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On the propagation of waves and the Mayer problem
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1. The following pages are attached to the articlesh@at | have published on the
analytical consequences of Huygens’s principle, whers itansidered to define the
infinitesimal propagation of waves in a medium of anteaiby number of dimensions
and an arbitrary nature, and, in particular, on thaticeiships that this propagation of
waves has with the theory of first order partial efdéintial equations and canonical
systems, the calculus of variations, and analyticahaeics.

The mode of propagation is defined when one gives thdirdgniform that is
approached by a wave that is emitted by a disturbanea arbitrary point when the
duration of the propagation tends to zero: This is whatallehewave multiplicity We
call theelementary wavéhe homothetic image of that wave, the centehefrtomothety
being the disturbed point and the homothety ratio beingntimetely small duratiordt of
the propagation. In the general case where the redirmpeopagation is variable these
wave multiplicities and elementary waves depend upomsghtentt of their emission.

In first two of the articles recalled, | studied these where the elementary waves
have " points and«"™ tangent planes. In the third, the study of the general
isoperimetric problem, which is called thagrangeproblem, led me to consider the case
where the elementary waves hav&“* points, while still havingo"™ tangent planes,
and | have stated only the results relating to this ttad had previously obtained. This
case is the most general one since, as | have aliedabated and | will show here
incidentally, if the elementary waves have at lealst tangent planes then one will no
longer be dealing with a medium in whichaubitrary wave may propagate.

2. In the first part of the present work, | recall thealgsis in the general case: We
will then be concerned with the variable regime heregredis the Lagrange problem is
attached to the case of a permanent regime.

The system of elementary waves is defined, from thatlpe viewpoint, by a system
of (a + 1) equations, which one may express in the form:

) {F(tlxlu--»g |dx ;- ,dx )= dt

Foltlx, % [dg - ,dx)=0 (=12 q)

(*) Sur linterpretation mécaniaue des transformations de contact iégimitales(Bull. Soc. Math. de
France t. XXXIV, 1906); Essai sur la propagation par ondéann. Ec. Norm. Sup3* series, t. XXVI,
1909);Sur la théorie des multiplicités et le Calcul des variatifBdl. Soc. Math. de Francé XL, 1912).
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the left-hand sides being homogeneous of degree one wspleateto the differentials.
The origin of emission of the elementary wave hastwdinates , ..., X, ; the instant
— or date () — of emission ist. A current point of the elementary wave has the
coordinates:

Xp+dxg, ..., Xn + 0%, .

From the tangential viewpoint, the corresponding wauéiplicity, when considered
to be the envelope of the variable plane:

@ >a(x-x=1

is defined by only one equation:

(3) Gt %, -~ % |1y -+, On) = 1,

and this is what makes the present results anatogwihe ones that | have obtained
elsewhere.
Thefamily of wavesi.e., the families of multiplicities of the form:

(4) t=V(X1, ..., X0),

which are composed of the successive states thrabgih an arbitrary wave passes in
its propagation, are furnished by the solutiongadation (3), where one interprefs,
..., On @s the partial derivatives vt

(5) q =— (i=1,2 ..n).

The waves propagate by contact elements, indilhdwansidered; each contact
element propagates in the same manner, startiaggaten instant, no what the initial
wave to which it belongs at that instant. The afesuccessive positions that are thus
taken by an arbitrary contact element, with theeslabtf these successive positions,
corresponds to an arbitragharacteristicof the partial differential equation (3). The
variables, ..., % ; 1, ..., 0n are then interpreted as the homogeneous coordinatbe
contact element comprised of the pomat, (..., X,) and the plane (2).

The differential system of the characteristics:

oG 0G ., 0G .
6 dx =—dt, dg=~-| —+q — |dt i=1,2 ..n
(6) P g [a& q atj ( )

(*) We will often make use of the word “date,” whose was proposed by Fonten@§ométrie dirigée
Paris, Nony, 1897, pp. 7Bull. des Sc. math. et phyBecember 1906), and which is convenient when one
wishes to distinguish the two senses of the word “timarhely, an instant and a duration.
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presents itself as defining the infinitesimal transfation that corresponds to the
propagation during the infinitely small tint, starting at the instant a transformation
whose symbol is written, with the Poisson brackeation:

_oF
(7) TF==-+[G 7

As for the finite propagationbetween two arbitrary instants andt, it has its
expression in a&ontact transformationn such a way that the principle of enveloping
waves may be applied to the propagation in the finiteesefighe word, in the most
general form, and not only in its infinitesimal sensetlas is true by hypothesis. This
results implies, as a particular case, the thebmph® integration of a first-order partial
differential equation by means of complete integrals.

In the case of a permanent regime, the contactftranation in question depends
only upon the durationt (- %), and is the general transformation of a one-paramete
group.

In the general case, it will be defined, according o ttieory of Lie, by relations
betweerxs, ..., X.; X1, ..., Xn, which represent the wave emitted by a disturbancaghat
produced at the instatf at the unique pointx(, ..., X,), and in the state of propagation
that it is found in at the instaht This wave, whose elementary wave is the limitimgnfo
for (t — to) infinitely small may have more dimensions than thementary wave, and
likewise has»"" points, in general. It is only in the case whereghsial differential
equation (3) is, as Lie saidemi-linear or pseudo-linear- i.e., where the curves that
serve to support the characteristics depend only upon-(2 —)) essential arbitrary
parameters — that the waves issuing from the pointsmagplicities of f — 1 — ))
dimensions.

5. Instead of allowing the disturbance that is producedpaira to propagate freely
in all directions around this point, one may imagine that guided in its propagation —
for example, by means of a curvilinear tube of infinitefgadl section — where one
supposes that the wall eliminates any propagation excepe iseinse of the axis of the
tube. One thus has what one may patipagation along a curve However, ifa > 0
then one may choose arbitrarily neither the curvetherinstant where the disturbance
passes through an arbitrary point of the curve, becausenye and the date at which an
arbitrary one of its points is found to be disturbed nsagisfy theMonge systen{l),
which may be arbitrary.

Among the solutions of this system figure the ones thast¢ute thdrajectories of
propagation— i.e., by the locus that is described by the point ohdmtrary contact
element and the date that is associated with eachgidinis locus. It is found that these
trajectories correspond to tineinimum duration of propagation along a curbetween
two points of that curve, the disturbance startingnftbe first of these points at a given
instant.

It is the study of this minimum problem, which is only laygical statement of a
general problem in the calculus of variations relatingrie independent variable, which
is generally denoted by the name Méayer problem to which the second part of our
article is dedicated.
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In order to put this into the form of equations, we himlewed the method that was
employed in our article on the Lagrange problem: It isnfmd on the parametric
representation:

(6) dx =a—Gdt i=12..n

aq,

of the elementary wave. One knows that the clabsiethod of integration by parts has
the advantage of not giving rise to the objection of Du Bwymond relating to the
unjustified introduction of second derivatives. It therefal®o gives a reason for the
intervention of Lagrange multipliers: The propagatioongl a curve in the case of the
minimum corresponds to the propagation of a contact exlenof a wave whose
orientation is found to be defined precisely by these pligts. The formulation in
terms of equations may be done independently of thes@heau#t, moreover.

In order to establish the sufficient conditions foe tminimum, we make use of the
method- which is equivalent to the Weierstrass methoithat was already used in our
preceding articles. The extremal field Weierstraskiemproperty of corresponding to a
Unabhé&ngigkeit Satanalogous to that of Hilbert presents itself when cowesiders the
contact element of the wave that propagates alongdjeetory considered as being part
of an finitely-extended wave: The trajectories corresptm the various elements of that
wave constituting the field, and the date that corredpdo an arbitrary point of one of
these trajectories being one solution of the partiémintial equation (3), is obtained by
a quadrature of the total differential that may beiedrout along any other curve having
the same origin (and likewise, date), and the sameneati@s that trajectory.

One is thus led to compare the integrals of two diffe&abaquations of the form:

(7) dt=Ft|[x, ... % |dXa, ..., 0% ),

when taken along the same curve situated in the field ¢ise to the trajectory being
studied) and with the same initial value. In our essayhe propagation of waves, we
have introduced the hypothesis that one deals with andiyictions: Here, we give a
method that introduced only the hypotheses of continuity differentiability that are
inherent to the problem itself.

The condition is further expressed by the concavitthefelementary wave that has
its origin at an arbitrary point of the trajectory tile domain for which its contact
elements are parallel to the contact element aloagtrdjectory: That element of the
elementary wave has, moreover, for its contact pihi@tpoint of the trajectory that is
infinitely close to the point considered in the serfggropagation.

Relative to the Mayer problem, our exposition supposes tti@tfunctionF in
equations (1) is essentially positive on the curves thatconsiders. However, one may
waive this restriction by adding # a conveniently-chosen total differential, as we have
done in the study of the Lagrange problem.
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|. — Fundamental properties of the propagation of waves.

1. Imagine an elastic medium whose properties vary wiht, while it fills a space
of n dimensions whose coordinates age ..., X, , and assume that this medium can
propagate disturbances of a well-defined nature. The distoelbproduced at the instant
t and the pointy, ..., Xn) is transmitted at the instaritH dt) to an infinitude of pointsx{

+ Axq, ..., %o + AX,). Take the homothetic images of these points witipeet to the
origin (X, ..., Xn) and the homothety ratio (), we obtainin the limitwhendt goes to
zero, thewave multiplicityat the origin X, ..., X,) relative to the instarit

Let M be the origin Xy, ..., X,), MA an arbitrary vector with componerds ..., a,
that issues frorvl. Upon separating, if need be, the wave multiplizitg arcs or nappes
one may assume that along the directiiA there isat mostone pointP on that
multiplicity, which will be defined by the positive ratjo = MP/MA and given by an
equation:

(1) P=F(t X, ..., % | a1, ..., &),

the quantities, ..., a, being coupled, if the wave multiplicity containd " points, by
the equations of condition:

(2) Fa(t | X, -y X |a@g, ...,an) =0 h=1 2, ..0.

The formulas must persist if one changes the vétfowithout changing its direction,
i.e., if one replacesy, ..., a, and pby ma, ..., ma, and mp, is an arbitrarypositive
number. ThereforeF is a positive function?{ that is positively homogeneousith
respect to its argumends, ..., a,, and the functionk, are positively homogeneous. The
degree of homogeneity &fis 1, and one may suppose that the same is true f6r, (e

If one takes the poimk to be the poinP and letsp; , ..., pn denote its coordinates in
the system of coordinates that is parallel to the ggmsgstenx,, ..., X,, which has the
point M for origin, then one hap= 1, and one obtains the equations of the wave
multiplicity in the form:

(3) F(t]x, ....% |&, ...,an) =1,
(4) Fn(t X1, ..., % |P1, --n Pr) =0 h=1,2, ..,0).

2. These equations being assumed to be given, onagh&sjnfinitesimals of second
order (%), the locus of points:
(g +dXe, ..., X+ dX)

(*) At least, for the directions that one must consider.

() Thisis not at all essential. In our articletieBulletin de la Sociéte mathématiqueXL, 1912, we
supposed that thg, are of degree zero.

() For more precision on this poirf,, our article:Essai sur la propagation par ondésnn. Ec. Norm.
sup, 3¢ series, t. XXVI, 1909, pp. 409).



Propagation of waves and Mayer problem 6

to which the disturbance that is producedxat (., x,) and the instart is transmitted at
the instant t{(+ dt), if one takes the homothety ratio of the wave mlitity to have the
ratio dt with its origin at ¥, ..., X,). One thus obtains thelementary wavehat is
defined by the equations:

(5) F(t]x, ..., % |dx, ..., dX) =dt,
(6) Fr(t | X1, ooy X | dXg, ..., dX) =0 h=12 ..0),
wheredx, ..., dx, may be considered as current coordinates in the cocgdsiyatem

whose origin isXi, ..., X)-

These equations, from the differential viewpoint, stdate a Monge system that,
from the sign condition that was imposedfoand the positive character Bfand theFy,
may be arbitrary, provided that they are soluble witpeestodt. Indeed, the variable
must play a special role in them.

An arbitrary solution of this system is composed of a&ur

(7) X = ¢(u) (=12 .,n),

and a correspondence between the points of that curvtharmbrresponding values at
the timet:

(8) t = ¢(u).

This is what one may calldatedcurve ¢). We let the letter@) denote any one of
these curves.

A curve C) being regarded as an infinitely thin tube whose wall mateously
absorbs the disturbances considered, a disturbance thratdigced at a point = up of
that curve may propagate in this tube, iagng that curve(C), provided that it is
produced at precisely the instagnt= ((ug), and formula (8) will give the numerical law
of that propagation.

Meanwhile, if equations (6) are independent thien the curveQ@) will be capable of
guiding a disturbance that is produced at any of its potrés arbitrary instant. In this
case, the value of for a current point of the curve is obtained by integgathe
differential equation (5), and its initial value whié arbitrary when one is given the curve
itself. In any other case, that valuis given without integration by one of equations (6).

Observe, moreover, that it will not be legitimate general, to changdq , ..., dx,
into — dx , ..., — dx, in equations (5) and (6), in such a way that the distugbamay
propagate along the curv€)(only in a determined sense. Analytically, it is tkese in
which u must vary in formula (8) in order fdr= ¢ u) to be increasing. It results,
moreover, from the hypothesis that was madefo(mamely, that it remains positive for
the displacements considered) that the functivaries effectively by increasing along

(©).

() These curves satisfy the differential system thabisined by eliminating between equations (5)
and (6). In general, the system consistsaof (L) Monge equations and one equation of second order. It
reduces to the Monge system (6) in the particular caseewtees not appear in equations (6).
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3. Now suppose that at the instaniall of the points of a multiplicity §) are
simultaneously disturbed: One thus hasvave that propagates according to a new
hypothesis that conforms to tfefinitesimal principle of enveloping wavéy. We
intend this to mean that the envelof2é) (of the elementary waves that issue from the
various points of$) (at the instant) represents, up to higher-order infinitesimals, the
state §) of the wave at the instartt« dt).

The term “of the envelope” must be used here in the gesense of the theory of
multiplicities, i.e., the contact elements “of thevelope” are borrowed from the contact
elements being enveloped.

Let us find this envelope&l). To that effect, letq, ..., X,) be an arbitrary poiri¥l of
(9. To an arbitrary point:

Xp+ X1, .o, X0+ Xy

of the elementary wave that has the pdihfor its origin there corresponds, by way of
the formulas:
(9) Xi =P, dt (i=1,2,..n),

a point & + Py, ..., X, + Py) of the wave multiplicity (3), (4). At these twoologous
points of the elementary wave and of the wave mulitglithe contact elements are
parallel, and one may defin® their common direction by the formulas:

of
10  =— i=1,2, ..n),
(10) Q oP (i )
where one has set:
(12) f(t [ X1, ..., X0 | Py, ..., Pn)

=F(tIXy, ooy X |Pry oo Po) + ) AR (X, X, [ By R
h=1

One may thus considePq, ..., Pn; Q1, ..., Qq) to be the coordinates of an arbitrary
contact element of the elementary wave, and theselmates satisfy the equation:

(12) Y RQ=1.

i=1

At least one of these contact elements belonghéoenvelope X'), and we now
reserve the notation:

(P]_, vy Pn; Q]_, ...,Qn)

for that element. Thus, to any variatio( ..., o, of the pointM on (©§ there
correspond variations¥®s, ..., dP,) such that the point with coordinates+ P; dt) + JX

() Cf.,loc. cit, pp. 409-412.
(®) As far as the analytic geometry of multiplicitiex@cerned, we refer to our article in Belletin
de la Société Mathématique XL, 1912- more especially page #8for the present case.
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+ P; dt) still has the contact elemen®y( ..., Py, Qu, ..., Qn), i.e., they satisfy the
condition:

(13) S Q3% +3P dy= 0.

i=1

However, on the other hand, since the poxatH Py, ..., X, + Py) is on the wave
multiplicity, it satisfies equations (3) and (4)orih which one derives, by differentiation,
the relations:

Z(aF OX +—5I?j 0,
=\ 0%
(14)

=1

Z[ h &x +ﬁapj 0 (h=12;-- o),
and upon combining these relations one obtains:

of of
15 Sx +—_3P |=0,
(15) .le[ax ’”a j

which one may describe, due to formulas (10):
(16) Z( O +Q5Pj
=1
Upon multiplying that equation gt and subtracting it from (13), what results is:

(17) i[q ——dtj 5%=0.

i=1

Such an equation thus has meaning when the ariéd; , ..., &, acts upon a
contact element ofjj that contains the point:

(X1, ooy Xn)-

Let (1, ..., On) denote the direction coefficients of such an elsin The result obtained
is equivalent to saying that it corresponds to @tac element of¥') such that equation
(17) is a consequence of the equation of condition:

(18) 3% =0,

i=1

i.e., such that one has,denoting a convenient factor:



Propagation of waves and Mayer problem 9

(19) 0=Sdt+mg (=12 ..n)
ox

4. These formulas first show thatdf tends to zero then that contact elemendf (
tends to the contact element considered ®n l{ecause due to relation (12) one may
suppose only thatn becomes null. Now, that contact element 8 s parallel to a
contact element of the wave multiplicity that Wdsfor its origin. Therefore, one may
have propagation of the wave considered only if everyaobrelement ofS) is parallel
to a contact element of the corresponding wave ntigityp  Thus, if one desires that the
original wave § must be arbitrary, i.e., that at each pdihthe orientationdj, ..., g,) of
the contact element considered is not restricted by (hoynogeneous) equation of
condition between its coefficientsy( ..., g,), then one must have that the wave
multiplicity has contact elements of arbitrary orarn.

Now, the quantities®,, ..., Q,) are coupled by the equations that one obtains upon
eliminating @4, ..., Pn) between equations (10) and the equations of condition:

(20) {F(t|xl,...,>%|pl’,,,,|::): 1

Fh(tlxl”xnlpl”Pn):O (h: 112'1" a)

The equations thus obtained definetdmegential support®) of the wave multiplicity.
One of them is not homogeneous and may be wrifjen (

(22) G(t|x, -..,% | Q1, ..., Qn) =1,

G being homogeneous of degree 1Qn, ..., Q,. However, the others, if one desires,
may be written in the homogeneous fornQmn, ..., Q,, and constitute a limitation on the
degree of freedom in the orientation of the contaahehts.

We thus conclude thagiropagation is possible for an arbitrary wave orfythe
tangential support of the wave multiplicity is defil by just one equation; i.e., if this
tangential support has ntdimensions.

This is what we shall assume from now on, and we sgpo addition, that the
coordinatesX; , ..., X ; 1, ..., Qn) Of any contact element, when considered at thenhsta
t, are, by definition, coupled by the equation of condition:

(22) GX1,y ooy X1y ..oy Q) = 1.

5. Therefore, whedt tends to zerd; tends tag; , andmtends to 1 in formulas (19).

Moreover, it results from equations (10) and (20) Bhat ..., P, are then determined
as functions o), , ..., Qn; one may likewise write the formulas that give thehewone
introduces equation (21). They ark (

() Cf.,Bull. de la Soc. math. de FrandeXL, 1912, pp. 74.
() Cf., Ibid., pp. 78.
() Cf.,loc. cit, pp. 79.
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(23) p = JC% % Q- Q) (=12 ..n).
0Q
We letp; , ..., pn denote the analogous quantities:
(24) pi:aG(tm""é;“q“"’q) (=12 ..n)

One then sees thBf tends tqy whendt tends to zero.
By definition, we have determined a contact eleneen') that tends, whedt tends
to zero, to the contact element:
X1, s Xn 301y ooy On)

of (§. The corresponding infinitesimal variation isddeed from equations (9), (19) by
replacing: X; with dx , P, with pi + dp , Q with g + dg , — m with 1 + dm and
suppressing the infinitesimals of second ordere s has the system of formulas:

(25) dx =p; dt i=1,2..n),
(26) dg = %dﬁ gdm (=1, 2,...,n),

wheref must now denote the function:
(27) f=FE X, ... X [Py, o) + DA Pt [ X0, oo Xa | PLy s ) -
h=1

In order to not complicate the notation, we haeptkthe lettersi, to denote the
limiting values of the quantities represented l®yshme letters in the formulas (10).
Finally, equations (20) and (10) give, in the timi

(28) Fit|x, ...;% |01, ...,0n) = 1,

(29) Fa(t| X, ., X% |1, ---,0n) =0, h=1,2, ...,0
and:

(30) qi:g—f (i=1,2,...n).

It only remains for us to calculatien, which one does by differentiating the equation:
(31) 2 pa=1,

which also provides (12) by the same passage ttntiie This gives:
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(32) Zn: p dt+ dm+2—p dp=0,

upon taking into account (26) and (30). If one regards equeai®) then one infers:

n n

33 dm=-3" g -5 9 4
(33) .MMXZ‘ R.

Now, one further infers from relations (28) and (29), uddferentiating them, the
combination:

(34) ﬂdt+za dx +Z—dp 0.
ot o OX

Fordm, all that remains is simply the value:

(35) am= gt
ot

which permits us to write the equations (26) in their dgfaiform:

of  of .
36 d t =1,2, ...
(36) G = [a& q atjd (i n)

6. In summary,if propagation is possiblesuch as it is defined by Huygens’s
principle, which we intend in its infinitesimal sensi@n this translates into a continuous
variation of contact elements in space that is défiog formulas (25), (28), (29), (30),
(36).

We recall these formulas here, upon eliminating thelianxiquantitiesp; , ..., pn
and upon denoting this lfywhich becomes the function (27) when one replacep; th
it with dx . We have the differential system:

(387 Flt|xa, ..., % |dx, ..., dx) =dt,

(38) Fr(t [ X1, ..., X |dX, ..., d%,) =0 h=1,2 ..0),
of )

39 i =—— i=1,2, ..n),

(39) q 5 dx (i )
of of .

40 dg=—+ i=1,2, ..n),

(40) G ox G5 ( )

with:

(41) f:F+Z)thh.
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This system contains theunknown auxiliaryd; , ..., A4, and the unknowns , ...,

Xn 3 01, ..., On . It is therefore over-determined, because it dostéh + a + 1)
equations. However, relation (20), which it entailsjeigfied, from the manner by which
we have arrived at equations (36), from which it is foundatisfy for the initial values
ofXg, ..., % ;h, ...,0n, @andt. It thus indeed disappears, and from the eliminatioh of
..., Ag one must obtain a system oh Qifferential equations of first order inn2
unknowns.

One arrives at them by using some known relations bettieeequations that define
the same multiplicity, depending on whether one staitts its pointlike supportor its
tangential support(*). The tangential support being defined by equation (22), the
formulas (28), (29), and (30) being replaced by the equatiora(@2)he equations:

3G

(42) pi=— (i=1,2,..n),
0q;
and one has, moreover:
(43) 9L=—9§, o__9%6 (i=1,2 ..n).
0X, 0X, ot ot

One thus obtains the desired differential systemarfittal form:

dx _ dG -
44 1= :1, 2,..., ,
(44) at - g (I n)
dq _ dG__9G .
45 —_—= 00 — :1, 2,..., .
(45) dt  ox 45t ( K

One may consider them as definingifmitesimal transformatiomtt, xa, ..., Xn , 0,
..., On that is the definitive expression of the propagatiorsaned, namely:

(46) 1= 9F ,3|9G0F (06, 3G)or |
ot 4F|0qg dx | 0x ot )oq

One immediately verifies that it leaves equation (B2ariant, because one has the
identity:

47) T(G-1) =- %—?(G -1).

It suffices to observe that sin€is homogeneous of degreeein q; , ..., g, one
may apply the Euler identity to it.

Since one must operate only on the values of the vasial@drifying that equation
(22), one may further substitute for the transformat#®), the following one:

() Cf.,Bull. de la Soc. math. de FrandeXL, 1912, pp. 78-80.
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@ e H R T )

where the right-hand side is the Poisson bracket.

7. One proves that propagation is possible by verifyingttieatransformation T is a
contact transformationThis fact results from the following identit§){

(49) T(i q5xj=—%—?iq5x .

i=1 i=1

Moreover, it results from this fact theéte principle of enveloping waves is true, not
only in the infinitesimal sense, but also in thet@ sense of the worénd in the most
general form9). In particular, a wave that occupies a positina¢ the instant is, at a
final instantt', the envelope of the waves that have been emittetliing the interval of
time fromt tot' by the various points of.

8. We call afamily of waveghe set of various successive states through which a
wave passes in its propagation. One such family issepted by one equation:

(50) t=V(xg, ..., %)
The contact elements of the wave are, at the samae given by the formulas:

(51) qoa_v (=12, ..n),

ox

whereqp is a factor that is determined by the condition (23t: S

(52) GzG[V‘xL,...,)g a_v 6_Vj

ox "o

and we obtain, due to the homogeneityspthe condition:

(53) 0,G=1.

() The calculation of that identity is indicated in anemoir, cited above, in th&nnales de I'Ecoles
Normale pp. 422.

(®) This is what we have explained in the memoir citechénpireceding footnote (pp. 429). We have
developed the consequences of this fact from the viewmfirthe theory of integration of partial
differential equations.

() Observe that these latter waves, whose limitorgnfis given by the elementary waves, may have
more tharw""“ points. Cf.Bull. Soc. math.pp. 131.
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Having said this, we shall express the fact that theesy460), (51) admits the
transformatiori; this will give us the analytical character of the ilgrof waves (50).

Upon first applying the transformation of equation (50), ei@ain the necessary
condition:

(54) 1-y LN g
iz 0q 0%

which, due to the homogeneity (of degree zero) of the demgdG/dq;, may be written:

(55) — =0,
.:1aal X
ox
i.e., simply:
ov ov
56 GV | X % | = |=
) [ ‘)i | ox 6>J

One then sees, from (53), thgt must have the valueng and that equations (51)
reduce to:

(57) q=— (i=1,2 ..n).

However, if one now applies the transformaftioto equations (57) then one obtains
the equations:

(58)

n 2
a_G+qia_G+Z oV E:O
0x ot = 0x0% dq

which must be consequences of equations (50) and (57). Tlispiessed by the
identities:

a Vv

GV 0G & G Ox
59 —_—t—t )y —— L=0 1=1,2,...n),
©9 ov 0x  0x ;aav 0X ( )

o0X.

J
which are consequences of (56).
The partial differential equation56) is therefore the necessary and sufficient
condition for equatior(50) to be that of a family of waveand the coordinates of the
contact elements of the waves of that family avergiby formulas (57).

9. We call acharacteristicany solution of thecanonical systeng44), (45), which
also verifies the condition (22). A characterissccomposed of a dated curv@) ((cf.,
no. 2) to each point of which there is associated a comfactent. We call &ajectory
any dated curve that serves to support a characteristic.
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The trajectories satisfy the differential systdrattone deduces from the system (37),
(38), (39), (40) upon eliminating thg and theA, . One can easily eliminate tlog,
which gives the equations:

(60) g L oot _o_, (=12, ...0)
odx oddxadt 0x

This system characterizes the trajectories, amonipealsolutions of the system (5), (6)
that was considered in nd.

We remark that the determination of the motion of propagdhat is defined by a
given family of wave multiplicities is equivalent tohet determination of the
characteristics. This entails, as a consequence,nihelédge of all families of waves.
This fact is equivalent to the method of integrationhef partial differential equation (56)
by means of characteristics.

Any characteristic comes about in the constructiorarofinfinitude of families of
waves, because it suffices for this that one otatstact elements be attached to part of
the wave at the corresponding instant.

Conversely, any family of waves provides, by integratirgsystem:

dx _ dG _
(61) E_—G‘LV (=12 ..n)
0x

[whereG represents the function (52)], a family of trajeaerio which the waves of the
family are calledransversal The formulas (57) serve to define the correspondingyfam
of characteristics, i.e., they serve to generateftmily of waves. The values @&f, ...,
Xn , t for each of these trajectories, must, moreoveisfgaquation (50), which is, due to
equation (56), compatible with the system (61).

We finally point out the equation:

(62) dt- Y qdx =0,

i=1

which is a combination of equations (44), when one takesdotount equation (22),
which the characteristics consequently satisfy.

Il. — The Mayer problem.
10. One recovers the trajectories and characteristidheofpropagation when one

seeks the curvelC) — [cf., no. 2] — along which a disturbance propagates the most
rapidly. It is this minimum problem, which is nothing but the omevhich one gives the
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name ofMayer problem(*) in the calculus of variations, that we shall studife shall
first state it more precisely.

We consider a solution (7), (8) of the Monge system(@),and we vary it in such a
manner that it does not cease to be a solution ofykiem, in such a way that the curve
(C) represented by equations (7) always pass through the tsan@ointsMg and M;,

with the coordinatesc, ..., xX°)and (X, ..., X); we may suppose that these points

correspond to fixed values andu; of the parameteu on the different curves thus
obtained. We suppose, moreover, that the function @)%«ea constant value at the
point My under that variation and thaincreases fronMg to M;. On the contrary, the
valuet; , which corresponds to the poidt , will vary in general. The differencé € to)
represents the time taken by a disturbance that is prodatdd, and the timety to
propagate along the curv€)(up toM;. This duration will be a minimum at the same
time ast;, and these are the conditions for the minimumweaseek.

We first look for the conditions that express the it®st the variation of; is null
under the indicated conditions.

To that effect, we set:

63 —=
(63) w- %
(64) d_x: wpi =12, ..n),
du
in such a way that the variablps, ...,pn; X1, ..., X, ; t are coupled by the equations of
condition:
(67) Ft|x, ...;X |P1, «oeupn) = 1,
(68) Fh(t|x1,...,xn|p1,...,pn)=0, (n:1, 2,...,0’).

These equations represent the wave multiplicitgiat ..., p, — [cf. no. 1, equations
(3) and (4)] — and if we introduce the equation that reptes$ka tangential support ef]
no. 4, equation (21) or (22)] — then we may replace them by#nametric equations —
[equations (23) or (24) in n&]. For the sake of clarity, set:

(69) G =Gt |Xt, ... Xn | Ay ooes Vo),

and these parametric equations may be written:

(70) pi = 9G (=12 ..n).
Y
Since the right-hand sides are homogeneous of degredaregy , ..., yn, One may

consider these parameters to be completely indeperfilent (

() Cf.HADAMARD, Lecons sur le Calcul des variatigris|, pp. 223.

(¢) Cf.,Bulletin de la Soc. matht. XL, 1912, pp. 79-80. We remark thpt (...,pn; 4 , ..., V) are the
homogeneousoordinates of a contact element of the wave mutttgliwhen referred to its origin aky(,

..., Xp). The general expression of thewill be given by the right-hand sides of formulas (99), wioere
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We thus have, by definition, some functionsuoff ; X; , ...,Xn; @ W, ..., Va, that are
coupled by the differential equations:

dt _

71

(71) -

(72) d_x:w()E =12, ..n).
du oy,

Their variations are, in turn, defined by the linearesyst

d5t
73
(73) e
2 n 2
(74) ﬂ—a) 5 a)z IX; E&wwz 0°G N, .
du oyot ay X oy = 0K 0y

In order to integrate this system, we consider the lgemeous system)(
d_UO =0
dt

dq L G
= u (=12, ,n),
dt ayat * ,Zl' Y0

(75)

and, introducingr{ + 1) independent solutions of this system:

(76) Uk = Uik k,1=0,1, 2, ...n),
we set:

(77) x= Zquyo,

(78) dq:zn:y,qi (i=1,2 ..n).

We thus obtain the simplified linear system:

considers thdy, A; , ..., A, to be arbitrarily chosen functionsaf In the calculations that follow, one may
suppose that one has made a parti@daitrary choice for these auxiliary functions.

() The existence of the integrals of this system suspasky the continuity of the functionsx, ..., X,
of u and their derivativesy p; , ..., pn, as well as the continuity of the derivatives of thection G that
intervenes, because this suffices for the Lipschitzitond to be verified by the right-hand sides.

One thus does not suppose that the functiamslx have second derivatives, and the argument is not,
consequently, subject tbeclassical objection of Du Bois Reymond.

On the contrary, formulas (97) show that these secorivhtiees necessarily exifbr the extremals.
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s d
(79) Zu.,o—y'= o

n n r

80 =22
(80) z du o yayJ

which are solved by employing the multipliersthe( adjoint systerof theu,i) — that are
defined by the relations:

(81) D UM = Em (k,m=0,1,2,...n),
1=0

whereé& mis equal to 1 or 0, according to whether mork # m.
One thus obtains the auxiliary system:

j .

(82) %_ _(Vlo+z\4, j&()+wZZVL

ji=li=1 ayay
(1=0,1,2,..n).

Moreover, from the formulas (77) and (78), in whichdie¢erminant of the;y is not
null, the necessary and sufficient condition for &hedx; , ..., &, to be annulled foru =

Up is that the same is true for the One thus has, for the variatiods &, , ..., ,, the
formulas:

St :Zn:u,yoj':;\(du
(83) =0

I :Zn:% [CYdu (i=12...,n),

which becomes, fou = u; , if one denotes the values that are taken byuhetions ofu
by an index (1):

(@) = [*Y y@y du
(84) 0 IzO
(Bx)”=[">uPYdu (i=1,2..., 0.
R

11. We thus have to write that the first of theseegméls is null for any choice of
functionsu: o dy , ..., O, for which the lash integrals are null. Since the quantities
placed before thelu under the integration signs are linear formsdm oy , ..., oW
whose coefficients are known functionwgfwhich is expressed)(by an identity — (iru,
ow O , ..., o) — with constant coefficients , ¢, ..., Cn, Whereco must not be null:

() Cf.,Bull. de la Soc. matht. XL, 1912, pp. 120.
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(85) 6> uy=o.
k=0 =0
If one sets:
(86) doul=g (1=0,1,2,..0),
k=0
(87) DGV, =V m=0,1,2,...n),

(88) w+dy 2 =0,
o 9%G!

(89) \A =0 (=1,2,..n.
Zl )0y,

Furthermore, the constants are calculated as functions of the constgntpon

employing the values that the functiong of u take foru = u; as the multipliers. This
gives, upon taking into account formulas (89):

(90) G = qu‘”—vm k=0,1,2, ..0).

The hypothesisy # 0 thus translates intg”# 0.

Finally, formulas (89) express the idea that v4, ..., v, constitutes a solution of the
adjoint linear systento system (75), which is:

n 2
(91) ay, tw 0°G =0,
du ilayat
92 . =12, ...n
(92) U wZayax' q )

We thus obtain the condition theis adjoint system must admit(§ solution that
satisfies equation@8), (89),and is such that the value afig not null for u=u; .

12. With regard to equation (71), the system (91), (92) may eewr

() It might happen that it admits an infinitude by admittorge. This is the case where the partial
differential equation (56) admits at least"™ characteristics. CfBull. de la Soc. matht. XL, 1912,
pp.110.



Propagation of waves and Mayer problem 20

dyv, " 9°G

93 —0+a) =

(93) dt ;ayiat '
dv; - 9°G'

(94) L+w v=0 (=12, ..n.
dt i1 0),0%

As for equations (88) and (89), they express the ideatlieaplane that has the
equation, in the coordinate system with its origirxat (.., X,):

(%5) >yX 1= 0

is tangent to the wave multiplicity at the poipt ( ..., pn), because, due to equations
(70), equation (88) expresses the idea that this plane pessegh that point, and
equations (89) express the idea that any displacementabfpthint on the wave
multiplicity is parallel to that plane.

From the viewpoint of the auxiliary unknowss, vi , ..., Vi, , these equations may
thus be replaced by the following ones:

(96) SUR+%=0 (W0,

i=1

0G" )
97) pi :6_v [G"=G6G(t|x1, ... X [Ve, ..cxW)]  (1=1,2,...n).

One may then rid oneself of the auxiliary unknowns because, upon comparing
(70) and (97), one has the equations:

(98) 9G 96 (i=1,2 ..n),
oy, oV

which one may regard as defining thas functions of thgr, oft, x1 , ..., X, , and the ¢
+ 1) auxiliary variablesdy , A1 , ..., As , all of these variables being regarded as
independent, because the general solution of equations (9e wi

(99) v :Aog—+§n‘/lh— (=12 .0,

and one will only have to replace thewith the values (70) in order to have the functions
in question {).

() Cf.,Bull. de la Soc. matht. XL, 1912, pp. 107.
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We may thus differentiate equations (98) with respedhé variableg, x; , ..., X,
under this hypothesis, and this gives:

21 21 n 2 1
(100) aG:‘3G+ZaG N (=12 ...n),
oy,0t ov.ot {Zovoy ot
21 21 n 2 1
(101) 0G _ 906G £y 0G M =12 .n)

0y, 0%, _6\4 0% i=0yoy a

If one substitutes these expressions in equations (@3§9%n, and if one takes into
account the Euler identities as they relate to tts# énd second derivatives Gf, what
remains is simply:

(102) M, 0G
at ot

(103) LG (=12 .0
dt o0x

to which one must add equations (96), (97), and the equations:

d_x: ) | =
(104) pral (i=1,2,...n),

which results from (63) and (64).

13. The extremals thus defined are nothing but theettayies of propagatiorand
the auxiliary unknownsg , v1 , ..., Vi correspond to the introduction of contact elements
that make each trajectory the support aharacteristic To confirm this, it suffices to
set:
(105) vi=-gw (=12, ...

This supposes thag is not annulled at any point of the arc of the cu®@gthat is
being considered, a hypothesis that was introduced alreadyef@xtremity of that arc.
Geometrically, it signifies that the plane of thentaxt element of the wave multiplicity
1, s Pn; Vi, ..., Vo) must not pass through the origin, i.e., it must notaiarthe
radius vector of the point; , ..., pn). Now, from equations (104), this radius vector is
tangent to the curveCj. The condition that we impose is therefore that ¢batact
element that is associated with each point of theedl curve(C), by its preceding
formulation,must never belong to that curve.

Upon considering degree of homogeneity, one has, by tmgelof variables (105):

Here we have, in addition, the paramekgr because we operate on the homogeneous coordipatas
, ..,V for the general contact element of the wave multigliat the point(f, , ..., p,), which it serves to
represent.
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(106) aﬁ:a_G, ai:—voa_G’ aE:—Voa_G (i:]_, 2, ___,n)_
v og ot ot ox o

On the other hand, one has:

dv dq dy, ,
107 — = -y, —-q— =1, 2, ...n),
(107) prraii q p ( n)
and, as a result:
0G dq dG :
108 V,—=—-V,—+V.q— =1, 2, ...n).
(108) "o >4t 00 p (i )

Furthermore, as a consequence, under the hypothesisghatde, one obtains the
equations:

(108) dg _ _0G__0G

a ox ‘o

which replaces equations (102) and (103). As for equations (86P@h they become,
due to (104):

(110) %—f:g—; (=12 ..n)
and:
(111) dt= > qdyx.

i=1

By comparing (110) and (111), one finally recovers equationsiag)ely:
(112) G(t|x, ..y Xn |, ..y On) = 1.

We thus recover precisely all of the characterigjicagions €f., no.9].
One may remark that o, , ..., g, are assumed to have been calculated then the
unknownvy is given by a quadrature by means of:

dy, _ 090G

113 W, %
(113) dt V°at

and that thes are then given by equations (105). The unknewvoorresponds to the
guantitym that was also introduced in the theory of propagatiénrjo.5|.

Its initial value remains arbitrary, and the linear fayhrequation (113) shows that it
is certainly not annulled, as long as it does not protlueesingular situation in which
0G/ot becomes infinite. Now, this singularity is alreadyclaged implicitly in the
considerations of no$.and7.

Observe finally that i is only positivelyhomogeneous which one may, in certain
cases, be obliged to supposé¢hen our transformations remain legitimate provideat t
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\p is negative. Now, this may always be assumed, simcénpose the condition on it
that it is not annulled and that, on the other hagdy; , ..., v, are defined in all of what
follows only by homogeneous equations, and consequently, ugotastant factor.

14. It remains to examine whether the trajectories effectivelyespond to a
minimum of the duration of propagatigcf., no.10]. Therefore, letT) be one of these
trajectoriesMo andM; two of its points, datety ando (0p > to), and letT denote the arc
of that trajectory that falls betwedm, andM;, considered independently of the values of
t that are associated with each point of the trajectaryassumed to run frolg to M;.

On the other hand, le€C} be another dated curve of the type that was defined.i& no
that also passes frol, to M;, and let it be datetd atMo. It will be dated; at M;, and
everything comes down to the study of the signtp#(6) for the solutions@) of the
Monge system (5), (6) that are sufficiently close te sblution T). We further letC
represent the geometrical dvtyM; of (C), considered independently of any date for its
points, but assumed to run frdvty to M; .

The datet may be considered to be defined in the following manner: t@kes the
differential equation (5), i.e.:

(114) dt=F(t|X1, .... % |dXa, ..., dX),

andone integrates alon@, upon takingo to be the initial value. The final value that this

integral takes al¥l; ist;. The phrase “integration alo@g signifies that one replaces,
..., Xn and their differentials in equation (144) by means of equsiid), i.e.,:

(115) X = ¢(u) (i=1,2,..,n),

which defines the a€ whenu varies by increasing from to u; . Sincedu is therefore
positive, one obtains the differential equation:

(116) %: [t ‘wl(u),...,wn(u) dlﬂl(u) dlﬂn(u)]

du '~ ' du

which one must integrate with the initial conditiont, for u=up .

Likewise, 8, is obtained by integrating equation (114) aldngwith the same initial
value, becausd] is nothing but a particular dated cur@.(

One may, moreover, substitute for equation (1dipanitude of other equations that
give the same results for the calculation;aind &, because the dated curves considered
satisfy equations (6), namely:

(117) Fr(t | X1, oy X | dXg, ..., dX) =0 h=1, 2, ..0.
One may thus use, in place of (114), and in theesaanner, any equation:

(118) dt=1(t|xq, ..., %0 | X, ..., dXy),
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where, as above — [for example, Bpequation (41)] + denotes a linear combination of
the form:

(119) f=F+> AF,,
the A, being arbitrary functions o4 , ..., x, here.

15. We shall transform this result in such manner as tmlwevthe wave
multiplicities. LetM be the point with the coordinates, ..., X, and letQy be the wave
multiplicity that has that point for its origin #te instant. SupposeM is C and callP
the point such that the positive direction of the tahgatached t€ at M piercesQy; .
Equations (114) and (117) then express thil fifas the dateon (C) then the poinP has
for its coordinates, when one takddor origin, the derivatives:

(120) (jj—):z pi i=12..n (Cf.,, nos.1 and2).
If one then sets:
(121) g= O 2 OUxe X IR R) 212 )
0dx op
the quantitiesgy , ..., pn; t , ..., On) are, in the same system of coordinates, the

coordinates of a contact elemef) Of Q. that is associated with that poiat These
coordinates are subject to verifying the followirgjation of condition ), which is,
indeed, equivalent to (118):

(122) z pq=1.
With these notations, equation (118) may be pattine form:

(123) dt= Zn:qi dx .
i=1

For more neatness, we denote by:
(124) g =Ki(t, u) (=12 ..n)

the functions that one obtains by replacingthenddx in formulas (121) by means of

formulas (115). The date relative to the curveQ), is thus obtained by integrating the

equation:
dt _ < dy. (u)

125 —=)> K (t,u — = K(t, u),

(125) U Zl‘, ((t,u) U (t, u)

() Cf.,Bull. de la Soc. math.t. XL, 1912, pp. 78.
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with their initial valuet =ty for u = ug.

16. First, this trajectory serves to support at least omaracteristic, which is
obtained by adjoining a contact element to each péiaf the trajectory whose direction
coordinatesy, , ..., g, satisfy equations (44) and (22), which we rewrite:

_ %
oq;
(127) G(t|x, .. Xn| 1y -y ) = 1.

(126) pi (i=1,2,..n),

These entail equation (122). Now, equation (127) is thgetatial equation of ,
and these equations (126) give the point of contact ofrlaitraay plane of this wave
multiplicity. We thus have a particular contactnednt E) that is found to be associated
with the pointP: It is parallel to one of the ones that the trajegtis capable of
transporting under the mode of propagation considered. vetsely, we have the
geometrical interpretation for equations (44) of the dtarstics: They express the
relation that we just defined between the directiotheftangent to the trajectory and that
of the transported contact element, and which beansaime otransversality{cf., no.9].

It results, moreover, from the auxiliary conditien(vp # 0) — that that we have
imposed in nol5, that the contact element that is transversahéottajectory, which is
associated with a well-defined solution of canonicalesysof the characteristics, does
not always pass through the tangent to the traject@ge may thus — and this is the
second stated peculiarity — introduce a family of waves$ #na transversal to the

trajectory ) considered —df., no. 9] — which fills up a space af dimensions &) in

which the arcT will be completely contained, in such a manner thaiugh each point
of that spaced) there passes one and only one wave of that familyffom now on, we

suppose that the afdtself is contained in that spacé) (
We thus recall the notations of r&.and let:

(128) t=V(x, ..., %)

be the general equation of that family of waves. achepointM of the spaced]) there
corresponds a value band the quantities:

(129) g =—— =12, ..n),

which satisfy equation (127). These quantities define tleettbn of a contact element
that is transversal to the corresponding directiorosghcoefficients are provided by
formulas (126). One may thus suppose that the functiged x; , ..., X, that figure in

() Of course, this nevertheless constitutes a nepothgsis on the ar@ , since this amounts to
assuming that théacobi conditioris verified.
Cf., HADAMARD, Lecons sur le Calcul des variatiqris pp. 360.
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formula (119), which are chosen in such a manner that fas{iR1), when applied to
the curve C), conversely give back the values (129), when one reptacethem with
the value (128) anp; , ..., pnbyfunctions ofx; , ..., X, :

(130) pi=a(X, ..., %) (i=1,2,..n),

which are obtained by substituting the values (128) and (b2fyyrmulas (126). From
now on, we make this hypothesis on the choice of ions#, .

Relative to the ard itself, in order to obtain the da# (at which the disturbance
that starts aM, at the instant, arrives atM; when it propagates alofify) we must, from
the results of nol5, integrate equation (123) alofig, where we may assume that the
are replaced by the expressions (129).

However, the right-hand side being the total diffeediat/, one will also obtair@ by
doing that integration along. That essential remark is the form in which the
Unabhéngigkeit Sats presented here, that is exhibited in the, alreadgickls method
of Weierstrass.

17. We have thus introduced two valueg af each poinM of the arc : the integral
of equation (125) and the value of the functigrhenceforth, we denote the latter value
by g. As a result, we must consider two wave multipési that have that point for
origin: Qx:andQ, . The positive direction of the tangenCat this point pierce€yat
the pointP whose coordinates are given by formulas (120), or, mgoicébky, by the
formulas:

(131) pi :ML= Hi(t, u) i=1 2, ..n);

du K(tu)

one obtains a contact elemeB) Of Q.

However, these formulas are absolutely independfttite fact that the value bis a
particular one. Upon leavirtgabsolutely arbitrary, they always give a contdetnent of
Q. such that the point is on the positive directiontlod tangent t€, because the
coordinates of such a point gresitivelyproportional tod¢ / du, which intervenes only
in formulas (121), and, as a result, the functi@®l) and (132) verify equations (121)
identically. Moreover, since they also satisfy &tipn (122) identically they are indeed
the coordinates of a contact elemenQgf .

In particular, the quantities:

(133) pi = Hi(6 u), g =Ki(6, u) i=1,2 ..n
are the coordinates of a contact eleméebhtdf Qx ;.
On the other hand, formulas (130) and (129) givmeen one replaces thein them

with functions¢ (u), some functions af that we denote by:

(134) B =H/(u), q =K;(u) (=12, ..0),
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and which, from the explanation in 6, are the coordinates of another contact element
(H) of Q. Finally, with these latter notation@satisfies the differential equation:

A6 _ &2 di(u) o,
(135) E—Z‘Ki(u) & =K’ (u).

18. It is equations (125) and (135) that permit usamparet; and 6. However,
some preliminary remarks are indispensible.

We suppose that the dated curv€$ &nd ) have a neighborhood of ordene
Thus, to each point{, ..., x,) — orM — of C and the daté to which it associated there
corresponds a poin, ..., &) —orM’— of T and a date#), such that the differences:

dx _dg
(136) X — &, t—6 & dg
are inferior in absolute value to a positive numberTo these pointM andM”’, from
formulas (120) and (121), there correspond the aminélement ) and the contact
element E'), respectively ¥), where the various coordinates are as small asdesires
wheng is conveniently chosen.

However, it results from the explanations of @6.that the contact elemenit'j is
also given by formulas (130) and (129) when ondaogs the with & , and it follows
from this that the coordinates of the elemeB)sand {’) are as close as one desires.

Finally, since ) and {) have coordinates as close as one desires, frerfath that
[t — @] is sufficiently small we conclude, by definitiaiatthe contact elemen{gl) and
(H"), which both belong t€®, s, may be assumed to be as close as one desires.

19. Having made this point, consider the difference:

(137) K(8 u) —K'(u).
One may write it:

(138) K (8, u){l—i K’ (u)H (6, u)} .

i=1

Now, the first factor is positive, becaudédu, which is equal t&(t, u), is positive
along C), and the same is true, as a resultk@#, u), sinced is as close td as one
wishes.

As for the other factor, it is written:

(139) 1- > nd,

() By changing into &, andt into 4 .
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upon denoting, as in formulas (133) and (134), the coordinatekeofwo contact
elementskl) and @) of Qxe by 1, ..., Pn; 01, ..., On) @NA(P', ..., Py; Gy - G)
resp. lIts sign is therefore coupled to the concavjtyf(the wave multiplicitie€, ¢ in

the neighborhood of the elememt)( and consequently, by reason of continuity, that of
the wave multiplicitie<Q ¢ that have their origins at the various poiktsof T that are

in the neighborhood of the contact eleméj.

If we recall — £f., no.16] — that these elementE'] have for coordinates the values of
P, --»Pn;h, ..., On) that are provided by a characteristic that has its stppothe
trajectory considered then we may state the followesylt: The differenc€137) may
only be positive or null alon@ if, at each point ofT , and at the instant when the
disturbance pass through this point, the wave mplidtty having this point for its origin
is concave towards its origin in the neighborhoddtlee contact element that has for
coordinates the values @b = dx/ dt, ..., pn =dx,/dt, au , ..., ) that are given by the
equations of the characteristics that has provittezltrajectory(T).

We suppose that this sufficient condition is satisfied.

Observe, moreover, that the concavity being thus, ttterf§141) may be annulled
only if the contact elementsi] and {') correspond to the same point®f,. Now, the
points of these contact elements are situated, orfeeof in the positive direction of the
tangent t& and the other one in the direction that is transveestile wave of the family
(128) that passes through the point®fconsidered, and it is possible that these two
directions coincide at every point &, because if this is true th€will be one of the
trajectories to which the waves of the family (128) taa@sversal —df. no.9 and no.16].
Now, this is impossible because, from the equations (84 define this family of

trajectories, there passes one and only one of theeath point of the spacé)( and, by

the pointMo , from which one starts 08 already passes the traject®rywhich belongs
to the family considered and which, by hypothesis, isrtisfrom C .
Thereforethe differencé139)is not null at any point o€ .

20. Having said this, consider the difference:
(140) A=t-4.

From the notations adopted in rid, it is a function ol that is defined at all points

of C, i.e., in the interval fromi, to u; . It admits a continuous derivative in that interval
(®) that is given by the formula:

(141) da = K(t, u) —K'(u),
du

() Cf.,Bulletin de la Soc. matht. XL, 1912, pp. 92.

(?) From the definition of the functioK, this continuity supposes that the tangeniCtwaries in a
continuous manner. The nature of the reasoning thaielpermits us to assume that the discontinuities
consist of jump variations in that direction at isafgpeints.
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which results immediately from equations (125) and (135)ally it is annulled fou =
Up Since both and @ then have the valug.
Write formula (143) in the form:

(142) %= [K(t, u) — K(6 W] + [K(t, u) —K W],

and observe that, from equation (125), which defikésu), that function possesses a
partial derivative with respect tpon just the condition of supposing that the functiéns
andFy, — [given in no.1] — have second derivatives of the ty3d dp; 0t . One may thus
suppose:

(143) K(t, u) =K(8 u) = (-6 A

A being a function ofi that will be defined in any intervald, u;), that ¢ — ) is annulled
or not. Indeed, whert ¢ 6) is not annulled the continuity & results from that of the
functionK(t, u), and the functionsand @ of u. If (t — ) is annulled then it results from
the expression foA:

A K@)
08

(144)

which furnishes the theorem of finite increases] an which 8 is betweent and 6,
provided that one supposes the continuity of thevaives of F and Fy, that we just
assumed the existence of.

We thus write equation (142) in the form:

(145) 9B _pa+B,
dt

upon further lettingd denote the difference (137), which is a functidrudhat is also
continuous, due to the preceding hypotheses. Meredrom no.19, B is positive or
null, and is not constantly null.

From this equation, upon taking into account thet thatA is annulled foru = up
one derives the expression for

(146) A=t [ Beds " gL

which shows thaf is positive forup <u < u; . In particular, one has, far=u; , the
consequence:
(247) t;— 6> 0.

It is thus proved thainder the hypothesis on the concavity of the wawpticity
that was specified in nd.9, the trajectoryl’ corresponds to a minimum in the duration of
propagation.



