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In a preceding article’ we have analytically studied the propagation of wanes
medium whose nature does not vary in time and showedldie relationship between
this problem and the theory of contact transformatitims,theory of first-order partial
differential equations in which the unknown function doesappear explicitly, and the
search for maxima and minima of simple integrals.

The following pages are dedicated to the propagation oésvava medium whose
nature does vary in time. The problem is treated frguraly kinematical point of view.
The medium is defined by the system of elementary wthagshave their origins at the
various points of the medium at each instant. Thedapropagation is the principle of
enveloping waves, but we suppose only that it has meaning fiofiaitesimal interval,
and up to higher-order infinitesimals. One of the resoltitained is that the principle is
rigorously true for any time interval.

We reason in the spacemtlimensions, but our exposition supposes known only the
notions of contact element and multiplicity, and ttnedamental principles of the theory
of ordinary differential equations.

Two essential facts are presented: On the one ham@ydipagation involves contact
elements, the contact elements of the original wéesg individually transported to
constitute the new wave that one derives from it, amdthe other hand, the family of
successive waves that issue from that same originak iewlefined by a partial
differential equation that may be the most generaldirder partial differential equation
in n independent variables and one unknown function.

From this, there intuitively emerges a new theorythef integration of first-order
partial differential equations. The law of displacetmehthe contact elements of the
medium is given by the differential system that the @Ggutheory gives for the
characteristics.

In the displacement of a contact element, the pafithhat element describes what we
call atrajectory of disturbance.We establish that in the case of a variable regasen

(*) Sur linterpretation mécanique des transformations de contacttiégimales (Bulletin de la Société
Mathématique de France XXXIV, 1906).
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the case of a permanent regime, the trajectoriegesmond to the minimum duration of
propagation. The question is equivalent to that of thergkseidy of the necessary and
sufficient conditions for the minimum of the inteb a differential equation of the
form:

dt=Q(t |x1, ... % |dxa, ..., dXy),

whereQ is homogeneous of first degreednr , ..., dx, ; this integral is taken under the
hypothesis thak; , ..., X, are the current coordinates of a point on an arc ofdinate,
and at a given initial valug they define the origin of that arc. Moreover, ithe value
that is taken at the extremity of that arc that eerto provide a minimum upon
conveniently choosing the arc of the curve whose mities are assumed to be given (

The consideration of the simple variation lead$ortecessary conditions that define
the desired curve as a trajectory of propagation. Waev ghat these conditions are
sufficient whenever the elementary waves have a tbanis concave towards the origin
at each of the intervening points.

From this, it results that the preceding question afi@imum comes down to the
study of a question of a maximum that presents itsatiarpropagation of a disturbance
along a given curve, and that the answer to that questmimost intuitive.

In that question of maximum, one deals with the integfrah equation of the form:

dt= > pdyx
i=1
that is taken along a given fixed curve, and one mustrdeterthe functiong; , ..., pnin

such a manner that they satisfy a given relation:

Hit|X, ....;% |p1, ..., Pn) =0,

and render a maximum to the value taken by the integthéaxtremity of the arc of the
curve.

The method that thus presents itself is equivalenteartéthods of Weierstrass and
Hilbert; we confine ourselves to a brief sketch. Itppleed, with good reason, to the
theory of maxima and minima of simple integrals, ang ima extended to the case of
multiple integrals. We shall return to this in anotiverk.

Finally, we point out that we have supposed that thmesiary waves have"*
points ande™* tangents. We propose to return on another occasitinetother case,
which offers particular interest from the viewpointtbé theory of partial differential
equations that Lie has callemi-linearor pseudo-linearfrom the viewpoint of the
calculus of variations?).

() See,on the subject of problems of this genre, A. MAYBRipziger Berichte 1895, and D.
EGOROW,Mathematischen Annale@906.

() The following pages had been composed when | becameeaoh the Mémoire of
CARATHEODORY, Sur les maxima et minima des intégras@aples(Math. Annalent. LXII, 1906, pp.
449-503), in which the author used derived waves, under the ofaimdicatrices in the casen = 2, but
without attaching the question to that of the propagationwales. The problem treated by
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|. — Differential equations of the propagation of waves.

1. Letx , ..., X, be the coordinates of an arbitrary point in the sdacef n
dimensions, which is assumed to be referred to an asbitectangular coordinate
system. We call this point the point ( ..., X,), or, by abbreviation, the point)(

We consider the spads, to be themediumin which disturbancesof an arbitrary
nature may be produced and propagateéyes.

By this, we mean that the points Bf are capable of acquiring, in an instantaneous
manner, a property of a specific nature (sonority, losiy, electrification, etc.), and
that, from the fact that this property will be maniéesat an arbitrary instamtat every

point of a multiplicity M, and, at the following instants, will cease to belontheopoints
of M, and will be manifested at each of these instartd\t at the various points of

another multiplicityM’, which is determined by the nature of the medium, relabitbe
property considered, by the instanby the interval of timét that has elapsed since that
instant, and by the multiplicityv1.

It is the appearance of the property considered at a (dithtat we call alisturbance
produced at that point. We call any multiplicity theithe geometric locus of disturbed
points at the same instantvave

The problem of theropagation of wavess the following onein a medium of a

specific nature, to deduce from a waVéthat is given at the time t, the new wave that it
provides after the timaAt.

2. One must define the nature of the medium relatiteg¢groperty considered.

To that effect, imagine the simplest case where@ated point X) is disturbed only
at the timet. As it propagates, the disturbance gives rise, dt iatantt + At, to a wave
M(x | t, At); we say that this wavssuesfrom (), or also that it ha( for its origin.

Take the homothety of that wave, with respecixjpwith the ratio 1At, and assume
that this homothety tends towards a limiting form wi¢rtends to zero. We call that
limiting form thederived wave that hgs) for its origin at the instantt

Conversely, if we take the homothety of the derivedenaith respect to its origin)
and the infinitely small ratialt then the multiplicity that is obtained will be el the
elementary wave havir(g) for origin and corresponding to the instant t.

The nature of the medium relative to the property considered wilefbired by the
system of derived waves (or elementary waves) that have tigiimsoat the various
points of the medium at each instant t.

This system of waves will vary with in general. In the contrary case, we say that
one is in gpermanent regime We confirm that the mode of propagation of an arlyitrar
wave is then independent of the instant at which this vegyeears, and depends only
upon its form. The general case will be called the ofs&rariable regime.

In this memoir, we suppose that the derived waves &8Vepoints and alseo"™*
tangent planes; we shall return to the other caseotheanwork. There is good reason to

CARATHEODORY corresponds, moreover, to the case ofpéirenanent regime, while the one that we
treat here corresponds to the case of a variable eegim
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remark that the derived waves do not necessarily hav&athe number of dimensions as
the finite waves that issue from the various pointspaice.

In the case of ordinary spaage< 3), the derived waves are, in the general case, non-
developable surfaces; one calls thesave surfaces In the exceptional cases, they may
be developable surfaces, curves, or points.

3. In order to now define the law by which the waves progaga assume that for
an infinitely small variation of time the propagation satisfies thaggple of enveloping
waves, up to higher-order infinitesimals.

In what follows, it will be proved that this principisplies no contradiction. First,
we explain what we mean by this:

Let M be arbitrary at the instahtand letM' be the wave that it produces after an
infinitely small timedt. Each of the points) of M, when disturbed at the instantwill
have emitted a wavd(x | t, dt) after a timedt; let M" be the envelope of all these waves
M(x | t, dt) that issue from the various pointg of M. We assume that1"” represents
M' up to higher-order infinitesimalghe principal infinitesimal beingt, and that we
intend this to mean thdhere exists a point-by-point correspondence betwetnand

M", such that the differences of the coordinates with the same name mdivee
arbitrary homologous points are of order greater thiarelative todt.

This definition gives rise to the following remarks, fehich, to simplify, we will
confine ourselves to considering—1)-dimensional multiplicities:

1. LetZ andZ' be two multiplicities, each of which represents ttker, up to
higher-order infinitesimals, and létbe the principal infinitesimal. The correspondence
between an arbitrary poinK) of ~Z and the homologous poinK{ of Z' will be exhibited
by the equations of the two multiplicities:

(Z) X = fi(Ul, ...,Un_1|@

=12, ..,
(Z') Xi’ = gi(U]_ y weey Un-1 | @ 1,2

=12, ..,

two homologous points corresponding to the same valu® qfarametens; , ..., U,.

Moreover, the identity of the two surfaces, up to argbrder infinitesimals, amounts
to supposing that the functiofisand g , and their derivativesif, / dg dg / d@ are
identical functions of the parametess, ..., u,-1 for =0.

From this results the pairwise identity of the fuontl determinants formed from the
derivatives ofg; andf; , taken with respect to the for 8= 0, and also the derivatives of
these functional determinants, taken with resped (ior 8= 0), in such a way thahe
differences of the coordinates with the same name of the tangent plandz’ at two
homologous points are also higher-order infinitesimals.

2. Now suppose thaf belongs to a family of"* multiplicities, each of which
corresponds to a multiplicit{’ that represents it up to higher-order infinitesima#s.
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correspondence of the same nature will be meaningful between the envtltpe
multiplicitiesZ and that of the multiplicitieE'.
Indeed, the equations Bfare now of the form:

(1) X :fi(Ul, ...,un_1|a1, ...,an_1|6) (I =1, 2, ...,n),

and the envelope will be given by the equations:

2) Det
\aul aun—l aak‘(i:l,z,un)

i.e., an arbitrary point of the envelope is givgrelguations (1), whena , ..., u,-1 are the
functions ofa; , ..., a,-1 that are defined by equations (2).

In order to pass to the envelope36fone must replace thHewith functionsg; of the
same variablesand for@= 0 theg, and thedg / d@ are identical to thé and thedf, / dg,
respectively. However, the functionsof a; , ..., a,-1 that are obtained in the two cases
will then be the same fa# = 0, as well as their derivatives with respecttoThe stated
theorem results from this.

3. If ¥’ represent up to higher-order infinitesimals and ' similarly represents
2' then the same correspondence exists bet@eandz.

The proof is immediate.

4. The wave Nk |t, dt) that is emitted at the arbitrary poi) is represented by the
elementary wave that has the same point for originto higher-order infinitesimals.

Indeed, letP be an arbitrary point d¥i(x | t, dt) and letp be its distance from the
origin (X) of that wave. The homologous point of the eletagnwave has the radius

vector:
(Iim ﬁj dt.
dt=0 dt

The distance between the two homologous poirtiseiefore the difference between
the infinitely smallo and its principal part; the stated remark thenlte$tom this.

Upon combining these various remarks, we may gstaeprincipal of enveloping
waves in the following form:

Up to higher-order infinitesimals, the wave thasuss from an arbitrary original
wave, starting at the arbitrary instant t and aftére infinitely small time dt, is the
envelope of the elementary waves that are emitteder the same conditions, by the
various points of the original wave.

4. In order to treat this principle analytically, @must first express the derived
waves by their general equation. For this, we imaghat at each poink) there is a
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system of axes that has that point for origin, asddeéduced by translation of the
fundamental system of axes to which the medium in questioeferred. The general
equation of the planes being assumed to be written ifothe

@ >ug-1=0

this gives us the tangential equation:

(2) Ht|X, ...;% |1, ...,un) =0

of the derived wave that hag) (for its origin, referred to precisely that systerh o
coordinates that hag)(for its origin. In that equationy , ..., u, are therefore the current
tangential coordinates, whereas theq , ..., Xxo play the role of parameters, and in
equation (1)£1, ..., & are the current pointlike coordinates in the same iaoxisystem
of coordinates.

In order to have the general equation of the elementaave under the same
conditions, we remark that if the plane (1) is tangerthe derived wave then the tangent
plane to the elementary wave that corresponds to it is:

Zn:uig‘i -dt=0.
i=1

The coordinates are thus obtained upon dividing those datigent plane to the derived
wave bydt, and, as a result, satisfy the equation:
(3) H(t X, ....,% |w dt ...,u,dt) = 0.

We abbreviate the ultimate calculations by giving a @aér form to equation (2):

We make it homogeneous, solve it for the homogenaitiable, and give the value 1 to
this variable. We obtain an equation of the form:

(4) M X, .o X% Uz, ooy Un) =1,

wherell is homogeneous of degree 1 with respeckfo.., u,.
One may further say thét is defined by the identity:

The equation of the point of contact of the tangdane (1, ..., u,) with that surface
is then:
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(6) &=— (=12 ..n).

Since the right-hand sides of these formulas (6) bdegree zero iny, ..., U,, they give,
in reality, the coordinates of the point of contact tdirggent plane to the surface (4) that
is parallel to a given plane.

The resolution that one must make in order to pass thengeneral form (2) to the
canonical form (4) thus amounts to separating the derivee wdo sheets, such that
each of these sheets has one and only one tangenttipeing parallel to an arbitrarily
given plane.

Finally, if the derived wave is given in the form (4)ihde elementary wave will
have the tangential equation:

(7) Mx, ..., % UL, ...,uy) dt=1
and just as the derived wave is parametrically repredefitom the pointlike point of
view, by formulas (6), in which only the ratios of theappear, likewise, the elementary

wave will be defined by the formulas:

(8) - g—ndt (=12 ..0).

We shall also have need for the general equation of ldmeatary waves when
referred to the primitive coordinate system. The plaaehhs (1) for its equation in the
system with originX) has the equation in the fundamental system:

D u(X-x)-1=0,
i=1
and if one converts this equation into the form:
9) g% -1=0,
i=1

then in order to transform the tangential coor@isaine has the formulas:
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> ux +1 .
= k= N — _ (l - 1’ 2, ,n)
b 1-> g%
k=1
Equation (7) thus becomes:
(10) I_I(tlxl11xn|ql,,qn)dt+ qu)ﬁ:l,

i=1

and we have to find the envelope of all of the elementayes represented by that
equation (1) whenxj is on M. Each of them has a certain number of contactezisn

(point, tangent plane) in common with the envelope weastshall determine. For this, we
express that they are common to (1) and to the infindlese waves that result from it

by infinitely small variation ofX) on M.
To that end, denote hyany differentiation relative to such a variation: theataons

X, ..., XK Will be uniquely subject to the condition:
) 2. po%=0,
i=1
wherep; , ..., pn are the direction coefficients for the tangent plemM at ). We must

then express that the equation obtained upon applying tfegedifiationd to (1) is a
consequence of (2), which gives the equations:

() M+qi:mp (=12, ..n),

0%

wherem is a factor that one will determine by taking ifitp account.

However, one may leave indeterminate, because equations (3) thus defige t
direction of the planes of the desired contact el by means of the ratios of tfe
and equations (11)(nd), in which only the ratios appear, then give tlnpto which
each of the corresponding contact elements belong.

The form of equations (3) shows that there israation ¢ , ..., 0, satisfying the
guestion that tends to the directign ( ..., pn) whendt tends to zero, and that there is
only one of them. Therefore, among the contacinefds that are common to the
elementary wave (1) and all of the infinitely closaves there is one and only one of
them that tends to the contact elemeat, (..., X | P1 , ..., pn) Of the waveM whendt
tends to zero. Denote the coordinates of thatacorglement by(x,---, X, | B.--, H,)-

Further, denote the instant dt byt'. We have the equations:
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4) x’:%;lp')(t’ —1) +X i=12..n

and: |

5) M(t’ —t)=mp i=1,2,..n.
0x

Moreover, in order to unambiguously determine phe whose ratios alone have been
given up to now, we subject them to satisfy thedaoon:

(6) Mx, ... %P1, --pn) =1

and this will then define them with no ambiguify,being homogeneous of degree 1.
Likewise, thep’ will be subject to satisfying the analogous relati

(7) O X, X | @ ,8)=1.

Thus, wherdt tends to zero each of the difference$s-(x) and (p' — pi) tends to
zero, and their principal parts, which we denote dsy and dp, are obtained by
differentiating equations (4), (5), and (7) witlspect tot' for t' = t, which gives @t =
dt):

() dx =2 LIXIP) g (=12 ...m),
op,
9) Mdep:pi du i=1,2,..n),
0x
(10) dt+z d)g +Z— dp=0.

Upon eliminating thelx and thedp, the latter givesly. This gives:
dt+z p — d,u 0,

hence, due to the homogeneityiof

or
11 dy=-—dt.
(11) ===

We thus arrive at the following result:

To each contact elemelix | p) of order M, considered at the instant t, there

corresponds, on the infinitely close wave that issafter the time dt, a new contact
element, which is given, up to second-order irégsihals, by the formulas:
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(12) dx =90 CIXIP) g (=12 .0,
op,
(13) dp = [20WXIP) ) ONEIXIP) g =1 2 ..,

op, ot
upon supposing that the coordinates x.., X%, ; p1, ..., pn are linked by the relation:
(14) MEx, ... % Py .- Pn) = 1.

6. If we suppose, more generally, that the systendesived waves is given by
equation (2) (no4) then the condition (14) will be replaced by:

1) Hit X, ...;% |p1, ..., pPn) = 0.

From the identities (5) of nd, which may be written:

p]_ pn —_
Hit|x, X |—...— =0,
[le qun I_J

one deduces, upon setting, to abbreviate the natati

p. .
VV|:_I |:1, 2,...,n,
N ( )
the identities:
aH(t|x|w)_26H(tIXIW)ﬁ0_”:o
ot i1 ow n ot
6H(t|x|W)_20H(t|X|W)ﬁa_n:o k=1,2,...n),
0%, = 0w M ox
0H(t|X|W)_zaH(t|X|W)ﬂan =0 (k=12 ...n)
aWk i=1 a\Nl rl an<
Under the hypothesis (14) (ns), they reduce to:
v ANt x | p) _oH(t] x| p)
ot ot ’
v O 1 p)_0H (t]x] p) (=12 ..n),
X, 0%
v O Ix1p)_0H (t]x] p) (=12 ..n),
op, op,

_y o 9H{[x]p)
M_ pl H
2P 5
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and equationg§12), (13),and(14) of no.5 will be replaced by the formulas:

d d dt
e 1= i

oH oH _oH
OH™ (oH_ oH o H
op (ax. P ot 25 k

apk

adjoined to equatiofil).

Il. — Characteristics and the determination of the family ofwaves

7. We may now begin to treat the general problem optb@agation of waves that
was stated in ndl: Knowing an original waveM, that is given at the instang,tfind the

waveM that results at the instant t

It is natural to think that\ will be deduced fromM\, by applying the infinitesimal

variation defined by formulas (12), (13), (14) of &aan infinite number of times. That
is what we shall examine, and we first study whetheritdefinite repetition of that

infinitesimal variation to an arbitrary multiplicity1,, taken at the instamy, indeed gives

a new multiplicity.

From the theory of ordinary differential equatiorhe indefinitely-repeated
application of the variation (12), (13), (14) () is equivalent to the use of the
transformation that results from it by integratiotdowever, this system being over-
determined, one must show that the integration is pessibl

Thus, suppose that the system (12), (13) hbas been integrated; i.e.:

(1) dx =97 gt (=12 ..,
op,
o or |
2 dp = 904+ p O -1,2, .0,
(2 P [&fp‘ atjd (i n)

The general integral is of the form:

(3) X =ACDC ) TR e (=1,2,..n),
(4) p=BEd o Il R IE) (=12 ..,
wherex’, ..., X; p;, ..., pjare the initial values of, ..., % ; p1, ..., pa fort =ty .

Moreover, one deduces from (1) and (2):

din -1) ——dt+2 d)g +Z— dp
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on(, & on
SCALIET SRl
at( ;p'apj

_on

=—(1-1M)dt.
Thus, if we set:
(5) C=nt|A,....,Av|B1, ...,Bn) =1,
Jari(t|A|B)
6 ng=———¢
(6) 1 5

thenC is a function ot that satisfies the differential equation:

dc
7 —+M;C=0,
(7) il

and which reduces, far=t; , to:
Co=M(ty X7, % |5 ) 1.

Now, equation (7) has one and only one integral that redoceero foit =t, , and
that integral is obviousIZ = 0. Therefore, iy is null thenC is also null for any.
In other words, the values (3), (4) verify equation (¥4)a 5 for anyt; i.e.:

(8) I'I(t|x1,...,xn|p1,...,pn):1,

provided that they are verified forEto .
One may further say thétte transformation ofx’,---,x° | p°,--, g°) into (X1 , ..., X

|p1, ..., pn) that is defined by3), (4)leaves equatio(B) invariant.
It is proved by this that it is possible to integrat thixed system (12), (13), (14) of

no. 5, and that the general integral is given by formulas (&), where?,---, x°; p?,
... p2; to are subject only to the condition:

9) Mt %) TR By )= 1.

The indefinite repetition of the infinitesimal vai@ considered thus has a well-
defined sense.

8. Formulas (3), (4) (n&Z) have some homogeneity properties that are usefuitd p
out. To that effect, in equations (1), (2) (pset:

(1) X =A, pi=mB (=12, ..n).
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The equations:

) dx = 97 gt (=12 .0

op,

are again verified, the right-hand sides being homogeredalegree zero with respect to
thep; . As for the equations:

or orn :
3 dp=-|—+p—|dt =12, ...n),
3) P [a)g+p6tjd (i n)

they give, upon taking homogeneity into account:

m dB + B; dm:—{mw+mz3w} dt i=1,2..n),
oA ot

which reduces, upon taking into account the definitionhefA; and theB; , and the
notation introduced by formula (6) of ng.to the unique equation:

(4) dm=m(1 -m) I; dt

Having said this, leiny be an arbitrary constant, and Mtbe the integral of (4) that
reduces ton, fort =t . The functions:

X =A, pi = MB; i=12..n

constitute the solution of the system (1), (2) thakeiBned by the initial conditions:

0

X=X, pi=mop’ (i=1,2 ...

However, this same solution is also given by:

x= AWK R Im e m Bl (=12 .0,
p=BEX o FImds Bl (=12 .0,

One thus has the identities:

AR o T/ TE= ALYk T g Bl )
MB (t]C o8 TR B T )=B (DY K Iy e g ] )

for(1=1, 2, ..,n).
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Therefore, the functions,Aas well as the ratios of the functions Bre homogeneous
of degree zero with respect fif, ..., p’.

From this, it results that one may employ formul@, (4) (no.7) to the
transformation of the contact elemdnf,---, % | p’,--, p7) into the new contact element
(X1, -~y % | P2, ---, Pn), Without restricting it to verify condition (9) (n@).

9. Therefore, apply the transformation defined by the egjstti

(2) X =AML R e B 1) (=12 )
@ p=BEIX X F e 18 (=12 ..0)

to each of the contact elemerftg,---,x° | p°,---, B°) of the same multiplicityM, . We

shall show that the new contact elements thus obtailesg to another multiplicity.
Effectively, x0,---,x%; p’,---, §° are, by hypothesis, functions of the ¢ 1)

independent variables, , ..., an-1, whose total differentials satisfy the identity:

3) Z p’ox’ =0,

i=1

and one must show that the function®f, ..., a1 that are deduced from formulas (1),
(2) verify the analogous identity:

@ > pox=0,

Now, since the functions (1), (2) satisfy the equations

dx _arl dp __or_ on

5 — =, =——-p— =1,2,..n),
) dt ap dt  dp P ot ( "
one has:
d) pdx=>.dpdx+> pddx= > dpdx+oy pdx-> J pdx,
i=1 i=1 i=1 i=1 i=1 i=1
ie.:

dzn:plcf)ﬁzm—ia_ngxi_a_n

% = Ol
el oX—) —op,
dt = i 0% t = n ;09 P

or, finally, making reductions:

d n n
(6) EZ pox +M, > RoXx=0,
i=1 i=1
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wherell; is again the function dfthat is defined by (6) (n@).
One may then repeat the argument that was made infoothe functionC for the

n

function z pJx and conclude that since its initial value for to is null, it is null for
i=1

anyt, and this is what we needed to establish.

Therefore, the transformatiqi), (2),where t anddgare arbitrary constants, changes
any multiplicity into a multiplicity. It is,in the language of S. Liea contact
transformation.

10. For ease of expression, we cattagectory— orray — the locus of points that are
represented by the equations:

(1) =AMl ) (=1,2..0)

when onlyt varies ando; x7,---,x%; p,---, p. have constant values. Each point of the

trajectory corresponds to an instanand we consider that law of correspondence as an
integral part of the trajectory. In other words, a poira trajectory is considered to exist
only at the instantthat it corresponds to.

There areo™ trajectories, thus extended. To each instatitere areo"™ of them
through each point of the spdeg.

The trajectories may be considered as serving to transpercontact elements.
Indeed, for each point of the trajectory (1) there pasescontact element whose
direction is given by the formulas:

(2) PR Tl ) (=12 ..n).

The correspondence between the points of a trajeatwyhe contact elements that it
carries is already given by the differential equations:

dx _an
(3) _x:_
dt dp
because, from the explanations of rh. these differential equations may be thus
interpreted:

Being given a trajectory, l€k) be the point of this trajectory that exists at thetant
t: this point is, at that instant, the origin of derived wave, and the direction of the
trajectory in(x) is the one that takes the orig(®) to the contact point of the tangent
plane to the derived wave that is parallel to tlemtact element carried by the poiix)
of the trajectory at the instarnt
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The set consisting of a trajectory and the contiechents thus carried by its various
points will be called @haracteristic A characteristic is therefore defined by the system
(1), (3), where only is variable.

The construction that was justified in n®. may be stated thus, with the new
language:

Being given a multiplicityM, , one considers the various characteristics that have

the contact elements @#(y at a given instant t for their elements. The set of elements of
all these characteristics that coexist at another instant t is amelplicity.

In other wordsThe new multiplicity results from the simultaneous transport of the
elements of the first one by the trajectories that carry the coetaments of the first
multiplicity at the instant t.

11. We must now study whether the family of multipliegiM' that thus issue from
an original multiplicity Mo , when considered at the instént agree with the family of

wavesM that issue, under the given mode of propagation, fronotigenal wave M, ,
which are assumed to be produced at the inggant
We first remark that the family of multiplicitied1’ (by virtue of its mode of

construction) and the family of wavesl (by virtue of the hypothesis n8) enjoy the

common property thadne passes from a multiplicity of the family to an infinitely close
one (up to higher-order infinitesimald)y the variation that is defined by formulds?),
(13), (14)of no.5.

This proves, in passing, thaiur principle of enveloping waves implies no

contradiction and from this we may also conclude the identity eftt’ with the M by
proving that the family of thé1' is the only one that satisfies this property and ¢osta
the given multiplicityM, fort =t .

For this, we shall first analytically translate tbtated property for a family of
arbitrary multiplicities whose general equation may Iseiaed to be given in the form:

(1) F(x1, ..., %) =t.

To abbreviate the notation, set:

(2) 95:9 (i=1,2 ..n
ox,

and:

(3) MF X, ..o, X |P1, .., Py) = 1.

Therefore, for a contact element of (1), we may set:

(4) pi=P M (=12, ..n),
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and these values already verify the relation (4)cobn It will then remain only for us to
express that the differentials given by the formulas @®) (13) of no5 satisfy the
equations obtained upon differentiating (1) and (4).

The differentiation of (1) gives, upon taking into amebthe fact that the derivatives
o / op; are homogeneous of degree zero, and also from equatibse(t)

n

dt=3P l-pall P 4=
t jg dx = jg o0 dt= }: B dt= Mdt,

le.:
(5) M=1.

This first result permits us to simplify formulas (4fhich become:
(6) pi =P i=1,2,..n.

Upon differentiating them in turn, one obtains the dimak:

dp=— [0 50 = (90, p 0T (=12 .0,
6)§ ot 6)§ ot
ie..
SN I 1 I (=12, .0,
kqaxaﬁ 0% 0F0x
or again:
oM oR oM  ofoF _ (=12 .0

0P dx 0x O0FO0Xx

However, it results from (5), upon differentiating lviespect to; (i = 1, 2, ...,n).

The principle of enveloping waves (in the infinited sense that we have intended)
thus finds its analytical expression in conditi¢h), i.e., in the partial differential
equation:

OF  OF
7 Mn|{F e X |— .. 1,
(7) [ | % Iaxl a&j

which is nothing but equation (14) of rg.i.e.:

(8) Mx, ... %P1, --spn) =1
where one considernsto be a function ok; , ..., X, andp; , ..., pn are the partial
derivatives:
ot .
9) pi=— (=12 ..n).

ox
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Conversely, this gives us an interpretation for thetngemeral first-order partial
differential equation in one unknown function, becausewa have seen in nd, one
may reduce the general equation of the form:

(20) Ht X, ..., %P1y .o, Pn) =0
to the canonical form (8).

The theory of characteristics that was presented in the precedatigrss shows how
one may construct, by means of integrating the sy&tgni?) of no.7, i.e., the system (2)
of no.6:

dx _ dp _dt .
(11) F oH oA = i=1,2 ..n,

" 9H
om ox Poar ZPeop,

a solution of equatior(10) that takes the given valug &t all of the points of the
arbitrarily chosen multiplicityMo .

It only remains for to prove that this solution is thdycone that satisfies that initial
condition.

12. Indeed, suppose that a family of multipliciti&$:

(1) F(X, ...,%) =t
satisfy the partial differential equation:

2) O=NF X, ... % | P1,...,Pn) =1,
where one again supposes that:

_OoF

(3 Pi —a—xi

(=12 ..0).

A multiplicity M passes through each poir} ¢f spaceE, , and it corresponds to a value

of t [given by (1)]. This point is, in turn, the origin @afwell-defined derived wave. Take
the tangent plane to this wave that is parallel taahgent plane ak) of the multiplicity

M and join it to the contact poing)(

We thus obtain a directidd at each point o,, and there exists a family of tangent
curves at each of its points with the corresponding tire®. To each point of one of
these curves there corresponds a valug afnd a contact element carried by this point,
namely, those of the multiplicity™1 of the family considered that passes through this
point, and since each multiplicity M is the locus ohtact elements thus carried by those
curves that correspond to the same valug ofwill suffice to prove that the preceding

construction gives the characteristics, in order tonsha the same stroke, that any
family (1) that satisfies (2) is given by the construttid no.9.
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Effectively, the curves that we just defined geometsicaie integrals of the system:

on .
4 dx =——dt i=1,2,...n),
(4) b oP (i )

because, due to (2), these equations result in:

dF =) Rdx=Mdt=dt,

i=1

which entails equation (1), provided that one requires thialigivens x’, ..., X°; to to

satisfy it. Moreover, equations (4) expresseno. 10) the property of the tangents to the
curves considered that has served to define them.

For the contact elements that we make to correspmmlet various points of these
curves, we have, by definition:

(5) pi =P i=1,2,..n.
It remains for us to verify that these values satisé/dquations:

dp orl orl
6 = ——-p—
©) dt 0% Pt

i.e., that one has identically, by virtue of (1), (2), @&)d (5):

ap =—| M p I (=12 ..,
[0 oF

which is equivalent to:

Ea_n+a_n+|:?a_n:0 (=12, ..n,
ia 0%, OB, 0% oF

or finally, to:
6I‘IaF+6I‘I+ 5 0l oR, _

7 ——t— ———=0 1=1,2,...n),
) oF dx 0% iz dR 0X ( )

due to the identities:
oP _ 0R

—L == i,k=1,2, ...n).
X o ( )



Essay on the propagation of waves 20

Now, the identities (7) are obtained by differentigtithe identity (1), which is
verified by hypothesis, with respect to th¢i = 1, 2, ... ,n).

It thus indeed established ttaaty solution of1) that takes the valug &t the various
points of a given multiplicityM, is obtained by the construction of r.and that as a

result there exists only one solution that satisfies the initial dondi
At the same time, it then results thiais construction indeed defines the propagation

of the waveM, starting at the instanpt

13. The transformation of nd®, which gives the waveV that issues from the
original waveM, at a given timey, when it arrives at the instafjtoperates individually
on the contact elements @fly to give the contact elements M, and for a particular
contact element oM, it depends only upon that contact element, but not onvéwe

Mo that it belongs to.

From this, it results thaf one imagines two original waves that have a common
contact element then the wav#é4 that correspond to them will also have a common
contact element, which will be the transform of the preceding one.

Since one of the waves! that we imagine may be reduced to a point, it residis f
this thatthe principle of enveloping wavewhich we have assumed for an infinitely
small variation of time, and up to higher-order infinitesisnis rigorously verified for an
arbitrary finite variation of time.

It results immediately that if one knows the fintaves that are emitted, starting at
an arbitrary instant, , by the various point of the medium, after an arbjttanet — to
then the propagation of an arbitrary original wave ss &hown without integration.

However, one may obtain a slightly more general tethdt gives the classical
properties otomplete integrals.

Indeed, suppose that we know the propagation"adrigin waves; i.e., a solution of
the partial differential equation:

(1) t:G(xl,...,xn|a1,...,an)
containingn essential arbitrary constants. For t, the multiplicities (1) contain all of

the 0™ contact elements of the space, and each of thembmalgfined as the contact
element that is common to the multiplicity:

(2) to:G(xl,...,xn|a1,...,an)

and the ones that result from the infinitely smalliaton of the constants; , ..., a,,
linked by a certain relation of the form:

© >hoa=0.
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Indeed, in order to determine that element these conditltese conditions give tha 2
1 equations:
0G 0G

(4) G=t, —=mh, p=h— i=12, ..n);

08, 0%
hence, one may inversely dedwse ..., a, and the ratios db, , ..., b, if the element is
given.

Finally, any multiplicityMo , when given as the original wave at the instanis the
envelope ofo" ™ multiplicities (2), defined by an equation of the form:

(6) d(ay, ...,an) =0.

The waveM that results at the instantwill be the envelope of the"™™ multiplicities
that correspond to them; i.e., the multiplicities (Bttbatisfy the condition (6).

14. We now examine how the preceding results are maddiflethe case of a
permanent regime.
The general equation of the derived waves is:

1) HX1, ..., X% | P2y ---s Pn) =0,
or, in canonical form:

(2) M, .oy % |P1, - pn) = 1,
which does not contain time.
The differential system of the characteristicsifies and becomes:

dx, _ dp _ dt .
() F = (=12, ..n),

oH ™ oH T o
op, ox = kapk

or, in canonical form:

d_on  dn__an

H R (Izl, 2, ,n)
dt dp dt 0X

(4)

In the latter, the right-hand sides do not depend wpand its general integral is of
the form:

) =AMt 0 o ) (=12 ..n)
(6) PEBE-t X T 1) (=12 ..n).
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It results from this that the construction that gives waveM that is emitted after a

time interval { —to) from an original waveM, depends only upon that time interval, but

not on the instarty when that original wave appeared. This is what we t@sb&r no.2.

One also sees that here the same trajectory corgspomn infinitude of modes of
distributing the time between its various points. The same point mightespond to all
of the values of, but the difference in the valuestdhat correspond to two of the points
is determined completely.

If one abstracts from the correspondence betweepdims of a trajectory (or the
contact elements that define a characteristic) and tirae here there are oniy*">
trajectories (or characteristics).

No matter what instant at which a contact elemenspace begins, it is always
transported by the same trajectory, and takes the sameoosition after a given time
interval.

One may further say that themily of contact transformatiorgefined in no9, which
gives the law of propagatioand which, in the general case, depends upon two constants
t andty, depends, in the case of a permanent regime, only upaotstant { — ty) and
thus defines a one-parameter group.

lll. — Properties of trajectories
15. One may obtain a differential system that defilesttajectories independently
of the contact elements that they transport. Fa@r time must eliminatg,, ..., p, from

(12), (13), (14) of no5; i.e.:

,_on

(1) — (=12 ..0n),
op,
__on_ o .
(2) = P (=12,
(3) M, coos X [Py -oa Pr) = 1,

upon denoting the derivativel; / dt, dp / dt by x andp' .

In order to effect this elimination, we introduce general equation of derived waves
in pointlike form by recalling the notions of nd. By reasoning as we did for the
tangential equation in nal, one see that the pointlike equation may be taken in the
canonical form:

(4) Qlt[x1, ... % | &,y oo &) = 1,

whereQ is homogeneous of degree 1&n ..., & .
Due to its homogeneity, the tangent plane at a pointheasquation:

(5) >z %1z,



Essay on the propagation of waves 23

in such a way that one has the following formulas tfee coordinates of this plane,
defined as in no4:

(6) u :%;'5) (i=1,2 ..n),

just as one has, for the coordinates of a contznt:p

an(t|x|<)
ou

(7) &= (i=1,2 ..n).

One will again remark that (4) results from thematfiation of the ratios of the; in
equations (7), just as:
(8) M, ooy X P2, - pn) =1

results from the elimination of the ratios of tfen equations (6).

A sheet of the wave, represented simultaneouslthéycanonical equations (4) and
(8), has only one point on each line that issuesf), just as it has only tangent planes
parallel to a given plane; of course, this is trusome suitable limit.

Having said this, one sees that equations (1)andave the following equations for
their equivalent system:

9) Q(t X1, .o, X | X, oy X)) =

and:

(10) :w (=12 ..n).
ox

In order to transform equations (2), one mustragalculatedl / dx; anddl /dt. To
that effect, we remark that from the identity:

an an
Q{tlxl,..., |a ,a_pj: ]_,

n

one deduces, by differentiation, taking (1) intccamt:

0Q 3200 0N _
S ox dpat

i.e., due to (10):

Q n
FRPIL Eerralt

k=1

or finally, d / dt being homogeneous of degree pin ..., pn :
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0Q  drn

(11) —+—=0
ot ot
One likewise finds that:
(12) 0Q o _ (=12 .0
ox 0%
Equations (2) thus become:
0Q
(13) _OX 0900 0N _ -1 )
dt  dt ox 0x

and the trajectories are defined by the system (9), 13).
This system is over-determined, but one may simplifyntleed, we have in view of

the homogeneity a@:
0Q(t | x|X)_ 0Q(t]x|dx)

i=12 ..n
ox 0 dx
0Q(t | x|X)_0Q(t|x|dx) 1 (=12 ...n
0x ox  dt
0Q(t|x|X)_ 0Q(t|x|dx) 1
ot ot dt’

and we write the system (13) by henceforth setting:

(14) Q=Q(t|X1, .. % |OX1, ..., dX)
in the form:

(15) g 92 0Q0Q 09 _, (=12 ..n).
0 dx atadx ax

We multiply these equations b (i = 1, 2, ...,n) and add them. This gives:

n N To NN To JLNN o
00 pyy 080 g 005 0Q
dzadxdx ,16d Zoa Moz ax ?

—><
i
o
(S3)
o
£
—
i
A
o
P

i.e., upon simplifying:
(16) ry (dt—Q) =0.

Therefore, if one is in a variable regime then aigun (9) is a consequence of
equations (13) or (15). If one is a permanentmegihen equations (15) reduce mo«1)
and do not contain time.

In other wordsin a variable regime the trajectories are defingdthe systenil5),
as well as the form of the law according to whiclyt are described.

In a permanent regime the form of the trajectoisedefined by the system:
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(17) 00 _0Q_ 0
odx 0x
which reduces to A 1 independent equations, and the law according to which they are
described is given by the equation:

(18) dt=Q(t X1, ... % [dx1, ..., d%),

which does not contatnexplicitly.

In the case of the variable regime equation (18) isydwmeaningful, but it is a
consequence of equations (15).

Finally, the formulas that give the contact eleméat imust be associated with each
point of a trajectory in order to make it a charasteriare formulas (10), i.e.:

—a_Q 1 =
(19) p'_6d>g (i=1,2 ..n).

These formulas always translate into the law ofespondence between the direction
of the trajectory and the direction of the elemeat thas asserted in nb0.

16. Henceforth, we shall remain in the case of the blieegime, and let the word
ray denote a trajectory when one considers only its famen; when one abstracts from
the law of correspondence between the points of thectoay and the values afthat
they correspond to.

If one is given a ray then one may deduce the corresmpmdiaracteristic without
integration.

Indeed, equations (15) of nb5, when one replacett by its value (18) (nol5), then
givet explicitly, and then the contact element assodiatith each point results, from the
known law (n0.10), in the direction of the trajectory of that point.

Having said this, imagine a family ef"™ rays, and, by the method that was just
stated, transform them into characteristics. Happens that the"™ contact elements
that correspond to the same valué oh these rays belong to the same multiplicity then
we say that the family of rays in questionsasjugateto that multiplicity.

From no.11, such a family of rays will correspond to an integsélthe partial
differential equation:

(1) M| X, ., X P2, -osPn) = 1,

and the converse is true, from A@

One may thus consider an integral of that equatien, a family of waves that is
obtained by successively propagating one of them, to bmily faf «* multiplicities that
are conjugate to a family of"* rays.

If we remark that the values ofthat are associated with the various points of the
same ray are also defined by the equation:

(2) dt=Q(t |x1, ... % | X1, ..., dX)
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when one is given the valtgthat corresponds to a particular point then we matg $he
following theorem, which is the generalization of thassical theorems of Thomson and
Tait:

When a family ofo* multiplicities is conjugate to a family of** rays, the integral of
the differential equatiorf2), when taken along any of the rays between two arbitrary
points of the multiplicities, takes the same value, no mattertivaagy, upon arriving at
the second multiplicity if one has gives it the initial value, whea leaves the first
multiplicity, that is the value, ©f t that corresponds to that multiplicity.

17. The integral of the equation:
(1) dt=Q(t X1, .... % [dx1, ..., d%),

when taken along an arc of the arbitrary cu®@gthat goes from a poink}) to a point
(X) by starting with the valug at the original pointx{), is the time that it takes for a
disturbance that is produced @f) at the instantdtin order to propagate up t¢x) along
(©).

One must understand this to mean ti@x i§ a tube of infinitely small diameter
whose walls subject the disturbance to neither radlector friction.

Indeed, under these conditions the disturbance propagatsbygssive elementary
waves that have their origins at the points@f, @nd, if the disturbance arrives aj ét
the instantt then at the instant + dt it will have attained, up to higher-order
infinitesimals, the pointxg + dx , ..., X, + dx,), which is infinitely close toxX) on the
curve, and which is also on the elementary wave tlath#or its origin at the instarit

Now, this is precisely what equation (1) expresses,usectne derived wave is:

(2) QX1 .0y Xn | &1y o) =1
[when ) is taken for the origin of the coordinates], the equmatf the elementary wave
is:
TS j
Qlt]x, -, x |PX, .. 22i=1,

[ Rl prat
or:
(3) Qt |, ... % | &1y ..., &) =dt,

and equation (1) expresses precisely that the poihtcoordinatesdy, , ..., dx,) belongs
to that wave.

That duration of propagation may also be defirthtg to the homogeneity 61, by
the formula:

4) dt=> pdx,
i=1
with the condition thap, , ..., p, are defined at each point of the curng@ py the

formulas:
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_0Q .
(5) ”‘5&' (=12, ..n),

or, what amounts to the same thing, by the set of equsatio

(6) dx = p@1 (=12 ..n)
op,

and the equation:
(7) MEx, ... %P1, --spn) =1

The latter result may be obtained directly by renmgykhat along C) the disturbance
must propagate by a sequence of infinitely small arcedréom a point of €) to an
infinitely close point. Any one of these trajectorgsthat hasx) for its origin has the
componentslx, , ..., dx, and it ends up at the point of the elementary wehag ftas X)
for its origin at the instart] that is the point of contact of a certain tangelahe to that
wave; this is what equations (4), (6), (7) express.

Here, we assume that there is a trajectory arcjoivag an arbitrary pointxj to an
arbitrary infinitely close point at an arbitrary instgntowever, this results from the form
of the equations (15) (n&5).

Indeed, these equations are of first orded’ia , ..., d, . Their determinant is null
because it is the Hessian @fwith respect talx , ..., dx, , and this Hessian is null, on
account of the identities:

n x =0 =12, ..,
.Z{Gd)g@d)& ( )

which express that the derivatives:

a_Q ( =1, 2, ,n)
0 dx
are homogeneous of degree zero. However, the mindisedflessian are not all null,
since otherwise equations (5) would entail a relation ety , ..., p, , and the derived
waves would not have" ™ tangent planes.
On the other hand, if one introduces equation (1) temt®ns ind, , ..., d;

reduce, from what we said in nbb, ton— 1, and since the minors of the Hessian are not
all null, one may deduae— 1 of the second derivatives as functions ofthene, which
may be assumed to be null.

2 2
One will thus have, for example, the derlvatlvgé d’x ..,d X“‘; expressed
(dx)*" " (dx,)
as functions of; X1 , ..., X ; d—xl (LY , Which establishes the fact in question.

dx, " dx,
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The same fact also results from the fact thatefdirection of a trajectory is given at
an initial point and a given initial instant then thatial contact element of the
corresponding characteristic is determined (h6).. The characteristic is, in turn,
determined from the form of the differential systeratttiefines the characteristics, and
the same is true for the trajectory.

18. The duration of the propagation of a disturbance along the oi@y&at we just
defined may be regarded as conforming to a maximum property.
Indeed, recall the differential equation:

(1) dt=> pdyx,
i=1
upon supposing that; , ..., p, are functions ok; , ..., X, andt that are subject only to
verifying the equation:
(2) M X, ..., %P1y - pn) =1,

and then integrate equation (1) alor®),(while taking a given valug for the initial
value. To each choice of functiops, ..., pn there corresponds a value of the integral (1)
at the extremity of the arc of the cury® ,(and we demand that one must chomsg...,
pn in order to make that value of the integral be a maximum

Along (©), x1, ..., X, are given functions of one independent variablandp; , ...,
pn are functions ol andt that one must determine. We need to point out that uhdse
conditions the variation of the value of the integsahull. Now, in order to determine
them, since the variations of tkeare null, one has the differential equation:

(3) dd‘t:Zn:cSp,dx,

i=1

and thedp; are subject only to the equation of condition:
(4) 5t + 2—5 p =

Since the latter property is meaningful no matter whdtemity of the arc of the
curve C) was chosen, we find as a necessary condition that:

>, Jp dx
i=1
must be annulled under only the condition that:

& 0l
205 %"
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and this indeed gives equations (6) of ha.

(6) dx=p— (=12, ...n.
op,

We remark in passing that upon taking (1) into account,iods:f

dt=p,
ie.:
dx _arl ,
8 — = i=1,2,..n).
(8) dt ap ( )

The maximum of the integral in question may therefereneaningful only when that
integral represents the duration of propagation al@)gf a disturbance producédhe
origin of the curve at the tintg .

19. One may geometrically interpret the relation thasts between an infinitesimal
displacement on Q) and the corresponding differential of the functibrthat was
considered in the preceding section.

Indeed, the equation:

1) dt= " pdx

i=1
expresses that the poing (+ dx , ..., X, + dx,) of the curve ) is found on the tangent
plane to the elementary wave with origk) (vhose coordinates am@ , ..., pn . In the

case wherd is the duration of propagation, the poixrtH dx) is found at the point of
contact itself of that plane.

This remark permits us to see thhaere is one case where the duration of the
propagation indeed constitutes a maximum for thegral t. It is the one where the
elementary wave is constantly concave towards tiggng a case that presents a very
special importance for the applications.

Indeed, suppose in that case timt, ..., pn have values that are sufficiently close to
the values:

—a_Q | =
(2) p'_adx (i=1,2 ..n),

which corresponds to the case of null variation. @rtéimgent toQ) at the pointX), one
will encounter, upon starting witkx)( first, the point of intersection of the tangenthwi
the elementary wave with origix)( and then the point of intersection of that tangent
with the tangent plane whose coordinates pre (.., pn). Therefore, to a positive value
of dt there will correspond a value dti (that one may assume to be positive) that is
smaller in the case of null variation then in tleéghboring case.

Therefore, for a given value afandt the derivativedu / dtis larger for the case of
null variation then for the neighboring case.
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Having said this, we reserve the lettéor the case of null variation and employ the
letter @ for the neighboring case. The functionand & are the integrals of the two
differential equations:

dt
(3) E_ f(t, U),
@) ¥= 4, v,
u

which takes the valug for the initial valueu, of u, and one has, for antyandu, in the
interval where we operate, the inequality:

) f(t, u) > #(t, u).

| say that one must conclude from this that the difieeeth— 6) is positive along @),
upon suitably limiting the ardd) that describes the poin)( if this makes sense.

For this, | will suppose that the curv@)(is an analytic curve. Then, the functigms
..., Pn, Which are given by the formulas (2), are also aitalé being supposed to be an
analytic function of its arguments, and we again suppcasethie functiongs, ..., pn,
which are close to the functions (2), are likewiselygita Then,t and € are themselves
analytic functions ofi, as well ast(— 8 andd(t — 8 / du. One will be limited onQ) to
an arc such that the functibmas no singular points, and one may suppose that the same
is true foré. Let (Uo, U1) be the interval of variation af that corresponds to these latter
hypotheses. In that intervat,{ 6) andd(t — §) / du are thus holomorphic. Far=up, t
= fd=toand ( — 9 is null; at the same timel(t — &) / duis positive, by virtue of (5). The
function ¢ — 6 thus starts out by being positive, and it ceases tm lmnly when it is
annulled. | say that it is impossible for it to be @ied. Indeed, suppose that it is
annulled. Since its zeroes are isolatedyldie the first one that one encounters. In an
interval of the form{ - & u’), the derivative will be of constant sign, becauseeroes
are also isolated, and since the function passes frqosdive value to zero in the
interval ' — & U) the derivative will be constantly negative theres & result, that
derivative will not be positive fon =u'. Now, this is a contradiction with the hypothesis
(5), since, fou=u one has = g, in such a way that(t — 6) / duis then equal to:

f(t, u') —o(t, u),
which is positive, from (5).
Therefore, the functiont < ) is necessarily positive on any arc of the cur@ (
considered, and the duration of propagation al@)gr{deed constitutes a maximum for
the integrat.

20. We now return to the trajectories. We shall ¢t the trajectories that issue
from a point(x) at the instant¢are the curves along which the disturbances that are
produced atXo) at the time ¢ propagate the most rapidly.

In order to prove this, recall, for example, the equnasti
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or

(1) dx = —dt i=12..n
op,

and:

(2) Mx, ... %P1, --spn) =1

which may be regarded as defining the duration of the prapagsta disturbance along
a curve C) that goes fromxg) to (x). From these equations, the following formula,
which was already employed, then results:

(3) dt:ip,dx.

Here, it is the functions, ..., X, of the variablau that we must vary; on the contrapy,,
., pn @are known when the functioms, ..., X, are given.
In order to calculate the variati@hy we have the formula:

(4) ddzzn:cfp, d>§+zn:pd5x,
i=1 i=1

from which one may eliminate thdy; , taking into account (1) and (2). Now, due to (1),
equation (4) may be written:

dd= ia—ap, dt+3 g dox,

i=1 I i=1

and one deduces from (2), upon taking the variations ofddéis:
5t+z 5>g +Z—5p 0.

What thus remains is the formula:

dd= Zp, dox - Z—éxdt—%—nétdi

which we put into the form:

(5) d[ét—zn: péxj+%—?[5t—i péxj di=- Z{dp +[a—;|+ p—j dt}i

=1

We write them more simply:
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(6) 9B, =8,
dt
upon setting:
(7) A=&-3 pox,
i=1
on
8 A=—,
®) ot
d 6I'I 6I'I
) —Z[ LT jéx

The curve C) is supposed to vary in such a manner that its extremgi@ain fixed.
The d; are therefore null at the origin and the extremityC) andA then reduces td;
moreover,& is null at the origin. Thereford is the integral of (6) that reduces to zero
for t =to, and we need to express that it is null for any choidte ox when one arrives
at the final value of. HoweverA is given by the formula:

(10) rA=el jBJA"

One thus sees thAtmay be null only iB is not identically null (with respect t, ...,
o), because without that condition one could chadse..., o, in such a manner that
is constantly positive in the interval of integration

This argument supposes that= 0l / dt remains finite on @). Under that
hypothesis, we thus conclude that the variation of ntegralt may be null only under
the conditions:

on __on .
11 dp=-|— t =1,2,...n),
(11) p [ax“)atjd (i n)

and these are precisely the equations that one mush adj@quations (1) and (2) in
order to define the characteristics. Consequently, th@ge trajectories may solve the
problem of the minimum duration of propagation.

21. The preceding calculations also give an interpatator the contact element
associated with a trajectory at each of its points, uscthe condition for the variatiah
to remain null when only the origixg) of (C) remains fixed is that the extremity) (o
which it is displaced satisfies the condition:

1) S p &% = 0.

i=1

The elementx | p) that is associated with the poif¥) of a trajectory for the instant t
corresponding to that point is the one on which pment (X) of the trajectory must
displace in order for the duration of propagatioha disturbance along that trajectory
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between the fixed poirfk,) from which the disturbance begins at the instgrand the
variable point(x) to have a null variation

This amounts to saying that the elemenf) is a contact element of the wave that
issues fromxp) starting at the instant when it arrives at the instant This conforms to
the results obtained in the construction of wave liami

We further remark that one may calculate the vanatibt, under the conditions of
no. 20, by starting with the formula:

(2) dt=Q(t X1, ... % [dx1, ..., d%).

One will then have:

dd——5t+z 26_9
=1

from which:
o 0Q n0Q
(3) d[dt_zadxéj ( Z:l:a— j

i=1

_ Z[da_ﬂ_a_ﬂa_ﬂ_a_ﬂjg |

T\ ddx oOtoddx 0Jx

and an argument that is similar to the one that we nmade. 20 for equation (5) (nc20)

will show that the conditiond = O obliges us to annul the right-hand side of (3)
identically, which gives the following equations for thece®sary conditions for the
minimum;

(4) g 02 0200 0Q_, (=12 ..n),

odx odtaddx dx

I.e., one recovers the system (15) of toprecisely.
An argument that is similar to the one at the beginnihthis section gives the
following condition for the contact element assaashivith the pointX) of the trajectory:

n

(5) ZW ox =0,

I.e., this again gives formulas (19) of no. 15:

_0Q _
(6) P T (=12, ..n).

22. It remains for us to show thtite conditions that we found suffice for us to have
true minimum if one supposess in nol9, that the elementary wave is concave towards
its origin.
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This amounts to a remarkable relation between the mirpseblem and the problem
that was treated in no%8, 19.

Let (T) be a trajectory that issues frori)(at the instant, let (x) be any of its points,
and let@ be the instant that correspondsxpdn the trajectory. LeiQ) be a neighboring
curve to 1) that also goes fromx{) to (x), and lett be the time that it takes for the
disturbance that is produced &%) (at the instant’ to propagate up to(along ). This
amounts to proving that the different¢e-(6) is positive if C) is sufficiently close toT).

To that effect, consider the elemexit|( p°) associated witf at its point of departure
(x%) and imagine an original waveto that has that element’(| p°) for one of its contact

elements that we assume to be produced at the ittantthe propagation of that wave,
the elementx | p°) must follow the trajectory, and from the instéhto the instant the
wave will pass successively through all of the pointsthef arc of the trajectory
considered.

We assume that one may choasé, in such a manner that, under the same

conditions, the wave passes successively through #lleopoints of the comparison arc
(©).

Then let:
(1) F(X, ...,%) =t

be the general equatioseenos.11 and following) of the wave family in question. At
each point of ), we have geeno. 12):

(2) pi = oF (i=1,2,...n),

0%
in such a way that the formula:

3) dt=3 p dx,

i=1

which gives the duration of propagation alomy {s equivalent to:

(4) dt :zg—Fdx - dF.

n
i=1 1

This formula will thus give the same valédor the duration of propagation of) to (x)
along () whether one integrates along or along C).

Therefore,f is the value of the integral of the differential eqoiat{3), when taken
along C), under the same conditions as in 18.whenpy, ..., p, have the values (2) and
t is the value of that integral when one integratesgakhie same curveCj with the
values ofpy, ..., pn that are given by the formulas:

e

(5 Pi —m

(=12 ..0).
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Finally, the values (5) and the values (2) are as closenasdesires because the one
reduces to the other whe@)(coincides with ) and C) is as close tol]) as one desires.

One thus find$ and @ under exactly the conditions of nt®, and one must conclude
that ¢ — 6 is positive. This is precisely what was to be esthblil.

One thus indeed sees thhe existence of a maximum for the problemmfl8 and
the existence of a minimum for the problemmf20, or conversely, are correlative.

It is this relation between the two problems thataneeasserting.

Lyons, 15 November 1908.



