On the differential equations that are deduced from questions in the calculus of variations

By VITO VOLTERRA

Translated by D. H. Delphenich

In a study that I hope that I can communicate to this academy, it was necessary for me to consider the integrals of a system of differential equations that is defined by annulling the first variation of a multiple integral as things that depend upon certain elements that are given at the limits of that integral. Therefore, permit me to present in this note some of my studies of the differential equations that are defined by the calculus of variations, including a contribution to the criteria for recognizing whether being given certain elements at the limits is sufficient to define the unknown functions of the problem. I shall not enter into the question of whether those elements that are given at the limits are characteristic. Those questions present great difficulties and can be solved only in a few cases, among which, one has the ones that were treated very remarkably by SCHWARZ and recently generalized by PICARD in an interesting paper that was published in Acta Mathematica.

JACOBI has observed that the differential equations that one finds by annulling the first variation of a simple integral can be transformed and reduced to a form that is equivalent to the one that HAMILTON provided for the equations of dynamics. Analogously, one can reduce the differential equations that are obtained by annulling the first variation of multiple integrals to that form. That form includes JACOBI's canonical form as a particular case. In the present note, I shall appeal to the differential equations when they are posed in that form.

I.

1. - Let $y_{1}, y_{2}, \ldots, y_{p}$ be functions of the n variables $x_{1}, x_{2}, \ldots, x_{n}$, and let F be a function of x_{1}, x_{2}, \ldots, x_{n}, and $y_{1}, y_{2}, \ldots, y_{p}$, and their partial derivatives.

One can either suppose that the $y_{1}, y_{2}, \ldots, y_{p}$ are mutually independent or that they are coupled by certain relations:

$$
\begin{equation*}
F_{1}=0, \quad F_{2}=0, \quad \ldots, \quad F_{r}=0 \tag{1}
\end{equation*}
$$

As auxiliary variables, introduce the partial derivatives of the $y_{1}, y_{2}, \ldots, y_{p}$ of order less than the one that appears with the maximum index of derivation in F and in the given condition equations, that is to say, consider all of the:

$$
z_{h}=\frac{\partial^{k_{1}+\cdots+k_{n}} y_{i}}{\partial x_{1}^{k_{1}} \partial x_{2}^{k_{2}} \cdots \partial x_{n}^{k_{n}}}=Y_{k_{1} k_{2} \ldots k_{n}}^{(i)}
$$

that enter into F and the $Y_{h_{1} h_{2} \ldots h_{n}}^{(i)}$ in (1) for which one has:

$$
\begin{gathered}
h_{1} \geq k_{1}, \quad h_{2} \geq k_{2}, \quad \ldots, \quad h_{n} \geq k_{n}, \\
h_{1}+h_{2}+\ldots+h_{n} \geq k_{1}+k_{2}+\ldots+k_{n}
\end{gathered}
$$

One can consider F to be a function of $z_{1}, z_{2}, \ldots, z_{p}$ and their first derivatives:

$$
z_{h}^{(i)}=\frac{\partial z_{i}}{\partial x_{h}}
$$

while certain relations:

$$
F_{1}=0, \quad F_{2}=0, \quad \ldots, \quad F_{r}=0, \quad F_{r+1}=0, \quad \ldots, \quad F_{z}=0
$$

exist between the z_{i} and the $z_{h}^{(i)}$.
The first r of them can be supposed to be the given relations (1), while the others will obviously be the linear relations between the z_{i} and the $z_{h}^{(i)}$.
2. - Now consider the problem of annulling the first variation of:

$$
I=\int F d x_{1} \cdots d x_{n} .
$$

Set:

$$
\begin{equation*}
\Phi=F+\sum_{t=1}^{s} \lambda_{t} F_{t} . \tag{2}
\end{equation*}
$$

One will then get the equations:

$$
\left\{\begin{array}{c}
\sum_{h=1}^{n} \frac{\partial}{\partial x_{h}} \frac{\partial \Phi}{\partial z_{h}^{(i)}}-\frac{\partial \Phi}{\partial z_{i}}=0 \tag{3}\\
F_{1}=0, \quad F_{2}=0, \quad \ldots, \quad F_{s}=0
\end{array}\right.
$$

Suppose that only $z_{i_{1}}^{(i)}, z_{i_{2}}^{(i)}, \ldots, z_{i_{i}}^{(i)}$ from among the $z_{1}^{(i)}, z_{2}^{(i)}, \ldots, z_{n}^{(i)}$ enter into Φ. One can then write the preceding equations in the form:

$$
\left\{\begin{array}{c}
\frac{\partial}{\partial x_{i_{1}}} \frac{\partial \Phi}{\partial z_{i_{1}}^{(i)}}+\frac{\partial}{\partial x_{i_{2}}} \frac{\partial \Phi}{\partial z_{i_{2}}^{(i)}}+\cdots+\frac{\partial}{\partial x_{i_{t}}} \frac{\partial \Phi}{\partial z_{i_{i}}^{(i)}}=\frac{\partial \Phi}{\partial z_{i}}, \\
F_{1}=0, \quad F_{2}=0, \quad \ldots, \quad F_{s}=0
\end{array}\right.
$$

Set:

$$
\begin{equation*}
\frac{\partial \Phi}{\partial z_{i_{1}}^{(i)}}=p_{i_{1}}^{(i)}, \quad \frac{\partial \Phi}{\partial z_{i_{2}}^{(i)}}=p_{i_{2}}^{(i)}, \quad \ldots, \quad \frac{\partial \Phi}{\partial z_{i_{1}}^{(i)}}=p_{i_{i}}^{(i)} \tag{4}
\end{equation*}
$$

and assume that the system of equations, together with:

$$
\begin{equation*}
F_{1}=0, \quad F_{2}=0, \quad \ldots, \quad F_{r}=0, \tag{1}
\end{equation*}
$$

can be solved for the $z_{i_{i}}^{(i)}$ and the λ_{h}, that is to say, the Jacobian of the $\partial \Phi / \partial z_{i_{i}}^{(i)}$ and F_{h} with the respect to the $z_{i_{l}}^{(i)}$ and the λ_{h} is non-zero. Substitute the values that one obtains by means of that solution in:

$$
\begin{equation*}
H=\Phi-\sum_{i=1}^{m}\left[z_{i_{1}}^{(i)} p_{i_{1}}^{(i)}+z_{i_{2}}^{(i)} p_{i_{2}}^{(i)}+\cdots+z_{i_{t}}^{(i)} p_{i_{i}}^{(i)}\right] \tag{5}
\end{equation*}
$$

Varying both sides of that equation will give:

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[\frac{\partial H}{\partial z_{i}} \delta z_{i}+\frac{\partial H}{\partial p_{i_{1}}^{(i)}} \delta p_{i_{1}}^{(i)}+\cdots+\frac{\partial H}{\partial p_{i_{t}}^{(i)}} \delta p_{i_{t}}^{(i)}\right] \\
= & \sum_{i=1}^{m}\left[\frac{\partial \Phi}{\partial z_{i}} \delta z_{i}+\frac{\partial \Phi}{\partial p_{i_{1}}^{(i)}} \delta p_{i_{1}}^{(i)}+\cdots+\frac{\partial \Phi}{\partial p_{i_{t}}^{(i)}} \delta p_{i_{t}}^{(i)}\right] \\
& +\sum_{i=1}^{m}\left[\frac{\partial \Phi}{\partial z_{i}} \delta z_{i_{i}}-z_{i_{1}}^{(i)} \delta p_{i_{1}}^{(i)}-\cdots-z_{i_{t}}^{(i)} \delta p_{i_{t}}^{(i)}\right] \\
& +\sum_{i=1}^{m}\left[\left(\frac{\partial \Phi}{\partial z_{i}}-p_{i_{1}}^{(i)}\right) \delta z_{i_{1}}^{(i)}+\cdots+\left(\frac{\partial \Phi}{\partial z_{t}}-p_{i_{t}}^{(i)}\right) \delta z_{i_{t}}^{(i)}\right] \\
& +\sum_{h=1}^{s} F_{h} \delta \lambda_{h}
\end{aligned}
$$

If one then takes into account (4) and (1) then one will have:

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[\frac{\partial H}{\partial z_{i}} \delta z_{i}+\frac{\partial H}{\partial p_{i_{1}}^{(i)}} \delta p_{i_{1}}^{(i)}+\cdots+\frac{\partial H}{\partial p_{i_{1}}^{(i)}} \delta p_{i_{t}}^{(i)}\right] \\
& =\sum_{i=1}^{m}\left[\frac{\partial \Phi}{\partial z_{i}} \delta z_{i}-z_{i_{1}}^{(i)} \delta p_{i_{1}}^{(i)}-\cdots-z_{i_{i}}^{(i)} \delta p_{i_{i}}^{(i)}\right]
\end{aligned}
$$

so

$$
\frac{\partial H}{\partial z_{i}}=\frac{\partial \Phi}{\partial z_{i}}, \quad \frac{\partial H}{\partial p_{i_{l}}^{(i)}}=-z_{i_{i}}^{(i)} .
$$

Equations (3) can then be replaced with the system of equations:

$$
\begin{cases}\frac{\partial p_{i_{1}}^{(i)}}{\partial x_{i_{1}}}+\frac{\partial p_{i_{2}}^{(i)}}{\partial x_{i_{2}}}+\cdots+\frac{\partial p_{i_{i}}^{(i)}}{\partial x_{i_{i}}}=\frac{\partial H}{\partial z_{i}}, \\ \frac{\partial z_{i}}{\partial x_{i_{1}}}=-\frac{\partial H}{\partial p_{i_{1}}^{(i)}}, \\ \frac{\partial z_{i}}{\partial x_{i_{2}}}=-\frac{\partial H}{\partial p_{i_{2}}^{(i)}}, & (i=1,2, \ldots, m) . \\ \cdots \ldots \tag{6}\\ \frac{\partial z_{i}}{\partial x_{i_{i}}}=-\frac{\partial H}{\partial p_{i_{i}}^{(i)}} & \end{cases}
$$

That system of equations has a form that is analogous to that of the canonical equations, except that any function z_{i} will be conjugate to many functions, in general, viz., the $p_{i_{1}}^{(i)}, \ldots, p_{i_{H}}^{(i)}$, as opposed to just one function in the case of the ordinary canonical equations.
3. - We have seen how the differential equations that are produced by annulling the first variation of an integral can be put into the form (6). Conversely, we can prove that any system of equations of the form (6), in which H is a function of the z_{i} and the $p_{i_{l}}^{(i)}$, can be made to depend upon a problem in the calculus of variations. Indeed, consider:

$$
\int\left[\sum_{i=1}^{m} z_{i}\left(\frac{\partial p_{i_{1}}^{(i)}}{\partial x_{i_{1}}}+\frac{\partial p_{i_{2}}^{(i)}}{\partial x_{i_{2}}}+\cdots+\frac{\partial p_{i_{i}}^{(i)}}{\partial x_{i_{1}}}\right)-H\right] d x_{1} \cdots d x_{n} .
$$

The condition for the first variation of that integral to vanish, when one supposes that the z_{i} and the $p_{i_{1}}^{(i)}$ are mutually independent, is precisely (6).

II.

4. - Some noteworthy relations exist between the function H and the functions Φ, F, F_{1}, \ldots, F_{r}. If Φ contains $z_{h_{l}}^{(h)}$ then it will follow from (6) that:

$$
\frac{\partial H}{\partial p_{h_{l}}^{(h)}}=-z_{h_{l}}^{(h)}
$$

Consequently, one can write:

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[\frac{\partial H}{\partial z_{i}} z_{i}-\frac{\partial H}{\partial p_{i_{1}}^{(i)}} p_{i_{1}}^{(i)}-\cdots-\frac{\partial H}{\partial p_{i_{h}}^{(i)}} p_{i_{t}}^{(i)}\right] \\
& =\sum_{i=1}^{m}\left[\frac{\partial \Phi}{\partial z_{i}} z_{i}+\frac{\partial \Phi}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)}+\cdots+\frac{\partial \Phi}{\partial z_{i_{t}}^{(i)}} z_{i_{i}}^{(i)}\right] \\
& =\sum_{i=1}^{m}\left[\frac{\partial F}{\partial z_{i}} z_{i}+\frac{\partial F}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)}+\cdots+\frac{\partial F}{\partial z_{i_{t}}^{(i)}} z_{i_{i}}^{(i)}\right] \\
& +\sum_{h=1}^{s} \lambda_{h} \sum_{i=1}^{m}\left[\frac{\partial F_{h}}{\partial z_{i}} z_{i}+\frac{\partial F_{h}}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)}+\cdots+\frac{\partial F_{h}}{\partial z_{i_{t}}^{(i)}} z_{i_{i}}^{(i)}\right]
\end{aligned}
$$

However, F_{r+1}, \ldots, F_{s} are homogeneous functions of degree one, so:

$$
\begin{align*}
& \sum_{i=1}^{m}\left[\frac{\partial H}{\partial z_{i}} z_{i}-\frac{\partial H}{\partial p_{i_{1}}^{(i)}} p_{i_{1}}^{(i)}-\cdots-\frac{\partial H}{\partial p_{i_{t}}^{(i)}} p_{i_{t}}^{(i)}\right] \tag{7}\\
& =\sum_{i=1}^{m}\left[\frac{\partial F}{\partial z_{i}} z_{i}+\frac{\partial F}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)}+\cdots+\frac{\partial F}{\partial z_{i_{t}}^{(i)}} z_{i_{i}}^{(i)}\right] \\
& +\sum_{h=1}^{r} \lambda_{h} \sum_{i=1}^{m}\left[\frac{\partial F_{h}}{\partial z_{i}} z_{i}+\frac{\partial F_{h}}{\partial z_{i_{1}}^{(i)}} z_{i_{1}}^{(i)}+\cdots+\frac{\partial F_{h}}{\partial z_{i_{t}}^{(i)}} z_{i_{i}}^{(i)}\right] .
\end{align*}
$$

If all of the F_{h} were homogeneous functions then the last term on the right-hand side of the preceding equation would disappear.
5. - Consider two systems of solutions of (6), i.e., $z_{i}, p_{i_{l}}^{(i)}$, and $u_{i}, q_{i_{l}}^{(i)}$, and set $u_{i}-z_{i}=\zeta_{i}$, $q_{i_{l}}^{(i)}-p_{i_{i}}^{(i)}=\tilde{\omega}_{i_{l}}^{(i)}$; one will have:

$$
u_{i_{l}}^{(i)}-z_{i_{i}}^{(i)}=\zeta_{i_{l}}^{(i)} .
$$

It follows from the relations:

$$
\frac{\partial \Phi}{\partial z_{i_{l}}^{(i)}}=p_{i_{l}}^{(i)}, \quad z_{i_{l}}^{(i)}=-\frac{\partial H}{\partial p_{i_{i}}^{(i)}}, \quad \frac{\partial \Phi}{\partial z_{i}}=\frac{\partial F}{\partial z_{i}},
$$

upon applying TAYLOR's theorem, that:

$$
\begin{align*}
\sum_{h=1}^{m}[& \left.\frac{\partial^{2} \Phi}{\partial z_{i_{l}}^{(i)} \partial z_{h}} \zeta_{h}+\frac{\partial^{2} \Phi}{\partial z_{i_{l}}^{(i)} \partial z_{h_{1}}} \zeta_{h_{l}}^{(h)}+\cdots+\frac{\partial^{2} \Phi}{\partial z_{i_{l}}^{(i)} \partial z_{h_{l}}} \zeta_{h_{t}}^{(h)}\right]+\varphi_{i_{l}}^{(i)}=\tilde{\omega}_{i_{l}}^{(i)} \tag{8}\\
\zeta_{i_{l}}^{(i)}= & -\sum_{h=1}^{m}\left[\frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial z_{h}} \zeta_{h}+\frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial p_{h_{l}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)}+\cdots+\frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial p_{h_{l}}^{(h)}} \tilde{\omega}_{h_{t}}^{(h)}\right]+\psi_{i_{l}}^{(i)}, \\
& \sum_{h=1}^{m}\left[\frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h}} \zeta_{h}+\frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h_{1}}^{(h)}} \zeta_{h_{1}}^{(h)}+\cdots+\frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h_{t}}^{(h)}} \zeta_{h_{t}}^{(h)}\right]+\varphi_{i} \\
= & \sum_{h=1}^{m}\left[\frac{\partial^{2} H}{\partial z_{h} \partial z_{h}} \zeta_{h}+\frac{\partial^{2} H}{\partial z_{i} \partial p_{h_{l}}^{(h)}} \tilde{\omega}_{h_{l}}^{(h)}+\cdots+\frac{\partial^{2} H}{\partial z_{i} \partial p_{h_{l}}^{(h)}} \tilde{\omega}_{h_{t}}^{(h)}\right]+\psi_{i}
\end{align*}
$$

in which $\varphi_{i_{l}}^{(i)}, \varphi_{i}$ are homogeneous functions of degree two in the ζ_{h} and $\zeta_{h_{\lambda}}^{(h)}$ whose coefficients are the third derivatives of Φ taken at intermediate values of the variables from among the values of $z_{h}, z_{h_{\lambda}}^{(h)}$ and $u_{h}, u_{h_{\lambda}}^{(h)}$, while the $\psi_{i_{l}}^{(i)}, \psi_{i}$ are homogeneous functions of degree two in the $\zeta_{h}, p_{h_{\lambda}}^{(h)}$ whose coefficients are the third derivatives of H taken at intermediate values of the variables from among the values $z_{h}, p_{h_{\lambda}}^{(h)}$ and $u_{h}, q_{h_{\lambda}}^{(h)}$.

If one multiplies corresponding sides of (8) and (8^{\prime}) and multiplies ($8^{\prime \prime}$) by ξ_{i} and sums then one will find that:

$$
\begin{equation*}
\sum \sum \frac{\partial^{2} \Phi}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h}+\sum \sum \frac{\partial^{2} \Phi}{\partial z_{i_{l}}^{(i)} \partial z_{h_{h}}^{(h)}} \zeta_{i_{l}}^{(i)} \zeta_{h_{\lambda}}^{(h)}+\varphi \tag{9}
\end{equation*}
$$

$$
=\sum \sum \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h}-\sum \sum \frac{\partial^{2} H}{\partial p_{i,}^{(i)} \partial p_{h_{k}}^{(h)}} \tilde{\omega}_{i}^{(i)} \tilde{\omega}_{h_{k}}^{(h)}+\psi,
$$

in which φ is a homogeneous function of degree three in the $\zeta_{i}, \zeta_{i_{1}}^{(i)}$, and ψ is homogeneous of degree three in just the $\zeta_{i}, \tilde{\omega}_{i_{j}}^{(i)}$. Denote the z_{i} and $z_{i_{i}}^{(i)}$ that are contained in Φ by $v_{1}, v_{2}, \ldots, v_{g}$, and the corresponding u_{i} and $u_{i_{i}}^{(i)}$ by $w_{1}, w_{2}, \ldots, w_{g}$. Set:

$$
w_{i}-v_{i}=v_{i}
$$

and recall that F_{r+1}, \ldots, F_{s} are linear functions. The preceding equations can then be written:

$$
\begin{gather*}
\sum \sum \frac{\partial^{2} \Phi}{\partial v_{i} \partial v_{h}} v_{i} v_{h}+\varphi=\sum \sum \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h}-\sum \sum \frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_{l}}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)}+\psi \tag{10}\\
=\sum \sum \frac{\partial^{2} F}{\partial v_{i} \partial v_{h}} v_{i} v_{h}+\sum_{g=1}^{r} \lambda_{g} \sum \sum \frac{\partial^{2} F_{g}}{\partial v_{i} \partial v_{h}} v_{i} v_{h}+\varphi
\end{gather*}
$$

III.

6. - Recall the fundamental equations (6). As before, let $z_{i}, p_{i_{l}}^{(i)}$ denote one system of integrals and let $u_{i}, q_{i_{l}}^{(i)}$ denote another system of integrals.

Let S_{n} be an n-dimensional region that is bounded by the contour S_{n-1}, between which the preceding two systems of integrals are functions that are finite and continuous, along with all of their derivatives.

Multiply the two sides of (6) by $u_{i},-q_{i}^{(i)}$, in succession, and then sum and integrate over all of S_{n}. One will get:

$$
\begin{gathered}
\int_{S_{n}} \sum_{i=1}^{m}\left[u_{i} \frac{\partial H}{\partial z_{i}}+q_{i_{1}}^{(i)} \frac{\partial H}{\partial p_{i_{1}}^{(i)}}+\cdots+q_{i_{i}}^{(i)} \frac{\partial H}{\partial p_{i_{i}}^{(i)}}\right] d S_{n} \\
=\int_{S_{n}}\left[\sum_{i=1}^{m} u_{i}\left(\frac{\partial p_{i_{1}}^{(i)}}{\partial x_{i_{1}}}+\cdots+\frac{\partial p_{i_{t}}^{(i)}}{\partial x_{i_{t}}}\right)-\sum_{i=1}^{m}\left(q_{i_{1}}^{(i)} \frac{\partial z_{i}}{\partial x_{i_{1}}}+\cdots+q_{i_{t}}^{(i)} \frac{\partial z_{i}}{\partial x_{i_{t}}}\right)\right] d S_{n} \\
=-\int_{S_{n-1}} \sum_{i=1}^{m} u_{i}\left(p_{i_{1}}^{(i)} \cos v x_{i_{1}}+\cdots+p_{i_{t}}^{(i)} \cos v x_{i_{t}}\right) d S_{n-1}
\end{gathered}
$$

$$
\begin{gathered}
+\int_{S_{n-1}} \sum_{i=1}^{m} z_{i}\left(q_{i_{1}}^{(i)} \cos v x_{i_{1}}+\cdots+q_{i_{t}}^{(i)} \cos v x_{i_{i}}\right) d S_{n-1} \\
-\int_{S_{n}}\left[\sum_{i=1}^{m}\left(p_{i_{1}}^{(i)} \frac{\partial u_{i}}{\partial x_{i_{1}}}+\cdots+p_{i_{i}}^{(i)} \frac{\partial u_{i}}{\partial x_{i_{i}}}\right)-z_{i}\left(\frac{\partial q_{i_{1}}^{(i)}}{\partial x_{i_{1}}}+\cdots+\frac{\partial q_{i_{i}}^{(i)}}{\partial x_{i_{i}}}\right)\right] d S_{n},
\end{gathered}
$$

in which v is the normal to S_{n-1} that points inward to S_{n}. One will then have:

$$
\begin{align*}
& \int_{S_{n-1}} \sum_{i=1}^{m} z_{i}\left(q_{i_{1}}^{(i)} \cos v x_{i_{1}}+\cdots+q_{i_{t}}^{(i)} \cos v x_{i_{t}}\right) d S_{n-1} \tag{11}\\
& -\int_{S_{n-1}} \sum_{i=1}^{m} u_{i}\left(p_{i_{1}}^{(i)} \cos v x_{i_{1}}+\cdots+p_{i_{t}}^{(i)} \cos v x_{i_{t}}\right) d S_{n-1} \\
& \quad=\int_{S_{n}} \sum_{i=1}^{m}\left(u_{i} \frac{\partial H}{\partial z_{i}}+q_{i_{1}}^{(i)} \frac{\partial H}{\partial p_{i_{1}}^{(i)}}+\cdots+q_{i_{i}}^{(i)} \frac{\partial H}{\partial p_{i_{t}}^{(i)}}\right) d S_{n} \\
& \quad-\int_{S_{n}} \sum_{i=1}^{m}\left(z_{i} \frac{\partial H}{\partial u_{i}}+p_{i_{1}}^{(i)} \frac{\partial H}{\partial q_{i_{1}}^{(i)}}+\cdots+p_{i_{i}}^{(i)} \frac{\partial H}{\partial q_{i_{i}}^{(i)}}\right) d S_{n} .
\end{align*}
$$

That relation is analogous to that of GREEN.
In the case where H is an entire rational function that is homogeneous of degree two, the righthand side will vanish. One can deduce prof. BETTI's fundamental theorem of elasticity from that fact.
7. - Multiply both sides of (6) by $z_{i}, p_{i_{1}}^{(i)}, \ldots, p_{i_{i}}^{(i)}$, in succession and integrate over S_{n}. One will find that:

$$
\begin{gathered}
\int_{S_{n}} \sum_{i=1}^{m}\left(z_{i} \frac{\partial H}{\partial z_{i}}-p_{i_{1}}^{(i)} \frac{\partial H}{\partial p_{i_{1}}^{(i)}}-\cdots-p_{i_{i}}^{(i)} \frac{\partial H}{\partial p_{i_{t}}^{(i)}}\right) d S_{n} \\
=\int_{S_{n}} \sum_{i=1}^{m}\left(\frac{\partial\left(z_{i} p_{i_{1}}^{(i)}\right)}{\partial x_{i_{1}}}+\cdots+\frac{\partial\left(z_{t} p_{i_{t}}^{(i)}\right)}{\partial x_{i_{t}}}\right) d S_{n} \\
=- \\
S_{S_{n-1}} \sum_{i=1}^{m} z_{i}\left(p_{i_{1}}^{(i)} \cos v x_{i_{1}}+\cdots+p_{i_{t}}^{(i)} \cos v x_{i_{1}}\right) d S_{n-1} .
\end{gathered}
$$

If one takes (7) into account and supposes that F, F_{1}, \ldots, F_{r} are homogeneous, while F has degree k, then one will have:

$$
k_{1} I=k \int_{S_{n}} F d S_{n}=-\int_{S_{n-1}} \sum_{i=1}^{m} z_{i}\left(p_{i_{1}}^{(i)} \cos v x_{i_{1}}+\cdots+p_{i_{t}}^{(i)} \cos v x_{i_{t}}\right) d S_{n-1} .
$$

8. - It follows from the formulas that were found in § $\mathbf{5}$ that:

$$
\begin{align*}
& \frac{\partial \tilde{\omega}_{i_{1}}^{(i)}}{\partial x_{i_{1}}}+\cdots+\frac{\partial \tilde{\omega}_{i_{t}}^{(i)}}{\partial x_{i_{t}}}=\sum_{h=1}^{m}\left(\frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{h}+\frac{\partial^{2} H}{\partial z_{i} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)}+\cdots+\frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{t}}^{(h)}} \tilde{\omega}_{h_{h_{i}}}^{(h)}\right)+\psi_{i}, \\
& \frac{\partial \zeta_{i}}{\partial x_{i_{1}}}=-\sum_{h=1}^{m}\left(\frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial z_{h}} \zeta_{h}+\frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)}+\cdots+\frac{\partial^{2} H}{\partial p_{i_{1}}^{(i)} \partial p_{h_{t}}^{(h)}} \tilde{\omega}_{h_{t}}^{(h)}\right)+\psi_{i_{1}}^{(i)}, \tag{12}\\
& \frac{\partial \zeta_{i}}{\partial x_{i_{t}}}=-\sum_{h=1}^{m}\left(\frac{\partial^{2} H}{\partial p_{i_{t}}^{(i)} \partial z_{h}} \zeta_{h}+\frac{\partial^{2} H}{\partial p_{i_{t}}^{(i)} \partial p_{h_{1}}^{(h)}} \tilde{\omega}_{h_{1}}^{(h)}+\cdots+\frac{\partial^{2} H}{\partial p_{i_{t}}^{(i)} \partial p_{h_{t}}^{(h)}} \tilde{\omega}_{h_{t}}^{(h)}\right)+\psi_{i_{t}}^{(i)},
\end{align*}
$$

so

$$
\begin{aligned}
& \int_{S_{n}}\left(\sum_{i} \sum_{h} \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h}-\sum \sum \frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_{l}}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)}+\psi\right) d S_{n} \\
& =\int_{S_{n}} \sum_{i=1}^{m}\left(\frac{\partial\left(\zeta_{i} \tilde{\omega}_{i_{1}}^{(i)}\right)}{\partial x_{i_{1}}}+\frac{\partial\left(\zeta_{i} \tilde{\omega}_{i_{2}}^{(i)}\right)}{\partial x_{i_{2}}}+\cdots+\frac{\partial\left(\zeta_{i} \tilde{\omega}_{i_{i}}^{(i)}\right)}{\partial x_{i_{i}}}\right) d S_{n},
\end{aligned}
$$

which ultimately gives the formula:

$$
\begin{gather*}
-\int_{S_{n-1}} \sum_{i=1}^{m} \zeta_{i}\left(\tilde{\omega}_{i_{1}}^{(i)} \cos v x_{i_{1}}+\tilde{\omega}_{i_{2}}^{(i)} \cos v x_{i_{2}}+\cdots+\tilde{\omega}_{i_{t}}^{(i)} \cos v x_{i_{i}}\right) d S_{n-1} \tag{13}\\
=\int_{S_{n}}\left(\sum_{i} \sum_{h} \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h}-\sum \sum \frac{\partial^{2} H}{\partial p_{i_{i}}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_{i}}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)}+\psi\right) d S_{n} \\
=\int_{S_{n}}\left(\sum \sum \frac{\partial^{2}\left(F+\sum_{g=1}^{r} \lambda_{g} F_{g}\right)}{\partial v_{i} \partial v_{h}} v_{i} v_{h}+\varphi\right) d S_{n} .
\end{gather*}
$$

IV.

9. - The last formula in the preceding section yields a fundamental theorem that relates to equations (6):

If $\mathbf{z}_{i}, \mathbf{p}_{i_{l}}^{(i)}$ define a system of integrals of (6) such that the two quadratic forms:

$$
\sum \sum \frac{\partial^{2} H}{\partial \mathbf{z}_{i} \partial \mathbf{z}_{h}} \alpha_{i} \alpha_{h}, \quad \sum \sum \frac{\partial^{2} H}{\partial \mathbf{p}_{i_{l}}^{(i)} \partial \mathbf{p}_{h_{\lambda}}^{(h)}} \beta_{i_{l}}^{(i)} \beta_{h_{\lambda}}^{(h)}
$$

are definite and of opposite sign then all of the integrals $z_{i}, p_{i_{l}}^{(i)}$ that belong to a region S_{n} and differ from $\mathbf{z}_{i}, \mathbf{p}_{i_{l}}^{(i)}$ by less than a certain value will be determined when one knows the values of the z_{i} or those of the sum:

$$
p_{i_{1}}^{(i)} \cos v x_{i_{1}}+p_{i_{2}}^{(i)} \cos v x_{i_{2}}+\cdots+p_{i_{t}}^{(i)} \cos v x_{i_{1}}=P_{i}
$$

on the contour S_{n-1} or, more generally, they will be determined when one knows the values of z_{1}, z_{2}, \ldots, z_{k} and the remaining ones P_{k+1}, \ldots, P_{m} at any point on the contour.

Indeed, let $z_{i}, p_{i_{i}}^{(i)}$ and $u_{i}, q_{i_{l}}^{(i)}$ be two systems of integrals of (6) such that one will have:

$$
z_{1}=u_{1}, z_{2}=u_{2}, \ldots, z_{k}=u_{k}, \quad P_{k+1}=Q_{k+1}, \ldots, P_{m}=Q_{m}
$$

at any point of S_{n-1}, in which:

$$
Q_{i}=q_{i_{1}}^{(i)} \cos v x_{i_{1}}+\cdots+q_{i_{t}}^{(i)} \cos v x_{i_{t}} .
$$

When one applies that to (13), one will find that:

$$
\begin{equation*}
\int_{S_{n}}\left(\sum \sum \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h}-\sum \sum \frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_{l}}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)}+\psi\right) d S_{n}=0 . \tag{14}
\end{equation*}
$$

Now, if the $z_{i}, u_{i}, p_{i_{i}}^{(i)}, q_{i}^{(i)}$ differ from $\mathbf{z}_{i}, \mathbf{p}_{i}{ }^{(i)}$ by less than a certain value M then one will have:

$$
\left|\zeta_{i}\right|<2 M, \quad\left|\tilde{\omega}_{i_{l}}^{(i)}\right|<2 M .
$$

One can then determine a value μ of M such that:

1. The form:

$$
f=\sum \sum \frac{\partial^{2} H}{\partial z_{i} \partial z_{h}} \zeta_{i} \zeta_{h}-\sum \sum \frac{\partial^{2} H}{\partial p_{i}^{(i)} \partial p_{h_{2}}^{(h)}} \tilde{\omega}_{i_{i}}^{(i)} \tilde{\omega}_{h_{2}}^{(h)}
$$

is definite.
2. The homogeneous form ψ of degree three in the $\zeta_{i}, \tilde{\omega}_{i_{l}}^{(i)}$ always assumes absolute values that are less than $|f|\left(\right.$ except for $\left.\zeta_{i}=\tilde{\omega}_{i_{i}}^{(i)}=0\right)$.

Under those hypotheses, the relation (14) will not be satisfied by anything but:

$$
\zeta_{i}=\tilde{\omega}_{i_{i}}^{(i)}=0
$$

in all of the region S_{n}, which proves the theorem.
10. - Suppose that H is independent $z_{1}, z_{2}, \ldots, z_{m}$. Under those hypotheses, the preceding theorem will be modified in the following manner:

If $\mathbf{z}_{i}, \mathbf{p}_{i_{l}}^{(i)}$ form a system of integrals of (6) and the $\mathbf{p}_{i_{l}}^{(i)}$ are such that the quadratic form:

$$
\sum \sum \frac{\partial^{2} H}{\partial \mathbf{p}_{i_{1}}^{(i)} \partial \mathbf{p}_{h_{i}}^{(h)}} \beta_{i_{i}}^{(i)} \beta_{h_{k}}^{(h)}
$$

is definite then all of the integrals $z_{i}, p_{i_{l}}^{(i)}$ such that the $p_{i_{l}}^{(i)}$ that belong to a region S_{n} and differ from $\mathbf{p}_{i,}^{(i)}$, respectively, by less than a certain value will be determined when one knows the values of the z_{i} on the contour S_{n-1}.

Indeed, if z_{i} and u_{i} are such that one has $z_{i}=u_{i}$ on the contour then one will have:

$$
\int_{S_{n}}\left(\sum \sum \frac{\partial^{2} H}{\partial p_{i_{l}}^{(i)} \partial p_{h_{\lambda}}^{(h)}} \tilde{\omega}_{i_{l}}^{(i)} \tilde{\omega}_{h_{\lambda}}^{(h)}+\psi\right) d S_{n}=0 .
$$

If one then repeats the argument that was presented in the preceding section then one will find that if $p_{i_{l}}^{(i)}$ and $q_{i_{l}}^{(i)}$ do not wander from $\mathbf{p}_{i_{l}}^{(i)}$ by more than a certain value then one must have that:

$$
\tilde{\omega}_{i_{l}}^{(i)}=0
$$

in order for the preceding equality to be satisfied. However, it follows from (12) that:

$$
\frac{\partial \zeta_{i}}{\partial x_{i_{i}}}=0
$$

so ζ_{i} must be independent of $x_{i_{i}}$. Now any parallel to the $x_{i_{i}}$-axis will meet S_{n-1} where ζ_{i} is zero, so the ζ_{i} will be zero, and consequently, one will have:

$$
p_{i_{i}}^{(i)}=q_{i_{l}}^{(i)}, \quad z_{i}=u_{i}
$$

inside S_{n}, which proves the theorem.
11. - The theorem in § $\mathbf{1 0}$ can also be interpreted in a different way.

If $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{m}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are a system of integrals of equations (3) such that the quadratic form ${ }^{(1)}$:

$$
\sum \sum \frac{\partial^{2}\left(F+\sum_{\gamma=1}^{r} \lambda_{\gamma} F_{\gamma}\right)}{\partial \mathbf{v}_{i} \partial \mathbf{v}_{h}} \alpha_{i} \alpha_{h}
$$

is definite then if all of the integrals z_{1}, \ldots, z_{m} differ from $\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}$, respectively, by less than a certain value within a region S_{n}, they will be determined when one knows their values on the contour S_{n-1}.

Indeed, if z_{1}, \ldots, z_{m} and u_{1}, \ldots, u_{m} are two systems of integrals of (3) such that one has $z_{i}=u_{i}$ on the contour then one can deduce from formula (13) that:

$$
\int_{S_{n}}\left(\sum \sum \frac{\partial^{2}\left(F+\sum_{\gamma=1}^{r} \lambda_{\gamma} F_{\gamma}\right)}{\partial v_{i} \partial v_{h}} v_{i} v_{h}+\varphi\right) d S_{n}=0
$$

When one repeats an argument that was made before, one will then arrive at the conclusion that if the z_{i} and u_{i} differ from the \mathbf{z}_{i} by less than a certain value then in order for the preceding equation to be satisfied, one must have:

$$
v_{i}=0
$$

so (see $\S 5$) the z_{i} and $z_{h}^{(i)}$ that appear in F, F_{1}, \ldots, F_{g} will prove to be equal to the corresponding $u_{i}, u_{h}^{(i)}$ within S_{n}. However, if:
$\left({ }^{1}\right)$ The $\mathbf{v}_{1}, \ldots, \mathbf{v}_{1}$ denote the \mathbf{z}_{i} and $\mathbf{z}_{i_{l}}^{(i)}$ that are contained in $\Phi(\S \mathbf{5})$.

$$
z_{h}^{(i)}-u_{h}^{(i)}=\frac{\partial\left(z_{i}-u_{i}\right)}{\partial x_{h}}=0
$$

then it will result that:

$$
z_{i}-u_{i}=\text { const. }
$$

along all of the parallels to the x_{h}-axis, since they will meet the contour S_{n-1} where $z_{i}=u_{i}$, so one must have $z_{i}=u_{i}$ at all points in S_{n}, which proves the theorem.

