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 In a preceding article (1) we have analytically studied the propagation of waves in a 
medium whose nature does not vary in time and showed the close relationship between 
this problem and the theory of contact transformations, the theory of first-order partial 
differential equations in which the unknown function does not appear explicitly, and the 
search for maxima and minima of simple integrals. 
 The following pages are dedicated to the propagation of waves in a medium whose 
nature does vary in time.  The problem is treated from a purely kinematical point of view.  
The medium is defined by the system of elementary waves that have their origins at the 
various points of the medium at each instant.  The law of propagation is the principle of 
enveloping waves, but we suppose only that it has meaning for an infinitesimal interval, 
and up to higher-order infinitesimals.  One of the results obtained is that the principle is 
rigorously true for any time interval. 
 We reason in the space of n dimensions, but our exposition supposes known only the 
notions of contact element and multiplicity, and the fundamental principles of the theory 
of ordinary differential equations. 
 Two essential facts are presented: On the one hand, the propagation involves contact 
elements, the contact elements of the original waves being individually transported to 
constitute the new wave that one derives from it, and, on the other hand, the family of 
successive waves that issue from that same original wave is defined by a partial 
differential equation that may be the most general first-order partial differential equation 
in n independent variables and one unknown function. 
 From this, there intuitively emerges a new theory of the integration of first-order 
partial differential equations.  The law of displacement of the contact elements of the 
medium is given by the differential system that the Cauchy theory gives for the 
characteristics. 
 In the displacement of a contact element, the point of that element describes what we 
call a trajectory of disturbance.  We establish that in the case of a variable regime, as in 

                                                
 (1 ) Sur l’interpretation mécanique des transformations de contact infinitésimales (Bulletin de la Société 
Mathématique de France, t. XXXIV, 1906). 
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the case of a permanent regime, the trajectories correspond to the minimum duration of 
propagation.  The question is equivalent to that of the general study of the necessary and 
sufficient conditions for the minimum of the integral of a differential equation of the 
form: 

dt = Ω(t | x1 , …, xn | dx1 , …, dxn), 
 

where Ω is homogeneous of first degree in dx1 , …, dxn ; this integral is taken under the 
hypothesis that x1 , …, xn are the current coordinates of a point on an arc of that curve, 
and at a given initial value t0 they define the origin of that arc.  Moreover, it is the value 
that is taken at the extremity of that arc that serves to provide a minimum upon 
conveniently choosing the arc of the curve whose extremities are assumed to be given (1). 
 The consideration of the simple variation leads to the necessary conditions that define 
the desired curve as a trajectory of propagation.  We show that these conditions are 
sufficient whenever the elementary waves have a form that is concave towards the origin 
at each of the intervening points. 
 From this, it results that the preceding question of a minimum comes down to the 
study of a question of a maximum that presents itself in the propagation of a disturbance 
along a given curve, and that the answer to that question is almost intuitive. 
 In that question of maximum, one deals with the integral of an equation of the form: 
 

dt = 
1

n

i i
i

p dx
=
∑  

 
that is taken along a given fixed curve, and one must determine the functions p1 , …, pn in 
such a manner that they satisfy a given relation: 
 

H(t | x1 , …, xn | p1 , …, pn) = 0, 
 
and render a maximum to the value taken by the integral at the extremity of the arc of the 
curve. 
 The method that thus presents itself is equivalent to the methods of Weierstrass and 
Hilbert; we confine ourselves to a brief sketch.  It is applied, with good reason, to the 
theory of maxima and minima of simple integrals, and may be extended to the case of 
multiple integrals.  We shall return to this in another work. 
 Finally, we point out that we have supposed that the elementary waves have ∞n−1 
points and ∞n−1 tangents.  We propose to return on another occasion to the other case, 
which offers particular interest from the viewpoint of the theory of partial differential 
equations that Lie has called semi-linear or pseudo-linear from the viewpoint of the 
calculus of variations (2). 

                                                
 (1 ) See, on the subject of problems of this genre, A. MAYER, Leipziger Berichte, 1895, and D. 
EGOROW, Mathematischen Annalen, 1906. 
 (2 ) The following pages had been composed when I became aware of the Mémoire of 
CARATHÉODORY, Sur les maxima et minima des intégrales simples (Math. Annalen, t. LXII, 1906, pp. 
449-503), in which the author used derived waves, under the name of indicatrices, in the case n = 2, but 
without attaching the question to that of the propagation of waves.  The problem treated by 
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I. – Differential equations of the propagation of waves. 
 

 1.  Let x1 , …, xn be the coordinates of an arbitrary point in the space En of n 
dimensions, which is assumed to be referred to an arbitrary rectangular coordinate 
system.  We call this point the point (x1 , …, xn), or, by abbreviation, the point (x). 
 We consider the space En to be the medium in which disturbances of an arbitrary 
nature may be produced and propagate by waves. 
 By this, we mean that the points of En are capable of acquiring, in an instantaneous 
manner, a property of a specific nature (sonority, luminosity, electrification, etc.), and 
that, from the fact that this property will be manifested at an arbitrary instant t at every 
point of a multiplicity M, and, at the following instants, will cease to belong to the points 

of M, and will be manifested at each of these instants t + ∆t at the various points of 

another multiplicity M′, which is determined by the nature of the medium, relative to the 

property considered, by the instant t, by the interval of time ∆t that has elapsed since that 
instant, and by the multiplicity M. 

 It is the appearance of the property considered at a point (x) that we call a disturbance 
produced at that point.  We call any multiplicity that is the geometric locus of disturbed 
points at the same instant a wave. 
 The problem of the propagation of waves is the following one: In a medium of a 

specific nature, to deduce from a wave M that is given at the time t, the new wave that it 

provides after the time ∆t. 
 
 2.  One must define the nature of the medium relative to the property considered. 
 To that effect, imagine the simplest case where an isolated point (x) is disturbed only 
at the time t.  As it propagates, the disturbance gives rise, at each instant t + ∆t, to a wave 
M(x | t, ∆t); we say that this wave issues from (x), or also that it has (x) for its origin. 
 Take the homothety of that wave, with respect to (x), with the ratio 1/∆t, and assume 
that this homothety tends towards a limiting form when ∆t tends to zero.  We call that 
limiting form the derived wave that has (x) for its origin at the instant t. 
 Conversely, if we take the homothety of the derived wave with respect to its origin (x) 
and the infinitely small ratio dt then the multiplicity that is obtained will be called the 
elementary wave having (x) for origin and corresponding to the instant t. 
 The nature of the medium relative to the property considered will be defined by the 
system of derived waves (or elementary waves) that have their origins at the various 
points of the medium at each instant t. 
 This system of waves will vary with t, in general.  In the contrary case, we say that 
one is in a permanent regime.  We confirm that the mode of propagation of an arbitrary 
wave is then independent of the instant at which this wave appears, and depends only 
upon its form.  The general case will be called the case of a variable regime. 
 In this memoir, we suppose that the derived waves have ∞n−1 points and also ∞n−1 
tangent planes; we shall return to the other case in another work.  There is good reason to 

                                                                                                                                            
CARATHÉODORY corresponds, moreover, to the case of the permanent regime, while the one that we 
treat here corresponds to the case of a variable regime. 
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remark that the derived waves do not necessarily have the same number of dimensions as 
the finite waves that issue from the various points of space. 
 In the case of ordinary space (n = 3), the derived waves are, in the general case, non-
developable surfaces; one calls them wave surfaces.  In the exceptional cases, they may 
be developable surfaces, curves, or points. 
 
 3.  In order to now define the law by which the waves propagate, we assume that for 
an infinitely small variation of time the propagation satisfies the principle of enveloping 
waves, up to higher-order infinitesimals. 
 In what follows, it will be proved that this principle implies no contradiction.  First, 
we explain what we mean by this: 
 Let M be arbitrary at the instant t, and let M′ be the wave that it produces after an 

infinitely small time dt.  Each of the points (x) of M, when disturbed at the instant t, will 

have emitted a wave M(x | t, dt) after a time dt; let M″ be the envelope of all these waves 

M(x | t, dt) that issue from the various points (x) of M.  We assume that M″ represents 

M′ up to higher-order infinitesimals, the principal infinitesimal being dt, and that we 

intend this to mean that there exists a point-by-point correspondence between M′ and 

M″, such that the differences of the coordinates with the same name between two 

arbitrary homologous points are of order greater than 1 relative to dt. 
 This definition gives rise to the following remarks, for which, to simplify, we will 
confine ourselves to considering (n−1)-dimensional multiplicities: 
 
 1. Let Σ and Σ′ be two multiplicities, each of which represents the other, up to 
higher-order infinitesimals, and let θ be the principal infinitesimal.  The correspondence 
between an arbitrary point (X) of Σ and the homologous point (X′) of Σ′ will be exhibited 
by the equations of the two multiplicities: 
 
(Σ)     Xi =  fi(u1 , …, un−1 | θ) (i = 1, 2, …, n), 
(Σ′)   iX ′ = gi(u1 , …, un−1 | θ) (i = 1, 2, …, n), 

 
two homologous points corresponding to the same values of the parameters u1 , …, un . 
 Moreover, the identity of the two surfaces, up to higher-order infinitesimals, amounts 
to supposing that the functions fi and gi , and their derivatives dfi / dθ, dgi / dθ  are 
identical functions of the parameters u1 , …, un−1 for θ = 0. 
 From this results the pairwise identity of the functional determinants formed from the 
derivatives of gi and fi , taken with respect to the uk for θ = 0, and also the derivatives of 
these functional determinants, taken with respect to θ (for θ = 0), in such a way that the 
differences of the coordinates with the same name of the tangent planes Σ and Σ′ at two 
homologous points are also higher-order infinitesimals. 
 
 2. Now suppose that Σ belongs to a family of ∞n−1 multiplicities, each of which 
corresponds to a multiplicity Σ′ that represents it up to higher-order infinitesimals.  A 
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correspondence of the same nature will be meaningful between the envelope of the 
multiplicities Σ and that of the multiplicities Σ′. 
 Indeed, the equations of Σ are now of the form: 
 
(1)   Xi = fi(u1 , …, un−1 | a1 , …, an−1 | θ)  (i = 1, 2, …, n), 
 
and the envelope will be given by the equations: 
 

(2)   
1 1 ( 1,2, , )

Det i i i

n k i n

f f f

u u a− =

∂ ∂ ∂
∂ ∂ ∂

…

⋯ = 0 (k = 1, 2, …, n – 1); 

 
i.e., an arbitrary point of the envelope is given by equations (1), where u1 , …, un−1 are the 
functions of a1 , …, an−1 that are defined by equations (2). 
 In order to pass to the envelope of Σ′, one must replace the fi with functions gi of the 
same variables, and for θ = 0 the gi and the dgi / dθ are identical to the fi and the dfi / dθ, 
respectively.  However, the functions uk of a1 , …, an−1 that are obtained in the two cases 
will then be the same for θ = 0, as well as their derivatives with respect to θ.  The stated 
theorem results from this. 
 
 3. If Σ′ represents Σ up to higher-order infinitesimals and if Σ″ similarly represents 
Σ′ then the same correspondence exists between Σ″ and Σ. 
 
 The proof is immediate. 
 
 4. The wave M(x | t, dt) that is emitted at the arbitrary point (x) is represented by the 
elementary wave that has the same point for origin, up to higher-order infinitesimals. 
 
 Indeed, let P be an arbitrary point of M(x | t, dt) and let ρ be its distance from the 
origin (x) of that wave.  The homologous point of the elementary wave has the radius 
vector: 

0
lim
dt

dt
dt

ρ
=

 
 
 

. 

 
 The distance between the two homologous points is therefore the difference between 
the infinitely small ρ and its principal part; the stated remark then results from this. 
 Upon combining these various remarks, we may state the principal of enveloping 
waves in the following form: 
 Up to higher-order infinitesimals, the wave that issues from an arbitrary original 
wave, starting at the arbitrary instant t and after the infinitely small time dt, is the 
envelope of the elementary waves that are emitted, under the same conditions, by the 
various points of the original wave. 
 
 4.  In order to treat this principle analytically, one must first express the derived 
waves by their general equation.  For this, we imagine that at each point (x) there is a 
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system of axes that has that point for origin, and is deduced by translation of the 
fundamental system of axes to which the medium in question is referred.  The general 
equation of the planes being assumed to be written in the form: 
 

(1)      
1

n

i i
i

uξ
=
∑ − 1 = 0, 

this gives us the tangential equation: 
 
(2)     H(t | x1 , …, xn | u1 , …, un) = 0 
 
 
of the derived wave that has (x) for its origin, referred to precisely that system of 
coordinates that has (x) for its origin.  In that equation, u1 , …, un are therefore the current 
tangential coordinates, whereas the t, x1 , …, xn play the role of parameters, and in 
equation (1), ξ1 , …, ξn are the current pointlike coordinates in the same auxiliary system 
of coordinates. 
 In order to have the general equation of the elementary wave under the same 
conditions, we remark that if the plane (1) is tangent to the derived wave then the tangent 
plane to the elementary wave that corresponds to it is: 
 

1

n

i i
i

uξ
=
∑ − dt = 0. 

 
The coordinates are thus obtained upon dividing those of the tangent plane to the derived 
wave by dt, and, as a result, satisfy the equation: 
 
(3)     H(t | x1 , …, xn | u1 dt, …, un dt) = 0. 
 
 We abbreviate the ultimate calculations by giving a particular form to equation (2): 
We make it homogeneous, solve it for the homogeneity variable, and give the value 1 to 
this variable.  We obtain an equation of the form: 
 
(4)     Π(t | x1 , …, xn | u1, …, un) = 1, 
 
where Π is homogeneous of degree 1 with respect to u1, …, un . 
 One may further say that Π is defined by the identity: 
 

(5)     1
1, , , , n

n

uu
H t x x
 
 Π Π 

⋯ ⋯ ≡ 0. 

 
 The equation of the point of contact of the tangent plane (u1, …, un) with that surface 
is then: 
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1

n

i
i i

U
u=

∂Π
∂∑ =

1

n

i
i i

u
u=

∂Π
∂∑  = 1, 

 
and, as a result, the coordinates of this point of contact are: 
 

(6)     ξi =
iu

∂Π
∂

  (i = 1, 2, …, n). 

 
Since the right-hand sides of these formulas (6) are of degree zero in u1, …, un , they give, 
in reality, the coordinates of the point of contact of a tangent plane to the surface (4) that 
is parallel to a given plane. 
 The resolution that one must make in order to pass from the general form (2) to the 
canonical form (4) thus amounts to separating the derived wave into sheets, such that 
each of these sheets has one and only one tangent plane that is parallel to an arbitrarily 
given plane. 
 Finally, if the derived wave is given in the form (4) then the elementary wave will 
have the tangential equation: 
 
(7)     Π(t | x1 , …, xn | u1 , …, un) dt = 1, 
 
and just as the derived wave is parametrically represented, from the pointlike point of 
view, by formulas (6), in which only the ratios of the ui appear, likewise, the elementary 
wave will be defined by the formulas: 
 

(8)     ξi =
i

dt
u

∂Π
∂

  (i = 1, 2, …, n). 

 
 We shall also have need for the general equation of the elementary waves when 
referred to the primitive coordinate system.  The plane that has (1) for its equation in the 
system with origin (x) has the equation in the fundamental system: 
 

1

( )
n

i i i
i

u X x
=

−∑ − 1 = 0, 

 
and if one converts this equation into the form: 
 

(9)      
1

n

i i
i

q X
=
∑ − 1 = 0, 

 
then in order to transform the tangential coordinates one has the formulas: 
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i

i

u

q
= 1

1

1

n

k k
k

u x
=

+∑
 = 

1

1

1
n

k k
k

q x
=

−∑
 (i = 1, 2, …, n). 

 
 Equation (7) thus becomes: 
 

(10)   Π(t | x1 , …, xn | q1 , …, qn) dt + 
1

n

i i
i

q x
=
∑ = 1, 

 
and we have to find the envelope of all of the elementary waves represented by that 
equation (1) when (x) is on M.  Each of them has a certain number of contact elements 

(point, tangent plane) in common with the envelope that we shall determine.  For this, we 
express that they are common to (1) and to the infinitely close waves that result from it 
by infinitely small variation of (x) on M. 

 To that end, denote by δ any differentiation relative to such a variation: the variations 
δx1 , …, δxn will be uniquely subject to the condition: 
 

(2)      
1

n

i i
i

p xδ
=
∑ = 0, 

 
where p1 , …, pn are the direction coefficients for the tangent plane to M at (x).  We must 

then express that the equation obtained upon applying the differentiation δ to (1) is a 
consequence of (2), which gives the equations: 
 

(3)     
( | | )

i

t x q

x

∂Π
∂

+ qi = mpi  (i = 1, 2, …, n), 

 
where m is a factor that one will determine by taking (1) into account. 
 However, one may leave m indeterminate, because equations (3) thus define the 
direction of the planes of the desired contact elements by means of the ratios of the qi, 
and equations (11)(no. 4), in which only the ratios appear, then give the point to which 
each of the corresponding contact elements belong. 
 The form of equations (3) shows that there is a direction (q1 , …, qn) satisfying the 
question that tends to the direction (p1 , …, pn) when dt tends to zero, and that there is 
only one of them.  Therefore, among the contact elements that are common to the 
elementary wave (1) and all of the infinitely close waves there is one and only one of 
them that tends to the contact element (x1 , …, xn | p1 , …, pn) of the wave M when dt 
tends to zero.  Denote the coordinates of that contact element by 1 1( , , | , , )n nx x p p′ ′ ′ ′⋯ ⋯ .  

Further, denote the instant t + dt by t′.  We have the equations: 
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(4)    ix′ =
( | | )

i

t x p

p

′∂Π
′∂

(t′ – t) + xi  (i = 1, 2, …, n) 

and: 

(5)    
( | | )

i

t x p

x

′∂Π
∂

(t′ – t) = mpi  (i = 1, 2, …, n). 

 
Moreover, in order to unambiguously determine the pi , whose ratios alone have been 
given up to now, we subject them to satisfy the condition: 
 
(6)     Π(t | x1 , …, xn | p1 , …, pn) = 1, 
 
and this will then define them with no ambiguity, Π being homogeneous of degree 1. 
 Likewise, the ip′  will be subject to satisfying the analogous relation: 

 
(7)     1 1( | , , | , , )n nt x x p p′ ′ ′ ′ ′Π ⋯ ⋯ = 1. 

 
 Thus, when dt tends to zero each of the differences (ix′ − xi) and ( ip′  − pi) tends to 

zero, and their principal parts, which we denote by dxi and dpi, are obtained by 
differentiating equations (4), (5), and (7) with respect to t′ for t′ = t, which gives (dt′ = 
dt): 

(8)    dxi =
( | | )

i

t x p
dt

p

∂Π
∂

   (i = 1, 2, …, n), 

(9)    
( | | )

i

t x p
dt

x

∂Π
∂

+ dpi = pi dµ  (i = 1, 2, …, n), 

(10)   
1 1

n n

i i
i ii i

dt dx dp
t x p= =

∂Π ∂Π ∂Π+ +
∂ ∂ ∂∑ ∑ = 0. 

 
 Upon eliminating the dxi and the dpi , the latter gives dµ.  This gives: 
 

1

n

i
i i

dt p d
t p

µ
=

∂Π ∂Π+
∂ ∂∑ = 0, 

 
hence, due to the homogeneity of Π: 
 

(11)     dµ = − dt
t

∂Π
∂

. 

 
We thus arrive at the following result: 
 
 To each contact element (x | p) of order M, considered at the instant t, there 

corresponds, on the infinitely close wave that results after the time dt, a new contact 
element, which is given, up to second-order infinitesimals, by the formulas: 



Essay on the propagation of waves                                                            10 

(12)  dxi =
( | | )

i

t x p
dt

p

∂Π
∂

    (i = 1, 2, …, n), 

(13)  dpi = − 
( | | ) ( | | )

i
i

t x p t x p
p dt

p t

 ∂Π ∂Π+ ∂ ∂ 
 (i = 1, 2, …, n), 

 
upon supposing that the coordinates x1 , …, xn ; p1 , …, pn are linked by the relation: 
 
(14)    Π(t | x1 , …, xn | p1 , …, pn) = 1. 
 
 6.  If we suppose, more generally, that the system of derived waves is given by 
equation (2) (no. 4) then the condition (14) will be replaced by: 
 
(1)     H(t | x1 , …, xn | p1 , …, pn) = 0. 
 
 From the identities (5) of no. 4, which may be written: 
 

1
1| , , | , , n

n

pp
H t x x
 
 Π Π 

⋯ … ≡ 0, 

 
one deduces, upon setting, to abbreviate the notation: 
 

wi = ip

Π
 (i = 1, 2, …, n), 

the identities: 

   
1

( | | ) ( | | )n
i

i i

wH t x w H t x w

t w t=

∂ ∂ ∂Π−
∂ ∂ Π ∂∑ = 0, 

   
1

( | | ) ( | | )n
i

ik i k

wH t x w H t x w

x w x=

∂ ∂ ∂Π−
∂ ∂ Π ∂∑ = 0 (k = 1, 2, …, n), 

   
1

( | | ) ( | | )n
i

ik i k

wH t x w H t x w

w w p=

∂ ∂ ∂Π−
∂ ∂ Π ∂∑ = 0 (k = 1, 2, …, n), 

 
 Under the hypothesis (14) (no. 5), they reduce to: 
 

   
( | | )t x p

M
t

∂Π
∂

=
( | | )H t x p

t

∂
∂

, 

   
( | | )

i

t x p
M

x

∂Π
∂

=
( | | )

i

H t x p

x

∂
∂

   (i = 1, 2, …, n), 

   
( | | )

i

t x p
M

p

∂Π
∂

=
( | | )

i

H t x p

p

∂
∂

   (i = 1, 2, …, n), 

M =
1

( | | )n

i
i i

H t x p
p

p=

∂
∂∑ , 
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and equations (12), (13), and (14) of no. 5 will be replaced by the formulas: 
 

(2)    i

i

dx
H

p

∂
∂

= i

i
i

dp

H H
p

x t

 ∂ ∂− + ∂ ∂ 

 = 

1

n

k
k k

dt
H

p
p=

∂
∂∑

, 

 
adjoined to equation (1). 
 
 

II. – Characteristics and the determination of the family of waves 
 

 7.  We may now begin to treat the general problem of the propagation of waves that 
was stated in no. 1: Knowing an original wave M0 that is given at the instant t0 , find the 

wave M that results at the instant t. 

 It is natural to think that M will be deduced from M0 by applying the infinitesimal 

variation defined by formulas (12), (13), (14) of no. 5 an infinite number of times.  That 
is what we shall examine, and we first study whether the indefinite repetition of that 
infinitesimal variation to an arbitrary multiplicity M0, taken at the instant t0, indeed gives 

a new multiplicity. 
 From the theory of ordinary differential equations, the indefinitely-repeated 
application of the variation (12), (13), (14) (no. 5) is equivalent to the use of the 
transformation that results from it by integration.  However, this system being over-
determined, one must show that the integration is possible. 
 Thus, suppose that the system (12), (13) (no. 5) has been integrated; i.e.: 
 

(1)    dxi =
i

dt
p

∂Π
∂

   (i = 1, 2, …, n), 

(2)    dpi = − i
i

p dt
x t

 ∂Π ∂Π+ ∂ ∂ 
 (i = 1, 2, …, n). 

 
The general integral is of the form: 
 
(3)   xi =

0 0 0 0
1 1 0( | , , | , , | )i n nA t x x p p t⋯ ⋯  (i = 1, 2, …, n), 

(4)   pi =
0 0 0 0
1 1 0( | , , | , , | )i n nB t x x p p t⋯ ⋯  (i = 1, 2, …, n), 

 
where 0

1x , …, 0
nx ; 1

0p , …, 0
np are the initial values of x1, …, xn ; p1, …, pn for t = t0 . 

 Moreover, one deduces from (1) and (2): 
 

  d(Π – 1) = 
1 1

n n

i i
i ii i

dt dx dp
t x p= =

∂Π ∂Π ∂Π+ +
∂ ∂ ∂∑ ∑  
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  = 
1

1
n

i
i i

p dt
t p=

 ∂Π ∂Π− ∂ ∂ 
∑  

  = ( )1 dt
t

∂Π − Π
∂

. 

 
 Thus, if we set: 
(5)    C = Π(t | A1 , …, An | B1 , …, Bn) – 1, 
 

(6)    Π1 = 
( | | )t A B

t

∂Π
∂

 

 
then C is a function of t that satisfies the differential equation: 
 

(7)     
dC

dt
+ Π1 C = 0, 

 
and which reduces, for t = t0 , to: 
 

C0 = 0 0 0 0
0 1 1( | , , | , , )n nt x x p pΠ ⋯ ⋯ − 1. 

 
 Now, equation (7) has one and only one integral that reduces to zero for t = t0 , and 
that integral is obviously C ≡ 0.  Therefore, if C0 is null then C is also null for any t. 
 In other words, the values (3), (4) verify equation (14) of no. 5 for any t; i.e.: 
 
(8)     Π(t | x1 , …, xn | p1 , …, pn) = 1, 
 
provided that they are verified for t = t0 . 
 One may further say that the transformation of 0 0 0 0

1 1( , , | , , )n nx x p p⋯ ⋯  into (x1 , …, xn 

| p1 , …, pn) that is defined by (3), (4) leaves equation (8) invariant. 
 It is proved by this that it is possible to integrate the mixed system (12), (13), (14) of 
no. 5, and that the general integral is given by formulas (3), (4), where 0 0

1 , , nx x⋯ ; 0
1p , 

… 0
np ; t0 are subject only to the condition: 

 
(9)     0 0 0 0

0 1 1( | , , | , , )n nt x x p pΠ ⋯ ⋯ = 1. 

 
 The indefinite repetition of the infinitesimal variation considered thus has a well-
defined sense. 
 
 8.  Formulas (3), (4) (no. 7) have some homogeneity properties that are useful to point 
out.  To that effect, in equations (1), (2) (no. 7) set: 
 
(1)    xi = Ai ,  pi = mBi   (i = 1, 2, …, n). 
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The equations: 

(2)     dxi = 
i

dt
p

∂Π
∂

  (i = 1, 2, …, n) 

 
are again verified, the right-hand sides being homogeneous of degree zero with respect to 
the pi .  As for the equations: 
 

(3)    dpi = − i
i

p dt
x t

 ∂Π ∂Π+ ∂ ∂ 
 (i = 1, 2, …, n), 

 
they give, upon taking homogeneity into account: 
 

m dBi + Bi dm = − 2( | | ) ( | | )
i

i

t A B t A B
m m B dt

A t

 ∂Π ∂Π+ ∂ ∂ 
  (i = 1, 2, …, n), 

 
which reduces, upon taking into account the definition of the Ai and the Bi , and the 
notation introduced by formula (6) of no. 7, to the unique equation: 
 
(4)      dm = m(1 – m) Πi dt. 
 
 Having said this, let m0 be an arbitrary constant, and let M be the integral of (4) that 
reduces to m0 for t = t0 .  The functions: 
 

xi = Ai ,  pi = MBi   (i = 1, 2, …, n) 
 
constitute the solution of the system (1), (2) that is defined by the initial conditions: 
 

xi = 0
ix , pi = m0

0
ip  (i = 1, 2, …, n). 

 
However, this same solution is also given by: 
 
  xi = 0 0 0 0

1 0 1 0 0( | , , | , , | )i n nA t x x m p m p t⋯ ⋯  (i = 1, 2, …, n), 

  pi = 0 0 0 0
1 0 1 0 0( | , , | , , | )i n nB t x x m p m p t⋯ ⋯  (i = 1, 2, …, n). 

 
One thus has the identities: 
 
  0 0 0 0

1 1 0( | , , | , , | )i n nA t x x p p t⋯ ⋯ = 0 0 0 0
1 0 1 0 0( | , , | , , | )i n nA t x x m p m p t⋯ ⋯ , 

  0 0 0 0
1 1 0( | , , | , , | )i n nMB t x x p p t⋯ ⋯ = 0 0 0 0

1 0 1 0 0( | , , | , , | )i n nB t x x m p m p t⋯ ⋯  

 
for (i = 1, 2, …, n). 
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 Therefore, the functions Ai, as well as the ratios of the functions Bi , are homogeneous 
of degree zero with respect to 01p , …, 0

np . 

 
 From this, it results that one may employ formulas (3), (4) (no. 7) to the 
transformation of the contact element 0 0 0 0

1 1( , , | , , )n nx x p p⋯ ⋯  into the new contact element 

(x1, …, xn | p1, …, pn), without restricting it to verify condition (9) (no. 7). 
 
 9.  Therefore, apply the transformation defined by the equations: 
 
(1)   xi =

0 0 0 0
1 1 0( | , , | , , | )i n nA t x x p p t⋯ ⋯  (i = 1, 2, …, n), 

(2)   pi =
0 0 0 0
1 1 0( | , , | , , | )i n nB t x x p p t⋯ ⋯  (i = 1, 2, …, n) 

 
to each of the contact elements 0 0 0 0

1 1( , , | , , )n nx x p p⋯ ⋯  of the same multiplicity M0 .  We 

shall show that the new contact elements thus obtained belong to another multiplicity. 
 Effectively, 0 0 0 0

1 1, , ; , ,n nx x p p⋯ ⋯  are, by hypothesis, functions of the (n – 1) 

independent variables α1 , …, αn−1, whose total differentials satisfy the identity: 
 

(3)      0 0

1

n

i i
i

p xδ
=
∑ = 0, 

 
and one must show that the functions of α1 , …, αn−1 that are deduced from formulas (1), 
(2) verify the analogous identity: 

(4)      
1

n

i i
i

p xδ
=
∑ = 0. 

 
Now, since the functions (1), (2) satisfy the equations: 
 

(5)   idx

dt
=

ip

∂Π
∂

, idp

dt
= − i

i

p
p t

∂Π ∂Π−
∂ ∂

  (i = 1, 2, …, n), 

one has: 

1

n

i i
i

d p xδ
=
∑ = 

1 1

n n

i i i i
i i

dp x p dxδ δ
= =

+∑ ∑ = 
1 1 1

n n n

i i i i i i
i i i

dp x p dx p dxδ δ δ
= = =

+ −∑ ∑ ∑ , 

i.e.: 

1

n

i i
i

d
p x

dt
δ

=
∑ = δΠ − 

1 1 1

n n n

i i i i
i i ii i

x p x p
x t p

δ δ δ
= = =

∂Π ∂Π ∂Π− −
∂ ∂ ∂∑ ∑ ∑ , 

 
or, finally, making reductions: 
 

(6)     1
1 1

n n

i i i i
i i

d
p x p x

dt
δ δ

= =
+ Π∑ ∑ = 0, 
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where Π1 is again the function of t that is defined by (6) (no. 7). 
 One may then repeat the argument that was made in no. 7 for the function C for the 

function 
1

n

i i
i

p xδ
=
∑ and conclude that since its initial value for t = t0 is null, it is null for 

any t, and this is what we needed to establish. 
 
 Therefore, the transformation (1), (2), where t and t0 are arbitrary constants, changes 
any multiplicity into a multiplicity.  It is, in the language of S. Lie, a contact 
transformation. 
 
 10.  For ease of expression, we call a trajectory – or ray – the locus of points that are 
represented by the equations: 
 
(1)   xi =

0 0 0 0
1 1 0( | , , | , , | )i n nA t x x p p t⋯ ⋯  (i = 1, 2, …, n) 

 
when only t varies and t0; 

0 0
1 , , nx x⋯ ; 0 0

1 , , np p⋯  have constant values.  Each point of the 

trajectory corresponds to an instant t, and we consider that law of correspondence as an 
integral part of the trajectory.  In other words, a point of a trajectory is considered to exist 
only at the instant t that it corresponds to. 
 There are ∞2n−1 trajectories, thus extended.  To each instant t, there are ∞n−1 of them 
through each point of the space En . 
 The trajectories may be considered as serving to transport the contact elements.  
Indeed, for each point of the trajectory (1) there passes the contact element whose 
direction is given by the formulas: 
 
(2)   pi =

0 0 0 0
1 1 0( | , , | , , | )i n nB t x x p p t⋯ ⋯   (i = 1, 2, …, n). 

 
 The correspondence between the points of a trajectory and the contact elements that it 
carries is already given by the differential equations: 
 

(3)     idx

dt
=

ip

∂Π
∂

  (i = 1, 2, …, n), 

 
because, from the explanations of no. 4, these differential equations may be thus 
interpreted: 
 
 Being given a trajectory, let (x) be the point of this trajectory that exists at the instant 
t: this point is, at that instant, the origin of a derived wave, and the direction of the 
trajectory in (x) is the one that takes the origin (x) to the contact point of the tangent 
plane to the derived wave that is parallel to the contact element carried by the point (x) 
of the trajectory at the instant t. 
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 The set consisting of a trajectory and the contact elements thus carried by its various 
points will be called a characteristic.  A characteristic is therefore defined by the system 
(1), (3), where only t is variable. 
 The construction that was justified in no. 9 may be stated thus, with the new 
language: 
 
 Being given a multiplicity M0 , one considers the various characteristics that have 

the contact elements of M0 at a given instant t for their elements.  The set of elements of 

all these characteristics that coexist at another instant t is a new multiplicity. 
 
 In other words: The new multiplicity results from the simultaneous transport of the 
elements of the first one by the trajectories that carry the contact elements of the first 
multiplicity at the instant t. 
 
 11.  We must now study whether the family of multiplicities M′ that thus issue from 

an original multiplicity M0 , when considered at the instant t0 , agree with the family of 

waves M that issue, under the given mode of propagation, from the original wave M0 , 

which are assumed to be produced at the instant t0 . 
 We first remark that the family of multiplicities M′ (by virtue of its mode of 

construction) and the family of waves M (by virtue of the hypothesis no. 3) enjoy the 

common property that one passes from a multiplicity of the family to an infinitely close 
one (up to higher-order infinitesimals) by the variation that is defined by formulas (12), 
(13), (14) of no. 5. 
 This proves, in passing, that our principle of enveloping waves implies no 

contradiction, and from this we may also conclude the identity of the M′ with the M by 

proving that the family of the M′ is the only one that satisfies this property and contains 

the given multiplicity M0 for t = t0 . 

 For this, we shall first analytically translate the stated property for a family of 
arbitrary multiplicities whose general equation may be assumed to be given in the form: 
 
(1)     F(x1 , …, xn) = t. 
 
To abbreviate the notation, set: 
 

(2)     
i

F

x

∂
∂

= Pi (i = 1, 2, …, n) 

and: 
(3)     Π(F | x1 , …, xn | P1 , …, Pn) = Π . 
 
Therefore, for a contact element of (1), we may set: 
 
(4)    pi = Pi :Π   (i = 1, 2, …, n), 
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and these values already verify the relation (4) of no. 5.  It will then remain only for us to 
express that the differentials given by the formulas (12) and (13) of no. 5 satisfy the 
equations obtained upon differentiating (1) and (4). 
 The differentiation of (1) gives, upon taking into account the fact that the derivatives 
∂Π / ∂pi are homogeneous of degree zero, and also from equation (1) itself: 
 

dt = 
1

n

i i
i

Pdx
=
∑ = 

1

n

i
i i

P dt
p=

∂Π
∂∑ =

1

n

i
i i

P dt
P=

∂Π
∂∑ = Π dt, 

i.e.: 
(5)      Π = 1. 
 
 This first result permits us to simplify formulas (4), which become: 
 
(6)     pi = Pi  (i = 1, 2, …, n). 
 
Upon differentiating them in turn, one obtains the conditions: 
 

dPi = − i
i

p dt
x t

 ∂Π ∂Π+ ∂ ∂ 
= i

i

P dt
x t

 ∂Π ∂Π+ ∂ ∂ 
  (i = 1, 2, …, n), 

i.e.: 
2

1

n

k
k i k i i

F F
dx dt

x x x F x=

 ∂ ∂Π ∂Π ∂+ + ∂ ∂ ∂ ∂ ∂ 
∑ = 0   (i = 1, 2, …, n), 

or again: 

1

n
k

k k i i i

P F

P x x F x=

∂∂Π ∂Π ∂Π ∂+ +
∂ ∂ ∂ ∂ ∂∑ = 0   (i = 1, 2, …, n). 

 
However, it results from (5), upon differentiating with respect to xi (i = 1, 2, …, n). 
 The principle of enveloping waves (in the infinitesimal sense that we have intended) 
thus finds its analytical expression in condition (5), i.e., in the partial differential 
equation: 

(7)     1
1

| , , | , ,n
n

F F
F x x

x x

 ∂ ∂Π  ∂ ∂ 
… … = 1, 

 
which is nothing but equation (14) of no. 5, i.e.: 
 
(8)     Π(t | x1 , …, xn | p1 , …, pn) = 1, 
 
where one considers t to be a function of x1 , …, xn and p1 , …, pn are the partial 
derivatives: 

(9)     pi = 
i

t

x

∂
∂

  (i = 1, 2, …, n). 
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 Conversely, this gives us an interpretation for the most general first-order partial 
differential equation in one unknown function, because, as we have seen in no. 4, one 
may reduce the general equation of the form: 
 
(10)    H(t | x1 , …, xn | p1 , …, pn) = 0 
to the canonical form (8). 
 The theory of characteristics that was presented in the preceding sections shows how 
one may construct, by means of integrating the system (1), (2) of no. 7, i.e., the system (2) 
of no. 6: 

(11)  i

i

dx
H

p

∂
∂

= i

i
i

dp
H H

p
x t

∂ ∂− −
∂ ∂

 =

1

n

k
k k

dt
H

p
p=

∂
∂∑

  (i = 1, 2, …, n), 

 
a solution of equation (10) that takes the given value t0 at all of the points of the 

arbitrarily chosen multiplicity M0 . 

 It only remains for to prove that this solution is the only one that satisfies that initial 
condition. 
 
 12.  Indeed, suppose that a family of multiplicities M: 

 
(1)      F(x1 , …, xn) = t 
 
satisfy the partial differential equation: 
 
(2)     Π = Π(F | x1 , …, xn |  P1 , …, Pn) = 1, 
 
where one again supposes that: 
 

(3)     Pi =
i

F

x

∂
∂

  (i = 1, 2, …, n). 

 
A multiplicity M passes through each point (x) of space En , and it corresponds to a value 

of t [given by (1)].  This point is, in turn, the origin of a well-defined derived wave.  Take 
the tangent plane to this wave that is parallel to the tangent plane at (x) of the multiplicity 
M and join it to the contact point (x). 

 We thus obtain a direction D at each point of En, and there exists a family of tangent 
curves at each of its points with the corresponding direction D.  To each point of one of 
these curves there corresponds a value of t, and a contact element carried by this point, 
namely, those of the multiplicity M of the family considered that passes through this 

point, and since each multiplicity M is the locus of contact elements thus carried by those 
curves that correspond to the same value of t, it will suffice to prove that the preceding 
construction gives the characteristics, in order to show, in the same stroke, that any 
family (1) that satisfies (2) is given by the construction of no. 9. 
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 Effectively, the curves that we just defined geometrically are integrals of the system: 
 

(4)     dxi =
i

dt
P

∂Π
∂

  (i = 1, 2, …, n), 

 
because, due to (2), these equations result in: 
 

dF = 
1

n

i i
i

Pdx
=
∑ = dtΠ = dt, 

 
which entails equation (1), provided that one requires the initial givens 0

1x , …, 0
nx ; t0 to 

satisfy it.  Moreover, equations (4) express (see no. 10) the property of the tangents to the 
curves considered that has served to define them. 
 For the contact elements that we make to correspond to the various points of these 
curves, we have, by definition: 
 
(5)     pi = Pi  (i = 1, 2, …, n). 
 
It remains for us to verify that these values satisfy the equations: 
 

(6)    idp

dt
= − i

i

p
x t

∂Π ∂Π−
∂ ∂

  (i = 1, 2, …, n); 

 
i.e., that one has identically, by virtue of (1), (2), (3), and (5): 
 

dPi = − i
i

P dt
x F

 ∂Π ∂Π+ ∂ ∂ 
  (i = 1, 2, …, n), 

 
which is equivalent to: 
 

1

n
i

i
k k k i

P
P

x P x F=

∂ ∂Π ∂Π ∂Π+ +
∂ ∂ ∂ ∂∑ = 0  (i = 1, 2, …, n), 

or finally, to: 
 

(7)   
1

n
k

ki i k i

PF

F x x P x=

∂∂Π ∂ ∂Π ∂Π+ +
∂ ∂ ∂ ∂ ∂∑ = 0 (i = 1, 2, …, n), 

 
due to the identities: 

i

k

P

x

∂
∂

 = k

i

P

x

∂
∂

  (i, k = 1, 2, …, n). 
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 Now, the identities (7) are obtained by differentiating the identity (1), which is 
verified by hypothesis, with respect to the xi (i = 1, 2, …, n). 
 It thus indeed established that any solution of (1) that takes the value t0 at the various 
points of a given multiplicity M0 is obtained by the construction of no. 9, and that as a 

result there exists only one solution that satisfies the initial condition. 
 At the same time, it then results that this construction indeed defines the propagation 

of the wave M0  starting at the instant t0 . 

 
 13.  The transformation of no. 9, which gives the wave M that issues from the 

original wave M0 at a given time t0 when it arrives at the instant t, operates individually 

on the contact elements of M0 to give the contact elements of M, and for a particular 

contact element of M0 it depends only upon that contact element, but not on the wave 

M0 that it belongs to. 

 From this, it results that if one imagines two original waves that have a common 

contact element then the waves M that correspond to them will also have a common 

contact element, which will be the transform of the preceding one. 
 Since one of the waves M that we imagine may be reduced to a point, it results from 

this that the principle of enveloping waves, which we have assumed for an infinitely 
small variation of time, and up to higher-order infinitesimals, is rigorously verified for an 
arbitrary finite variation of time. 
 It results immediately that if one knows the finite waves that are emitted, starting at 
an arbitrary instant t0 , by the various point of the medium, after an arbitrary time t − t0  
then the propagation of an arbitrary original wave is also known without integration. 
 However, one may obtain a slightly more general result that gives the classical 
properties of complete integrals. 
 Indeed, suppose that we know the propagation of ∞n origin waves; i.e., a solution of 
the partial differential equation: 
 
(1)     t = G(x1 , …, xn | a1 , …, an) 
 
containing n essential arbitrary constants.  For t = t0 the multiplicities (1) contain all of 
the ∞2n−1 contact elements of the space, and each of them may be defined as the contact 
element that is common to the multiplicity: 
 
(2)     t0 = G(x1 , …, xn | a1 , …, an) 
 
and the ones that result from the infinitely small variation of the constants a1 , …, an, 
linked by a certain relation of the form: 
 

(3)      
1

n

i i
i

b aδ
=
∑ = 0. 
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Indeed, in order to determine that element these conditions these conditions give the 2n − 
1 equations: 

(4)   G = t0 ,  
i

G

a

∂
∂

= mbi , pi = 
i

G
h

x

∂
∂

  (i = 1, 2, …, n); 

 
hence, one may inversely deduce a1 , …, an and the ratios of b1 , …, bn if the element is 
given. 
 Finally, any multiplicity M0 , when given as the original wave at the instant t0 , is the 

envelope of ∞n−1 multiplicities (2), defined by an equation of the form: 
 
(6)      Φ(a1 , …, an) = 0. 
 
The wave M that results at the instant t will be the envelope of the ∞n−1 multiplicities 

that correspond to them; i.e., the multiplicities (1) that satisfy the condition (6). 
 
 14.  We now examine how the preceding results are modified in the case of a 
permanent regime. 
 The general equation of the derived waves is: 
 
(1)     H(x1 , …, xn | p1 , …, pn) = 0, 
or, in canonical form: 
 
(2)     Π(x1 , …, xn | p1 , …, pn) = 1, 
which does not contain time. 
 The differential system of the characteristics simplifies and becomes: 
 

(3)   i

i

dx
H

p

∂
∂

= i

i

dp
H

x

∂−
∂

=

1

n

k
k k

dt
H

p
p=

∂
∂∑

  (i = 1, 2, …, n), 

 
or, in canonical form: 
 

(4)   idx

dt
=

ip

∂Π
∂

, idp

dt
= − 

ix

∂Π
∂

  (i = 1, 2, …, n). 

 
 In the latter, the right-hand sides do not depend upon t, and its general integral is of 
the form: 
(5)    xi = 0 0 0 0

0 1 1( | , , | , , )i n nt t x x p p− ⋯ ⋯A   (i = 1, 2, …, n), 

(6)    pi =
0 0 0 0

0 1 1( | , , | , , )i n nt t x x p p− ⋯ ⋯B   (i = 1, 2, …, n). 
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 It results from this that the construction that gives the wave M that is emitted after a 

time interval (t – t0) from an original wave M0 depends only upon that time interval, but 

not on the instant t0 when that original wave appeared.  This is what we asserted in no. 2. 
 One also sees that here the same trajectory corresponds to an infinitude of modes of 
distributing the time t between its various points.  The same point might correspond to all 
of the values of t, but the difference in the values of t that correspond to two of the points 
is determined completely. 
 If one abstracts from the correspondence between the points of a trajectory (or the 
contact elements that define a characteristic) and time then here there are only ∞2n−2 
trajectories (or characteristics). 
 No matter what instant at which a contact element in space begins, it is always 
transported by the same trajectory, and takes the same new position after a given time 
interval. 
 One may further say that the family of contact transformations defined in no. 9, which 
gives the law of propagation, and which, in the general case, depends upon two constants 
t and t0 , depends, in the case of a permanent regime, only upon the constant (t – t0) and 
thus defines a one-parameter group. 
 
 

III. – Properties of trajectories 
 

 15.  One may obtain a differential system that defines the trajectories independently 
of the contact elements that they transport.  For this, one must eliminate p1, …, pn from 
(12), (13), (14) of no. 5; i.e.: 
 

(1)    ix′ =
ip

∂Π
∂

  (i = 1, 2, …, n), 

(2)    ip′ = − i
i

p
x t

∂Π ∂Π−
∂ ∂

 (i = 1, 2, …, n), 

(3)     Π(x1 , …, xn | p1 , …, pn) = 1, 
 
upon denoting the derivatives dxi / dt, dpi / dt by ix′ and ip′ . 
 In order to effect this elimination, we introduce the general equation of derived waves 
in pointlike form by recalling the notions of no. 4.  By reasoning as we did for the 
tangential equation in no. 4, one see that the pointlike equation may be taken in the 
canonical form: 
(4)     Ω(t | x1 , …, xn | ξ1 , …, ξn) = 1, 
 
where Ω is homogeneous of degree 1 in ξ1, …, ξn . 
 Due to its homogeneity, the tangent plane at a point has the equation: 
 

(5)      
1

n

i
i iξ=

∂ΩΞ
∂∑ − 1 = 0, 
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in such a way that one has the following formulas for the coordinates of this plane, 
defined as in no. 4: 

(6)     ui =
( | | )

i

t x ξ
ξ

∂Ω
∂

 (i = 1, 2, …, n), 

 
just as one has, for the coordinates of a contact point: 
 

(7)     ξi =
( | | )

i

t x

u

ξ∂Π
∂

 (i = 1, 2, …, n). 

 
One will again remark that (4) results from the elimination of the ratios of the ui in 
equations (7), just as: 
(8)     Π(x1 , …, xn | p1 , …, pn) = 1 
 
results from the elimination of the ratios of the ξi in equations (6). 
 A sheet of the wave, represented simultaneously by the canonical equations (4) and 
(8), has only one point on each line that issues from (x), just as it has only tangent planes 
parallel to a given plane; of course, this is true in some suitable limit. 
 Having said this, one sees that equations (1) and (3) have the following equations for 
their equivalent system: 
(9)     Ω(t | x1 , …, xn | 1x′ , …, nx′ ) = 1 

and: 

(10)    pi = 
( | | )

i

t x x

x

′∂Ω
′∂

 (i = 1, 2, …, n). 

 
 In order to transform equations (2), one must again calculate ∂Π / ∂xi and dΠ / dt .  To 
that effect, we remark that from the identity: 
 

1
1

| , , | , ,n
n

t x x
p p

 ∂Π ∂ΠΩ ∂ ∂ 
⋯ ⋯ = 1, 

 
one deduces, by differentiation, taking (1) into account: 
 

2

1

n

k k kt x p t=

∂Ω ∂Ω ∂ Π+
′∂ ∂ ∂ ∂∑ = 0, 

i.e., due to (10): 
2

1

n

k
k k

p
t p t=

∂Ω ∂ Π+
∂ ∂ ∂∑ = 0, 

 
or finally, dΠ / dt being homogeneous of degree 1 in p1 , …, pn : 
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(11)     
t t

∂Ω ∂Π+
∂ ∂

= 0. 

One likewise finds that: 

(12)     
i ix x

∂Ω ∂Π+
∂ ∂

= 0  (i = 1, 2, …, n). 

Equations (2) thus become: 

(13)    i

i i

d
x

dt t x x

∂Ω
′∂ ∂Ω ∂Ω ∂Π− −

′∂ ∂ ∂
= 0 (i = 1, 2, …, n), 

 
and the trajectories are defined by the system (9), 13). 
 This system is over-determined, but one may simplify it.  Indeed, we have in view of 
the homogeneity of Ω: 

     
( | | )

i

t x x

x

′∂Ω
′∂

= 
( | | )

i

t x dx

dx

∂Ω
∂

  (i = 1, 2, …, n), 

     
( | | )

i

t x x

x

′∂Ω
∂

=
( | | ) 1

i

t x dx

x dt

∂Ω
∂

 (i = 1, 2, …, n), 

     
( | | )t x x

t

′∂Ω
∂

= 
( | | ) 1t x dx

t dt

∂Ω
∂

, 

 
and we write the system (13) by henceforth setting: 
 
(14)    Ω = Ω(t | x1 , …, xn | dx1 , …, dxn) 
in the form: 

(15)   
i i i

d
dx t dx x

∂Ω ∂Ω ∂Ω ∂Ω− −
∂ ∂ ∂ ∂

 = 0  (i = 1, 2, …, n). 

 
 We multiply these equations by dxi (i = 1, 2, …, n) and add them.  This gives: 
 

2

1 1 1 1

n n n n

i i i i
i i i ii i i i

d dx d x dx dx
dx dx dx t dx= = = =

∂Ω ∂Ω ∂Ω ∂Ω ∂Ω− − −
∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ = 0; 

 
i.e., upon simplifying: 

(16)     
t

∂Ω
∂

(dt – Ω) = 0. 

 
 Therefore, if one is in a variable regime then equation (9) is a consequence of 
equations (13) or (15).  If one is a permanent regime then equations (15) reduce to (n – 1) 
and do not contain time. 
 In other words: In a variable regime the trajectories are defined by the system (15), 
as well as the form of the law according to which they are described. 
 In a permanent regime the form of the trajectories is defined by the system: 
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(17)    
i i

d
dx x

∂Ω ∂Ω−
∂ ∂

= 0  (i = 1, 2, …, n), 

 
which reduces to n − 1 independent equations, and the law according to which they are 
described is given by the equation: 
 
(18)    dt = Ω(t | x1 , …, xn | dx1 , …, dxn), 
 
which does not contain t explicitly. 
 In the case of the variable regime equation (18) is always meaningful, but it is a 
consequence of equations (15). 
 Finally, the formulas that give the contact element that must be associated with each 
point of a trajectory in order to make it a characteristic are formulas (10), i.e.: 
 

(19)     pi = 
idx

∂Ω
∂

 (i = 1, 2, …, n). 

 
 These formulas always translate into the law of correspondence between the direction 
of the trajectory and the direction of the element that was asserted in no. 10. 
 
 16.  Henceforth, we shall remain in the case of the variable regime, and let the word 
ray denote a trajectory when one considers only its form; i.e., when one abstracts from 
the law of correspondence between the points of the trajectory and the values of t that 
they correspond to. 
 If one is given a ray then one may deduce the corresponding characteristic without 
integration. 
 Indeed, equations (15) of no. 15, when one replaces dt by its value (18) (no. 15), then 
give t explicitly, and then the contact element associated with each point results, from the 
known law (no. 10), in the direction of the trajectory of that point. 
 Having said this, imagine a family of ∞n−1 rays, and, by the method that was just 
stated, transform them into characteristics.  If it happens that the ∞n−1 contact elements 
that correspond to the same value of t on these rays belong to the same multiplicity then 
we say that the family of rays in questions is conjugate to that multiplicity. 
 From no. 11, such a family of rays will correspond to an integral of the partial 
differential equation: 
(1)     Π(t | x1 , …, xn | p1 , …, pn) = 1, 
 
and the converse is true, from no. 12. 
 One may thus consider an integral of that equation, i.e., a family of waves that is 
obtained by successively propagating one of them, to be a family of ∞1 multiplicities that 
are conjugate to a family of ∞n−1 rays. 
 If we remark that the values of t that are associated with the various points of the 
same ray are also defined by the equation: 
 
(2)     dt = Ω(t | x1 , …, xn | dx1 , …, dxn) 
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when one is given the value t0 that corresponds to a particular point then we may state the 
following theorem, which is the generalization of the classical theorems of Thomson and 
Tait: 
 
 When a family of ∞1 multiplicities is conjugate to a family of ∞n−1 rays, the integral of 
the differential equation (2), when taken along any of the rays between two arbitrary 
points of the multiplicities, takes the same value, no matter what the ray, upon arriving at 
the second multiplicity if one has gives it the initial value, when one leaves the first 
multiplicity, that is the value t0 of t that corresponds to that multiplicity. 
 
 17.  The integral of the equation: 
 
(1)     dt = Ω(t | x1 , …, xn | dx1 , …, dxn), 
 
when taken along an arc of the arbitrary curve (C) that goes from a point (x0) to a point 
(x) by starting with the value t0 at the original point (x0), is the time that it takes for a 
disturbance that is produced at (x0) at the instant t0 in order to propagate up to (x) along 
(C). 
 One must understand this to mean that (C) is a tube of infinitely small diameter 
whose walls subject the disturbance to neither reflection nor friction. 
 Indeed, under these conditions the disturbance propagates by successive elementary 
waves that have their origins at the points of (C), and, if the disturbance arrives at (x) at 
the instant t then at the instant t + dt it will have attained, up to higher-order 
infinitesimals, the point (x1 + dx1 , …, xn + dxn), which is infinitely close to (x) on the 
curve, and which is also on the elementary wave that has (x) for its origin at the instant t. 
 Now, this is precisely what equation (1) expresses, because the derived wave is: 
 
(2)     Ω(t | x1 , …, xn | ξ1 , …, ξn) = 1 
 
[when (x) is taken for the origin of the coordinates], the equation of the elementary wave 
is: 

1
1| , , | , , n

nt x x
dt dt

ξξ Ω 
 

⋯ ⋯ = 1, 

or: 
(3)     Ω(t | x1 , …, xn | ξ1 , …, ξn) = dt, 
 
and equation (1) expresses precisely that the point with coordinates (dx1 , …, dxn) belongs 
to that wave. 
 That duration of propagation may also be defined, due to the homogeneity of Ω, by 
the formula: 

(4)      dt = 
1

n

i i
i

p dx
=
∑ , 

 
with the condition that p1 , …, pn are defined at each point of the curve (C) by the 
formulas: 
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(5)      pi =
idx

∂Ω
∂

  (i = 1, 2, …, n), 

 
or, what amounts to the same thing, by the set of equations: 
 

(6)      dxi = 
ip

ρ ∂Π
∂

  (i = 1, 2, …, n) 

and the equation: 
(7)     Π(t | x1 , …, xn | p1 , …, pn) = 1. 
 
 The latter result may be obtained directly by remarking that along (C) the disturbance 
must propagate by a sequence of infinitely small arcs traced from a point of (C) to an 
infinitely close point.  Any one of these trajectory arcs that has (x) for its origin has the 
components dx1 , …, dxn, and it ends up at the point of the elementary wave [that has (x) 
for its origin at the instant t] that is the point of contact of a certain tangent plane to that 
wave; this is what equations (4), (6), (7) express. 
 Here, we assume that there is a trajectory arc that joins an arbitrary point (x) to an 
arbitrary infinitely close point at an arbitrary instant t; however, this results from the form 
of the equations (15) (no. 15). 
 Indeed, these equations are of first order in d2x1 , …, d2xn .  Their determinant is null 
because it is the Hessian of Ω with respect to dx1 , …, dxn , and this Hessian is null, on 
account of the identities: 
 

2

1

n

k
k i k

dx
dx dx=

∂ Ω
∂ ∂∑  = 0  (i = 1, 2, …, n), 

 
which express that the derivatives: 
 

idx

∂Ω
∂

  (i = 1, 2, …, n) 

 
are homogeneous of degree zero.  However, the minors of the Hessian are not all null, 
since otherwise equations (5) would entail a relation between p1 , …, pn , and the derived 
waves would not have ∞n−1 tangent planes. 
 On the other hand, if one introduces equation (1) then equations in d2x1 , …, d2xn 

reduce, from what we said in no. 15, to n – 1, and since the minors of the Hessian are not 
all null, one may deduce n – 1 of the second derivatives as functions of the nth one, which 
may be assumed to be null. 

 One will thus have, for example, the derivatives 
n

dt

dx
, 

2
1
2( )n

d x

dx
, …,

2
1
2( )

n

n

d x

dx
−  expressed 

as functions of t; x1 , …, xn ; 1

n

dx

dx
, …, 1n

n

dx

dx
− , which establishes the fact in question. 
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 The same fact also results from the fact that if the direction of a trajectory is given at 
an initial point and a given initial instant then the initial contact element of the 
corresponding characteristic is determined (no. 10).  The characteristic is, in turn, 
determined from the form of the differential system that defines the characteristics, and 
the same is true for the trajectory. 
 
 18.  The duration of the propagation of a disturbance along the curve (C) that we just 
defined may be regarded as conforming to a maximum property. 
 Indeed, recall the differential equation: 
 

(1)      dt = 
1

n

i i
i

p dx
=
∑ , 

 
upon supposing that p1 , …, pn are functions of x1 , …, xn and t that are subject only to 
verifying the equation: 
(2)      Π(t | x1 , …, xn| p1 , …, pn) = 1, 
 
and then integrate equation (1) along (C), while taking a given value t0 for the initial 
value.  To each choice of functions p1 , …, pn there corresponds a value of the integral (1) 
at the extremity of the arc of the curve (C), and we demand that one must choose p1 , …, 
pn in order to make that value of the integral be a maximum. 
 Along (C), x1 , …, xn are given functions of one independent variable u, and p1 , …, 
pn are functions of u and t that one must determine.  We need to point out that under these 
conditions the variation of the value of the integral is null.  Now, in order to determine 
them, since the variations of the xi are null, one has the differential equation: 
 

(3)     d δt = 
1

n

i i
i

p dxδ
=
∑ , 

 
and the δpi are subject only to the equation of condition: 
 

(4)     
1

n

i
i i

t p
t p

δ δ
=

∂Π ∂Π+
∂ ∂∑ = 0. 

 
 Since the latter property is meaningful no matter what extremity of the arc of the 
curve (C) was chosen, we find as a necessary condition that: 
 

1

n

i i
i

p dxδ
=
∑  

 
must be annulled under only the condition that: 
 

(5)      
1

n

i
i i

p
p

δ
=

∂Π
∂∑ = 0, 
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and this indeed gives equations (6) of no. 17: 
 

(6)     dxi =
ip

ρ ∂Π
∂

 (i = 1, 2, …, n). 

 
We remark in passing that upon taking (1) into account, one finds: 
 

dt = ρ, 
i.e.: 

(8)     idx

dt
=

ip

∂Π
∂

  (i = 1, 2, …, n). 

 
 The maximum of the integral in question may therefore be meaningful only when that 
integral represents the duration of propagation along (C) of a disturbance produced t the 
origin of the curve at the time t0 . 
 
 19.  One may geometrically interpret the relation that exists between an infinitesimal 
displacement on (C) and the corresponding differential of the function t that was 
considered in the preceding section. 
 Indeed, the equation: 

(1)      dt = 
1

n

i i
i

p dx
=
∑  

 
expresses that the point (x1 + dx1 , …, xn + dxn) of the curve (C) is found on the tangent 
plane to the elementary wave with origin (x) whose coordinates are p1 , …, pn .  In the 
case where t is the duration of propagation, the point (x + dx) is found at the point of 
contact itself of that plane. 
 This remark permits us to see that there is one case where the duration of the 
propagation indeed constitutes a maximum for the integral t.  It is the one where the 
elementary wave is constantly concave towards the origin, a case that presents a very 
special importance for the applications. 
 Indeed, suppose in that case that  p1 , …, pn have values that are sufficiently close to 
the values: 

(2)     pi = 
idx

∂Ω
∂

 (i = 1, 2, …, n), 

 
which corresponds to the case of null variation.  On the tangent to (C) at the point (x), one 
will encounter, upon starting with (x), first, the point of intersection of the tangent with 
the elementary wave with origin (x), and then the point of intersection of that tangent 
with the tangent plane whose coordinates are (p1 , …, pn).  Therefore, to a positive value 
of dt there will correspond a value of du (that one may assume to be positive) that is 
smaller in the case of null variation then in the neighboring case. 
 Therefore, for a given value of u and t the derivative du / dt is larger for the case of 
null variation then for the neighboring case. 
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 Having said this, we reserve the letter t for the case of null variation and employ the 
letter θ for the neighboring case.  The functions t and θ are the integrals of the two 
differential equations: 

(3)      
dt

du
= f(t, u), 

(4)      
d

du

θ
= ϕ(t, u), 

 
which takes the value t0 for the initial value u0 of u, and one has, for any t and u, in the 
interval where we operate, the inequality: 
 
(5)      f(t, u) > ϕ(t, u). 
 
I say that one must conclude from this that the difference (t – θ) is positive along (C), 
upon suitably limiting the arc (C) that describes the point (x), if this makes sense. 
 For this, I will suppose that the curve (C) is an analytic curve.  Then, the functions p1, 
…, pn , which are given by the formulas (2), are also analytic, Ω being supposed to be an 
analytic function of its arguments, and we again suppose that the functions p1, …, pn, 
which are close to the functions (2), are likewise analytic.  Then, t and θ are themselves 
analytic functions of u, as well as (t – θ) and d(t – θ) / du .  One will be limited on (C) to 
an arc such that the function t has no singular points, and one may suppose that the same 
is true for θ.  Let (u0, u1) be the interval of variation of u that corresponds to these latter 
hypotheses.  In that interval, (t – θ) and d(t – θ) / du are thus holomorphic.  For u = u0 , t 
= θ = t0 and (t − θ) is null; at the same time, d(t – θ) / du is positive, by virtue of (5).  The 
function (t – θ) thus starts out by being positive, and it ceases to be so only when it is 
annulled.  I say that it is impossible for it to be annulled.  Indeed, suppose that it is 
annulled.  Since its zeroes are isolated, let u′ be the first one that one encounters.  In an 
interval of the form (u′ − ε, u′), the derivative will be of constant sign, because its zeroes 
are also isolated, and since the function passes from a positive value to zero in the 
interval (u′ − ε, u′) the derivative will be constantly negative there.  As a result, that 
derivative will not be positive for u = u′.  Now, this is a contradiction with the hypothesis 
(5), since, for u = u′ one has t = θ, in such a way that d(t – θ) / du is then equal to: 
 

f(t, u′) – ϕ(t, u′), 
which is positive, from (5). 
 Therefore, the function (t – θ) is necessarily positive on any arc of the curve (C) 
considered, and the duration of propagation along (C) indeed constitutes a maximum for 
the integral t. 
 
 20.  We now return to the trajectories.  We shall see that the trajectories that issue 
from a point (x0) at the instant t0 are the curves along which the disturbances that are 
produced at (x0) at the time t0 propagate the most rapidly. 
 In order to prove this, recall, for example, the equations: 
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(1)     dxi = 
i

dt
p

∂Π
∂

  (i = 1, 2, …, n) 

and: 
(2)     Π(t | x1 , …, xn | p1 , …, pn) = 1, 
 
which may be regarded as defining the duration of the propagation of a disturbance along 
a curve (C) that goes from (x0) to (x).  From these equations, the following formula, 
which was already employed, then results: 
 

(3)      dt = 
1

n

i i
i

p dx
=
∑ . 

 
Here, it is the functions x1, …, xn of the variable u that we must vary; on the contrary, p1 , 
…, pn are known when the functions x1 , …, xn are given. 
 In order to calculate the variation δt, we have the formula: 
 

(4)     d δt =
1 1

n n

i i i i
i i

p dx p d xδ δ
= =

+∑ ∑ , 

 
from which one may eliminate the δpi , taking into account (1) and (2).  Now, due to (1), 
equation (4) may be written: 
 

d δt = 
1 1

n n

i i i
i ii

p dt p d x
p

δ δ
= =

∂Π +
∂∑ ∑ , 

 
and one deduces from (2), upon taking the variations of both sides: 
 

1 1

n n

i i
i ii i

t x p
t x p

δ δ δ
= =

∂Π ∂Π ∂Π+ +
∂ ∂ ∂∑ ∑ = 0. 

 
What thus remains is the formula: 
 

d δt =
1 1

n n

i i i
i i i

p d x x dt t dt
x t

δ δ δ
= =

∂Π ∂Π− −
∂ ∂∑ ∑ , 

 
which we put into the form: 
 

(5)  
1 1

n n

i i i i
i i

d t p x t p x dt
t

δ δ δ δ
= =

∂Π   − + −   ∂   
∑ ∑ = − 

1

n

i i i
i i

dp p dt x
x t

δ
=

  ∂Π ∂Π+ +  ∂ ∂  
∑ . 

 
We write them more simply: 
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(6)      
d

dt

∆
+ A∆ = B, 

upon setting: 

(7)     ∆ = δt − 
1

n

i i
i

p xδ
=
∑ , 

(8)     A = 
t

∂Π
∂

, 

(9)     B =
1

n
i

i i
i i

dp
p x

dt x t
δ

=

 ∂Π ∂Π+ + ∂ ∂ 
∑ . 

 
 The curve (C) is supposed to vary in such a manner that its extremities remain fixed. 
The δxi are therefore null at the origin and the extremity of (C) and ∆ then reduces to δt; 
moreover, δt is null at the origin.  Therefore, ∆ is the integral of (6) that reduces to zero 
for t = t0, and we need to express that it is null for any choice of the δxi when one arrives 
at the final value of t.  However, ∆ is given by the formula: 
 

(10)    ∆ = 0 0

0

t t

t t
Adt Adtt

t
e B e dt

−∫ ∫
∫ . 

 
One thus sees that ∆ may be null only if B is not identically null (with respect to δx1, …, 
δxn), because without that condition one could choose δx1, …, δxn in such a manner that B 
is constantly positive in the interval of integration. 
 This argument supposes that A = ∂Π / ∂t remains finite on (C).  Under that 
hypothesis, we thus conclude that the variation of the integral t may be null only under 
the conditions: 

(11)   dpi = − i
i

p dt
x t

 ∂Π ∂Π+ ∂ ∂ 
 (i = 1, 2, …, n), 

 
and these are precisely the equations that one must adjoin to equations (1) and (2) in 
order to define the characteristics.  Consequently, only these trajectories may solve the 
problem of the minimum duration of propagation. 
 
 21.  The preceding calculations also give an interpretation for the contact element 
associated with a trajectory at each of its points, because the condition for the variation δt 
to remain null when only the origin (x0) of (C) remains fixed is that the extremity (x) to 
which it is displaced satisfies the condition: 
 

(1)      
1

n

i i
i

p xδ
=
∑ = 0. 

 
 The element (x | p) that is associated with the point (x) of a trajectory for the instant t 
corresponding to that point is the one on which the point (x) of the trajectory must 
displace in order for the duration of propagation of a disturbance along that trajectory 
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between the fixed point (x0) from which the disturbance begins at the instant t0 and the 
variable point (x) to have a null variation. 
 
 This amounts to saying that the element (x | p) is a contact element of the wave that 
issues from (x0) starting at the instant t0 when it arrives at the instant t.  This conforms to 
the results obtained in the construction of wave families. 
 We further remark that one may calculate the variation of t, under the conditions of 
no. 20, by starting with the formula: 
 
(2)     dt = Ω(t | x1 , …, xn | dx1 , …, dxn). 
 
One will then have: 

d δt = 
1 1

n n

i i
i ii i

t x d x
t x dx

δ δ δ
= =

∂Ω ∂Ω ∂Ω+ +
∂ ∂ ∂∑ ∑ , 

from which: 

(3)   
1 1

n n

i i
i ii i

d t x t x
dx t dx

δ δ δ δ
= =

   ∂Ω ∂Ω ∂Ω− − −   ∂ ∂ ∂   
∑ ∑  

= − 
1

n

i
i i i i

d x
dx t dx x

δ
=

 ∂Ω ∂Ω ∂Ω ∂Ω− − ∂ ∂ ∂ ∂ 
∑ , 

 
and an argument that is similar to the one that we made in no. 20 for equation (5) (no. 20) 
will show that the condition δt = 0 obliges us to annul the right-hand side of (3) 
identically, which gives the following equations for the necessary conditions for the 
minimum: 

(4)     
i i i

d
dx t dx x

∂Ω ∂Ω ∂Ω ∂Ω− −
∂ ∂ ∂ ∂

= 0  (i = 1, 2, …, n), 

 
i.e., one recovers the system (15) of no. 15 precisely. 
 An argument that is similar to the one at the beginning of this section gives the 
following condition for the contact element associated with the point (x) of the trajectory: 
 

(5)      
1

n

i
i i

x
dx

δ
=

∂Ω
∂∑ = 0, 

 
i.e., this again gives formulas (19) of no. 15: 
 

(6)     pi =
idx

∂Ω
∂

   (i = 1, 2, …, n). 

 
 22.  It remains for us to show that the conditions that we found suffice for us to have a 
true minimum if one supposes, as in no. 19, that the elementary wave is concave towards 
its origin. 
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 This amounts to a remarkable relation between the present problem and the problem 
that was treated in nos. 18, 19. 
 Let (T) be a trajectory that issues from (x0) at the instant t0, let (x) be any of its points, 
and let θ  be the instant that corresponds to (x) on the trajectory.  Let (C) be a neighboring 
curve to (T) that also goes from (x0) to (x), and let t be the time that it takes for the 
disturbance that is produced at (x0) at the instant t0 to propagate up to (x) along (C).  This 
amounts to proving that the difference (t – θ) is positive if (C) is sufficiently close to (T). 
 To that effect, consider the element (x0 |  p0) associated with T at its point of departure 
(x0) and imagine an original wave M0 that has that element (x0 |  p0) for one of its contact 

elements that we assume to be produced at the instant t0.  In the propagation of that wave, 
the element (x0 |  p0) must follow the trajectory, and from the instant t0 to the instant t the 
wave will pass successively through all of the points of the arc of the trajectory 
considered. 
 We assume that one may choose M0 in such a manner that, under the same 

conditions, the wave passes successively through all of the points of the comparison arc 
(C). 
 Then let: 
(1)      F(x1 , …, xn) = t 
 
be the general equation (see nos. 11 and following) of the wave family in question.  At 
each point of (T), we have (see no. 12): 
 

(2)     pi = 
i

F

x

∂
∂

  (i = 1, 2, …, n), 

 
in such a way that the formula: 

(3)      dt = 
1

n

i i
i

p dx
=
∑ , 

 
which gives the duration of propagation along (T), is equivalent to: 
 

(4)      dt =
1

n

i
i i

F
dx

x=

∂
∂∑ = dF. 

 
This formula will thus give the same value θ for the duration of propagation of (x0) to (x) 
along (T) whether one integrates along (T) or along (C). 
 Therefore, θ is the value of the integral of the differential equation (3), when taken 
along (C), under the same conditions as in no. 19, when p1, …, pn have the values (2) and 
t is the value of that integral when one integrates along the same curve (C) with the 
values of p1, …, pn that are given by the formulas: 
 

(5)     pi =
idx

∂Ω
∂

  (i = 1, 2, …, n). 
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Finally, the values (5) and the values (2) are as close as one desires because the one 
reduces to the other when (C) coincides with (T) and (C) is as close to (T) as one desires. 
 One thus finds t and θ under exactly the conditions of no. 19, and one must conclude 
that (t – θ) is positive.  This is precisely what was to be established. 
 One thus indeed sees that the existence of a maximum for the problem of no. 18 and 
the existence of a minimum for the problem of no. 20, or conversely, are correlative. 
 It is this relation between the two problems that we are asserting. 
 

Lyons, 15 November 1908. 


