct) theorem. 

That will require no more than successive changes of variables without any new integration. 

 

 

 15. On the integration of the sheaf in question. –As far as the integration of the given sheaf F 

is concerned, it comes down to that of the sheaves that have types of the form (104) or (109). Now 

they present themselves as the results of successive prolongations (1) of the sheaf: 

 

(110)   X = 1 1

1 0

h

h

f f f f
x

x y y x
 

   
+ + + +

   
,  

1

f

x




, 

 

in the first case and of the sheaf: 

(111)      
0

f

x




,  

f

x




, 

 

in the second case. In the two cases, the prolongation can be made by considering x0 to be a function 

of x whose successive derivatives are x1, x2, … 

 In the second case [form (109)], one will then have the explicit solution immediately, which 

has l + 2 arbitrary constants: 

 

(112) x0 = W (x ; a0, a1, …, al+1), x1 = 
W

x




, x2 = 

2

2

W

x




, …, xl+1 = 

1

1

l

l

W

x

+

+




. 

 

It is implicit that the invariants t1, …, tq , which must be equal to constants, can enter into W in an 

arbitrary manner. 

 Independently of the theory of prolongation, one sees, moreover, that the complete subsheaves 

in question are obtained by appending a transformation of the form X + 
1l

f

x


+




 ( being arbitrary) 

 
 (1) M., no. 15, pp. 367.  
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to 
j

f

z




, and that everything comes down to finding their invariants. Now, that is equivalent to 

integrating the system: 

dx = 0

1

dx

x
 = 1

2

dx

x
 = … = 

1

l

l

dx

x +

 = 1

0 1 1( , , , , )

l

l

dx

x x x x
+

+

, 

 

i.e., to integrating an arbitrary differential equation: 

 
2

0

2

l

l

d x

dx

+

+
 = 

1

0 0
0 1

, , , , ,
l

l

dx d x
x x

dx dx


+

+

 
 
 

 , 

so the formulas (112). 

 In the first case [form (104)], one will be likewise led to integrate a system of the form (h = l 

– k + 1): 

 

(113)  dx = 0

1

dx

x
 = 1

1 0 1 1( , , , , , )h

dy

x x x y y
 = … = 

0 1 1( , , , , , )

h

h h

dy

x x x y y
 

 = 1

2

dx

x
 = 2

3

dx

x
 = … = 1k

k

dx

x

−  = 
0 1( , , , , , , )

k

k h

dx

x x x y y
, 

 

in which the function  is arbitrary. 

 First consider the partial system that results from this: 

 

(114)   ldy

dx
 = 0

0 1, , , , ,l h

dx
x x y y

dx


 
 
 

 (i = 1, 2, …, h) . 

 

It defines the yi as functionals of x and x0, and as a result,  as a functional of x and x0, in such a 

way that will have a functional equation for x0 : 

 

1

0

1

k

k

d x

dx

+

+
 = 0 0

0, , , ,
k

k

dx d x
x x

dx dx


  
  
  

 . 

 

Leaving aside the determination of all the complete integrals, one then proposes only to look for 

all of their (r + 1)-dimensional integral multiplicities, and it would be legitimate to confine oneself 

to the system (114) while considering x0 to be an arbitrary function of x. 

 That is the reduction of the integration to which one arrives in this case. It is equivalent to 

considering that one is reduced to the integration of the sheaf (110) with h + 3 variables, whose 

second derived sheaf has degree 5, by hypothesis. 

 We shall return to the case of the canonical form (109) and adopt the viewpoint of (r +1)-

dimensional integral multiplicities, as we just did for the general case. Let 1, 2, …, m (m = n + 

p, n = r + 2, p = q + l + 1) be the initial variables. The change of variables that led to the canonical 
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form will give the expressions for those i as functions of x, x0, x1, …, xl+1 ; t1, …, tq ; z1, …, zr, 

and the desired general multiplicity is obtained by replacing x0 with an arbitrary function of x in 

those formulas, along with replacing x1, …, xl+1 with the successive derivatives of that functions, 

and finally replacing t1, …, tq with arbitrary constants. We can express that fact by saying that the 

sheaf F has an explicit general integral. 

 Conversely, any sheaf that has an explicit general integral of the preceding form (in the sense 

that was just explained) will have successive derivatives of degrees n +1, n + 2, n + 3, … if it has 

degree n. 

 Indeed, let F be that sheaf, while 1, 2, …, m are the variables that appear in it, and: 

 

(115)  i = i (x, x0, x1, …, xl+1 ; t1, …, tq ; z1, …, zr) (i = 1, 2, …, m) 

 

are the formulas that define the general integral when one sets: 

 

(116)  x0 =  (x),      x1 = ( )x  ,      …,      xl+1 = ( 1) ( )l x + ,      t1 = a1 ,      …,      tq = aq , 

 

in which  (x) is an arbitrary function. The functions i are independent functions relative to the 

arguments that appear in them since there can exist no relation between just the i . 

 That being the case, if m = l + 3 + q + r then one can consider equations (115) to define a 

change of variables that will make the sheaf F pass to a sheaf  for which formulas (116) will give 

the general solution. From this, the sheaf  will be the dual to the Pfaff system: 

 

dx0 – x1 dx = 0,      dx1 – x2 dx = 0,      …,      dxl – xl+1 dx = 0,      dt1 = 0,      …,      dtq = 0, 

 

and will be nothing but the sheaf (109). Hence, F will have (109) for its canonical form and will 

consequently possess the stated property. 

 Let us now examine the case in which m is less than the number of arguments in the functions 

(115). We combine them with some arbitrary formulas of the same form: 

 

(117)  j = j (x, x0, x1, …, xl+1 ; t1, …, tq ; z1, …, zr) (j = 1, 2, …, ). 

 

in such a manner that m +  = l + 3 + q + r, and we will then have a change of variables again. If 

we apply it to the sheaf (109) whose general integral is (116), then we will get a sheaf U whose 

basis transformations have the form: 

h = h + h , 

 

in which h is a transformation of the given sheaf F and h has the form: 

 

h = , 1 1

1

( , , ; , , )h j m

j j

f
H



   
=




  . 
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 From the argument that was just made, that sheaf U will possess the stated properties. Now 

one has: 

(h, k) = (h, k) + 
, |

1

( | )h k j

j j

f
H



 
=




 , 

 

because the  do not depend upon the . One then concludes that the basis for the derived sheaf 

U   of U will be defined, like that of U, by transformations of the type  + , where  does not 

depend upon the . Since the structure formulas for U have the form: 

 

(h, k)  chk  (mod U), 

 

with  =  + , one will then have the structure formulas for F : 

 

(h, k)  chk  (mod F). 

 

That argument, in which it is not supposed that the transformations h are necessarily divergent, 

will suffice to prove that the degree of F   is greater than the degree of F by at most one. Since one 

can then argue with F   and U   as one did with F and U, the stated proposition is then found to be 

established entirely (1). 

 

 

IV. – Automorphic systems relative to the general group of contact transformations. 

 

 16. Defining equations of the infinitesimal transformations of the general group of contact 

transformations. – In no. 12, we saw that as soon as we take the unknowns in the integration of a 

sheaf F of the type that is considered in this treatise to be the system of functions u0, u1, …, us ; v1, 

…, vs that are composed of the variable elements of the complete integrals u0, u1, …, us (the others 

being the invariants of F) and the polar functions v1, …, vs that are associated with u1, …, us, 

respectively, the most general solution is deduced from an arbitrary particular solution upon 

performing the general contact transformation of the space u0, u1, …, us on the functions u and v. 

 Those 2s + 1 unknowns u and v are then, in fact, found to satisfy an automorphic system (2) 

whose associated group is the general group of contact transformations in (s + 1)-dimensional 

space. 

 
 (1) I recall that this theorem was given in the case where one does not introduce the variables t1, …, tq ; z1, …, zr 

(but with a different statement, since one deals with a Pfaff system) by Cartan [Bulletin de la Société mathématique 

de France 42 (1914), pp. 14-15.] 

 (2) See my treatise in Acta mathematica 28 (1904), pp. 311. I remark that one can attach the property in question 

to the fact that the sheaf F admits a group of transformations that is isomorphic to the general group of contact 

transformations, but we shall depart from that viewpoint here. I also remark that for s = t, the property in question is 

exact in the stated form only in the case where the derived sheaf F   of F is complete. (See the end of no. 12 and 

section III of the present treatise.) 
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 It would be interesting to make that fact obvious by comparing the canonical form to which 

such an automorphic system is susceptible with the equations that were obtained before for the 

determination of those functions. In order to do that, it is necessary to first find the canonical form 

for the defining equations for the group G. Of course, if one deals with the defining equations for 

the finite transformations of the group then it would be good to first examine what happens with 

the defining equations of the infinitesimal transformations. 

 I shall then recall the sheaf (65), namely: 

 

(118)   Pi f = 
i

f

p




, Xi f = 

0

i

i

f f
p

x x

 
+

 
 = 

i

f

x




 (i = 1, 2, …, s), 

 

and look for the infinitesimal transformations that leave it invariant. Let: 

 

(119)    Z f = 
1 1 0

m m

i i

i ii i

f f f

p x x
  

= =

  
+ +

  
   

 

be such a transformation. The bracket relations: 

 

(Z f, Pi f)  0,  (Z f, Xi f)  0  (mod Pi, Xi) 

immediately give: 

(120)   i

ip





+


 = 0,  i

ix





−


 = 0  (i = 1, 2, …, s). 

 

 Those are the well-known Lie formulas: On the other hand, the coefficient of f / x0 in Z f is: 

 

(121)     0 = 
1

m

i i

i

p 
=

+  . 

 

 The unknowns are: , the i, and the i, and equations (120) are 2s first-order equations. One 

deduces s (2s – 1) new first-order equations from them by differentiation: 

 

(122)  

0

0, 0, 0 ( 1,2, . ),

( 1,2, , ).

i k i k i k

k i k i k i

i i

i i

d d
i k k

p p x dx dx x

d
i s

dx p x

     

  

   
− = − = + =  =    


  + = =

  

 

 

 The system (120), (122) is composed of s (2s + 1) first-order equations. We shall verify that it 

is completely integrable (1). 

 
 (1) For the method that is followed, see JANET, Journal de Mathématiques pures et appliquées (8) 3 (1920), pp. 

111. 
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 I first solve them in the following manner: 

 

(a)    i

kp




 = k

ip




   (i = 2, 3, …, s ; k < i), 

 

(b)    i

ip




 = 

0

i

i

d

x dx


−


  (i = 1, 2, …, s), 

 

( )b    i

kp




 = − i

i

d

dx


   (i = 1, 2, …, s), 

 

( )b    i

k

d

dx


 = i

i

d

dx


   (i = 2, 3, …, s ; k < i), 

 

(c)    
kp




 = − k   (k = 1, 2, …, s), 

 

( )c    
k

d

dx


 = k   (k = 1, 2, …, s). 

 

It is intended that equations ( )b  and ( )c  are regarded as being solved for i

kx




 and 

kx




. 

 One effortlessly verifies that one will get all of the derivatives of the left-hand sides by 

successively differentiating those left-hand sides, and only once for each of them, upon 

differentiating in all (different) ways: 

 

1. The (a) with respect to x0, x1, …, xm and the pj for which one has 1  j  k or i  j . 

2. The (b) with respect to all of the variables. 

3. The ( )b  with respect to x0, x1, …, xm and the pj for which one has 1  j  k or j  i . 

4. The ( )b  with respect to the xj for which one will have 0  j  k or i  j . 

5. The (c) with respect to x0, x1, …, xm and the pj for which one has 1  j  k. 

6. The ( )c  with respect to the xj for which one has 0  j  k. 

 

 The form that was given to the system is then complete, and it remains to be proved that if one 

differentiates it only once in all possible ways then one will not get equations that are consequences 

of differentiating equations (E) in all of the ways that were specified above. 

 The verification is pointless for equations (c) and ( )c , whose integrability conditions are 

expressed by equations (b) and ( )b . 

 We have equations (E) for equations (a): 
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2

i

k jp p



 
 = 

2

k

i jp p



 
  (j  k < i or k < i  j), 

 

and upon differentiating in the opposite order if j  k, one will also have: 

 
2

i

j kp p



 
 = 

2

j

i kp p



 
  (j < i). 

 

One will then have two formulas if j < k < i, and upon equating them, one will get: 

 

jk

i j kp p p

 
−     

 = 0, 

 

which is an equation (E), since one has j < k and k < i. 

 The same verification will be true for the ( )b  in regard to the differentiations that are made 

with respect to the xj . 

 Like equations (E), the (b) give: 

 

i

k i

d

dx p




 = 

0

i

k k i

dd d

dx x dx dx


−


 = 

0

i

k i k

dd d

x dx dx dx


−


 

or 

 

(123)     i

k i

d

dx p




 = 

0

k i

i k

dd

x dx dp

 
−


. 

 

On the other hand, if 1  k < i then one will have: 

 

i

i k

d

p dx




 = k

i i

d

p dx




 = 

0

k k

i i

dd

x dx dp

 
+


 

or 

(124) i

i k

d

p dx




 = 

0

k i

i k

dd

x dx dx

 
−


 , 

 

because since k < i, one can use ( )b  and apply the differentiation d / dxi . One will then see that 

the expressions (123) and (124) are identical. 

 For j  i, (b), like equations (E), will again give: 

 

  
2

i

i jp p



 
 = 

2

0

i

i j i

d

x p p dx

 
−

  
, 
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so 

(125) 
2

i

i jp p



 
 = −

0

j i

i j

d

x dx p

  
−

 
. 

 

On the other hand, from ( )b , one will have: 

 

(126) 
2

i

j ip p



 
 = −

j

i i

d

p dx




 = −

0

j j

i i

d

x dx p

  
−

 
. 

 

The identities in the right-hand sides of (125) and (126) result from (a). 

 Like equations (E), ( )b  will first give: 

 

(127)    i

j k

d

dx p




 = − k

j i

d

dx x




 = − k

i j

d

dx x




, 

 

and on the other hand, one will have from ( )b  that for j < i (since i  k): 

 

(128)     i

k j

d

p dx




 = 

j

k i

d

p dx




 = 

j

i k

d

dx p




. 

 

 In the case of j = k, the right-hand side of (128) can be calculated by means of (b), and due to 

( )c , it will become: 

0

k

i i k

d d

dx x dx x

 
−

 
 = 

0

i k

i k

d

x dx x

  
−

 
. 

 

That is equal to the right-hand side of (127) (since j = k), plus i / x0 , but the same relation will 

be true between the left-hand sides of (127) and (128). The verification then once more achieved. 

 For 1  j  k and j  i, the ( )b  then will then (E): 

 

(129)   
2

i

k jp p



 
 = − k

j i

d

p dx




 = − k

i j

d

dx p




, 

and they will give, in addition: 

 

(130)    
2

i

j kp p



 
 = −

j

k i

d

p dx




 = −

j

i k

d

dx p




. 

 

The identity of the right-hand sides of (129) and (130) will result from equations (E) when deduced 

from (a). 
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 The verification of the integrability conditions is thus concluded. 

 

 

 17. Defining equations for the general group of contact transformations (finite 

transformations). – The (finite) contact transformations are characterized by the bracket relations 

(89) in no. 11. However, those relations do not constitute a complete-integrable system. 

 Indeed, if they constitute a completely-integrable system then when one expresses the idea that 

the infinitesimal transformation: 

(131)     Z f = 
1 0

m m

i j

i ji j

f f

p x
 

= =

 
+

 
   

 

 

leaves the system (89) invariant (when one applies it to the independent variables), one will have 

found all of the first-order defining equations of the infinitesimal contact transformations. 

 However, that is not true. In order to see that, it will suffice to point out that those equations 

were deduced from the invariance property of the bracket: 

 

(132) [f, g]x,p =  [f, g]y,p 

 

when applied to the particular functions yi and qj, and that, conversely, they imply the identity 

(132) by virtue of the formula that gives the bracket of two functions f, g of 2s + 1 arbitrary 

variables z0, z1, …, z2s , namely: 

(133) [f, g]x,p = 
,

( , )

( , )
[ , ]

( , )
x p

f g
z z

z z
 

   




 . 

 

 One then concludes that instead of expressing the invariance of the system (89) under Z f, it 

would amount to the same thing to express the invariance of the general identity (132). One does 

that by writing out that: 

  Z ([f, g]x,p) = Z   [f, g]x,q 

 

is a consequence of (132), i.e., that one has: 

 

(134)     Z ([f, g]x,p) = 
Z 


 [f, g]x,p . 

We set: 

 

(135)      Z  =    , 

 

to abbreviate, and the identity (134) will become: 

 

(136)     Z ([f, g]x,p) =   [f, g]x,p . 
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 In order to make that explicit, one must prolong Z f, while considering f and g to be 

untransformed functions. Consequently, one will have: 

 

0 = Z df = 
1 0

s s

i j

i ji j

f f
Z dp dx

p x= =

  
+    

   , 

so 

  
h

f
Z

p

 
 

 
 = − 

1 0

s s
ji

i ji h j h

f f

p p x p



= =

 
−

   
    (h = 1, 2, …, s), 

  
k

f
Z

x

 
 

 
 = − 

1 0

s s
ji

i ji k j k

f f

p x x x



= =

 
−

   
    (k = 0, 1, 2, …, s). 

 

 If one introduces the total derivatives d / dxk and sets: 

 

(137)      = 0 − 
1

s

i i

i

p 
=

 , 

 

as in no. 16 [eq. (121)], then one can replace those formulas with the following ones: 

 

(138) 
h

f
Z

p

 
 

 
 = − 

1 1 0

s s
i i

h

i ii h i h h

f df f

p p dx p x p

  


= =

    
− − + 

     
   , 

 

(139) 
h

f
Z

x

 
 

 
 = − 

1 1 0

s s
i i

h

i ii h i h h

df df f d

p x dx dx x dx

  


= =

  
− − − 

    
   , 

 

(140) 
0

f
Z

x

 
 

 
 = − 

1 10 0 0

s s
i i

i ii i h

f df f d

p x dx x x dx

  

= =

  
− −

   
   . 

 

On the other hand, the identity (136) is written: 

 

(141) 
1

s
h h h h

h

h h h h

f df f df
Z Z

p dx p dx

g dg g dg
Z Z

p dx p dx

=

   
   

+ 
  

   

  =  [f, g]x,p . 

 

 I first apply it by taking f and g to be all pairs of independent variables, and I find in succession 

that: 

 

 1. With xj , xk (j, k > 0), one has the conditions: 
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jk

j kp p

 
−

 
 = 0 . 

 

 2. With pj , pk , one has the conditions: 

 

jk

j k

dd

dx dx


−  = 0 . 

 

 3. With xj , pk (j > 0, j  0, j  k), one has the conditions: 

 

jk

j k

d

p dx


+


 = 0 . 

 

 4. With xj , pj , one has the conditions: 

 

j j

j j

d

p dx

 
+


 = −  . 

 

 5. With x0 , xj , one has the conditions: 

 

j

jp





+


 = 0 . 

 

 6. With x0 , pj  (upon taking into account the results 3 and 4) one has the conditions: 

 

j

jx





−


 = 0 . 

 

 One then verifies that those conditions will suffice for the general relation (141) to be true. 

 We then see that if we are to have all of equations (120), (121) then we are still lacking the 

complementary relation: 

(142) 
0x





+


 = 0 . 

 

 

 18. The complementary equation. – One has to point out, moreover, that whereas we have s 

(2s + 1) first-order defining equations for the infinitesimal contact transformations, the bracket 

relations (89) will give us only s (2s + 1) – 1 equations for the finite transformations (after 

eliminating ). 
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 There is then one complementary equation that is yet to be found. It will be provided upon 

considering the functional determinant: 

 

(143)     = 0 1 1

0 1 1

( , , , , , , )

( , , , , , , )

s s

s s

y y y q q

x x x p p




 . 

 More generally, let: 

(144)    D = 0 1 2

0 1 1

( , , , )

( , , , , , , )

s

s s

f f f

x x x p p




, 

 

in which f0, f1, …, f2s are the untransformed functions. The formulas (138), (139), (140) give: 

 

Z D = −
1 10

s s
i i

i ii i

d
D

x dx p

 

= =

 
+ + 

  
   , 

 

because one can replace the general row in D with: 

 

0

hf

x




, 

1

hf

x




, …, h

s

f

x




, 

1

hf

p




, …, h

s

f

p




. 

 

 If one then takes into account only the relations (4.) of the preceding subsection: 

 

Z D = −
0

D s
x




 
− 

 
, 

 

in such a way that formula (142) is equivalent to: 

 

Z D = (s + 1)   D . 

 

 If one compares that to formula (136) then one can conclude that: 

 

Z D

D
 = 

[ , ]
( 1)

[ , ]

Z f g
s

f g
+ , 

 

which is equivalent to the invariance of the quotient: 

 

(145) D : ([f, g])s+1 

 

under any contact transformation: 

 If we apply that to the determinant  and to the transformation (88) then we will have x,p = , 

x,p = 1, and the relation (132) will give us: 
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(146)   = 1s + . 

 

 That is the desired complementary equation. 

 

 

 19. Automorphic systems. –The fundamental invariants to consider are then the ratios of the 

Poisson brackets that are formed from 2s + 1 and the ratio of the fundamental determinant of those 

functions to the (s + 1)th power of one of the brackets. 

 To simplify, I shall confine myself to the case in which there are as many unknown functions 

as independent variables (automorphic systems of the first type). I shall denote the unknown 

functions by x0, x1, …, x2s, and the independent variables by u0, u1, …, us, v1, …, vs. The bracket 

will be: 

(147)    [f, g]u,v = 
0

1

0

i
s

i i

i

i

i i

f f f
v

v u u

g g g
v

v u u

=

  
+

  

  
+

  

  . 

 

 If  is an undetermined factor then the automorphic system will then be written:  

 

(148)   [xi, xk]u,v =   ik (x)  (i, k = 0, 1, 2, …, 2s), 

 

(149)    u,v (x0, x1, …, x2m) = 
1 ( )s x +

 . 

 

 In the right-hand sides, the symbol x is written to denote the set of variables x0, x1, …, x2s , and 

the left-hand side of (149) denotes the functional determinant of the functions in parentheses with 

respect to the variables u0, u1, …, us, v1, …, vs. 

 

 

 20. Case of the Pfaff problem. – In order to reduce to that invariant form the system that defines 

the reduction of the given sheaf F to the canonical form (65) in the case of r = 0, n = 2s, p = 1, 

which is: 

(150)   Vi f = 
i

f

v




,  Ui f = 

0

i

i

f f
v

u u

 
+

 
  (i = 1, 2, …, s), 

 

with the present notations, we shall first take that system in the form (60), i.e., here it would be: 

 

(151)  
0

0

{ , } 0, { , } , { , } ,

{ , } 0, { , } 0, { , } 0

i k i i i i

i k i k i

v u v u v u v

v v u u u u

 = = =


= = =
 (i, k = 1, 2, …, s ; i  k}. 
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 Upon arguing as we did in no. 17 for the identity (132), we see that one can use those equations 

to express the invariance of the general bracket that was established in no. 8, which will give: 

 

(152)     {f, g} =  [f, g]u,v 

 

here, since there are no distinguished transformations in F. Now, in order to express the idea that 

this identity is true, it will suffice to write down that it will be true when one replaces f and g with 

any two of the variables x0, x1, …, x2s . Indeed, the formula (133) applies to the bracket {f, g}, 

because it results from the formula: 

{f, g} = 
2

0

{ , }
s

h

h h

g
f x

x=




 , 

 

which is itself a consequence of the theorem regarding composite functions. 

 Hence, if one then sets [cf., eq. (35)]: 

 

(153)  {xi, xk} = 

1,1 1, 1,

,1 , ,

1, ,

1

0

n i

n n n n i

k n k

c c

c c





 

−

−
 = i,k (x0, x1, …, xn) = i,k (x) 

 

(with n = 2s ; i, k = 0, 1, 2, …, n) then one will have the system: 

 

(154)     [xi, xk] = i,k (x) (i, k = 0, 1, 2, …, 2s), 

 

which has the form (148), with  = 1. 

 The functions i,k thus-introduced, enjoy some properties that we shall now indicate. 

 One will first have i,k = − k,i (no. 5). 

 On the other hand, the transformations: 

 

(155)  {xi, f} = 

1,1 1, 1,

,1 , ,

1

1

0

n i

n n n n i

n

c c

c c

X f X f





−

−
 = 

,

0

( )
n

i k

k k

f
x

x


=




  (i = 0, 1, 2, …, n) 

 

are transformations of the sheaf. There are n divergent ones among them. Indeed, in the matrix of 

k,i , there is at least one determinant of degree n that is non-zero. Suppose, to fix ideas, that it is 

the one that corresponds to i = 1, 2, …, n : The {xi, f} will then be divergent for i = 1, 2, …, n. 

 In order to prove that, suppose that the contrary is true, i.e., that one has an identity: 
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(156)     
1

{ , }
n

i i

i

x f
=

  = 0 , 

and set: 

(157)    
1

n

i ki

i

 
=

  = k  (k = 1, 2, …, n) . 

 

 The k are not all zero, and the identity (156) will be written: 

 

(158)     

1,1 1, 1

,1 ,

1 0

n

n n n n

n

c c

c c

X f X f




 = 0 . 

 

Now, the determinant of the ci,k is not zero, so one can satisfy the equations: 

 

,

1

n

k i i h

i

c  
=

+  = 0  (k = 1, 2, …, n) , 

 

and the i are not all zero. However, it will then suffice to multiply the first n columns of (158) by 

1, …, n and add them to the last one in order to reduce equation (158) to the form: 

 

1

n

i i

i

X f
=

  = 0 , 

 

which is an identity that is impossible. There is a contradiction then. 

 Hence, the {xi, f} define the given sheaf F entirely. 

 Furthermore, observe the formula: 

 

(159)    {, f} = 
0 0

( )
n n

ik

i k i k

f
x

x x




= =

 

 
 , 

 

which results from equations (155) and can also be written: 

 

(160)    {, f} = 
,

( , )

( )
i k

i k

i k

i k

x x
x

f f

x x

 



 

 

 

 

  . 
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 Finally, I say that if Z f is a conveniently-chosen infinitesimal transformation then one will 

have: 

 

(161)    ({xi , f}, {xj , f})  {xi , xj} Z f  (mod F), 

 

in such a way that the i,j are structure functions for the sheaf when put into the form (155), at the 

same time as those functions are coefficients of the basis transformation (155). 

 In order to see that, it will suffice to refer to the Poisson brackets themselves. With the notations 

(150), one has: 

[xi , f] = 
1

s
i i

k k

k k k

x dx
U f V f

v du=

 
− 

 
  , 

 

(Vk f, Uk f) = 
k

f

u




. 

Hence: 

(162)   ([xi , f], [xj, f])  
1 0

s
j ji i

k k k k k

dx xx dx f

v du v du u=

  
− 

   
  (mod F), 

i.e.: 

(163)    ([xi , f], [xj, f])  
0

[ , ]i j

f
x x

u




  (mod F). 

 

Upon taking (152) into account, one will conclude that: 

 

(164)     ([xi , f], [xj, f])   
0

{ , }i j

f
x x

u




, 

 

i.e., the formula (161), with [cf., no. 8, eq. (59)]: 

 

(165)      Z f = 
0

f

u





. 

 

 

 21. Calculating the complementary equation. – It remains for us to calculate equation (149). 

To that end, I shall first consider the determinant: 

 

(166)     0 = 1 1

1 1

( , , ; , , )

( , , ; , , )

m m n

m m

x x x x

u u v v

+


. 

Its rows can be replaced with: 
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1

kdx

du
,  …, k

m

dx

du
, 

1

kdx

dv
,   …, k

m

dx

dv
 (k = 1, 2, …, n), 

or by 

−
1

kdx

dv
, …, − k

m

dx

dv
, 

1

kdx

du
, …, k

m

dx

du
 (k = 1, 2, …, n). 

 

If one multiplies the two determinants that were just written down then one will get the determinant 

whose general element is the bracket [xh, xk]. The skew-symmetric determinant of even degree n 

= 2s is then the square of 0 . However, one knows how to form the expression for the square root 

of a skew-symmetric determinant of even degree n = 2s as a function of its s (2s – 1) independent 

elements. One can then consider the expression for 0 as an entire rational function that is 

homogeneous of degree s in terms of the brackets [xh, xk] to be known. Upon taking into account 

the identity (152), one will then have: 

 

(167)     
0

s   = G0 ({xi, xl}) , 

 

in which the right-hand side is the square root of the determinant that is defined by the {xi, xl} = 

i,j , i, j = 1, 2, …, n. 

 The same result applies mutatis mutandis to the other coefficients 1, …, n of the determinant 

, which is supposed to be developed in the form: 

 

(168)     = 0 1
0 1

0 0 0

n
n

x xx

u u u

 
 +  + + 

  
. 

 

 As for the factors xk / u0 , one can replace them in the  with quantities of the form: 

 

1

1 10

m m
k k

h h

h hh h

x xdx

u du v
 

= =

 
+ +

 
    (k = 1, 2, …, n) . 

 

One can then substitute the values that are inferred from (163) or (164) upon choosing the same 

system of integer pairs i, j for all of those values. The bracket of the two known infinitesimal 

transformations: 

{xi , f} = 
,

0

n

i

f

x


 


=




 ,  {xj , f} = 

,

0

n

j

f

x


 


=




  

 

then appears in the left-hand side of (164). One will then have: 

 

(169)     
0

f

u





  

0

n f

x


 


=




   (mod F), 
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in which the  are known functions of the h,k and their first-order partial derivatives, and one 

will have the desired expression: 

(170)     1s +   = 
0

n

 



=

  =  (x) , 

 

which is necessarily found to be independent of the particular choice of the indices i, j that was 

found in the course of the calculations that were just indicated. That will result from the identity 

(161) that was established above. 

 One will then recover the essential character of equation (170) that it represents the result of 

the integrability conditions on the system (154). 

 

 

 22. Converse. – Conversely, take some equations of the type (154). Not all of the minors of 

degree n in the determinant of the i,k (which must be skew-symmetric due to its left-hand side) 

can be zero, for the same reason. 

 Those equations are equivalent to the identities: 

 

(171)     [xi , f] = 
,

0

( )
n

i k

k k

f
x

x


=




   (i = 0, 1, 2, …, n), 

 

and one can denote the right-hand sides by the notation {xi , f}, and consider the sheaf F that is 

defined by n of those mutually-divergent transformations. 

 One will get the integrability conditions upon defining the brackets of corresponding sides of 

the equations with all of the pairs of the two equations (171). If we set: 

 

(172)    {, f} = 
,

0 0

( )
n n

i k

i k i k

f
x

x x




= =

 

 
  

 

then the right-hand sides can be written {xi , f}, and as in no. 20, one will find that: 

 

(173)    
0

{ , }i j

f
x x

u





  ({xi , f},{xj , f}) (mod F) 

 

for all the pairs of indices i, j. One has, moreover: 

 

(174)    {xi , xj} = ij  (i, j = 0, 1, 2, …, n). 

 

The integrability conditions in question are then written: 

 

(175)    ({xi , f},{xj , f})   ij Z f  (mod F) 
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upon denoting a certain infinitesimal transformation by Z f. 

 Upon introducing two arbitrary functions ,  of the variables x0, x1, …, xn, one can replace 

then with the single formula: 

 

(176)    ({ , f},{, f})   { , } Z f  (mod F). 

 

 Upon taking into account the formulas thus-acquired, the calculation of the complementary 

equation is achieved as in no. 21. Moreover, it does not contribute to the integration and will 

preserve its role as the integrability conditions for equations (171), as we have seen before. 

 It remains to be proved that the integrability conditions (175) are sufficient and to indicate how 

one can carry out the integration. 

 To that end, I point out that the infinitesimal transformation {, f} is in involution with all 

transformations of the sheaf F that leave the function  invariant, because from (176), the bracket 

of {1, f} with an arbitrary transformation of F : 

 

(177) 
0

{ , }
n

x f 



=

  

is congruent (mod F) to: 

− 
0

{ , }
n

x Z f 


 
=

 , 

in such a way that it is zero for: 

0

{ , }
n

x 


 
=

  = 0 , 

 

i.e., when  is an invariant of the transformation (177). 

 Moreover, the bracket {, f} has the same significance relative to the sheaf F as the one that 

was introduced in no. 5, and one can repeat all of the analysis of no. 6. 

 One can then give u0 arbitrarily, take u1 to be an integral of {u0, f} = 0, and take u2 to be an 

integral of the (complete) system {u0, f} = 0, {u1, f} = 0, and so on, and finally take us to be an 

integral of the (complete) system: 

 

{u0, f} = 0,  {u1, f} = 0, …, {us−1, f} = 0 . 

 

 As for the calculation of the vk, one will quite easily get a method that is patterned on the one 

in no. 8 upon pointing out that one has: 

 

[u0 , f] = −
1

s

k

k k

f
v

u=




 ,  [uh , f] = −

k

f

v




  (h = 1, 2, …, s), 

and thus, the identity: 

(178)     [u0 , f] = 
1

[ , ]
s

k k

k

v u f
=

  . 
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On the other hand, since equations (171) are equivalent to the identity: 

 

(179)     {, f} =  [, f] , 

 

one can replace (178) with: 

(180)     {u0, f} = 
1

{ , }
s

k k

k

v u f
=

 , 

 

and that identity is what will provide the vk without a new integration. 

 

_____________ 

 

 

 

 

 

 


