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 The papers that HAMILTON published in the Philosophical Transactions of the Royal Society 

of London in the years 1834 and 1835 became the point of departure for a series of research works 

that represent some of the most beautiful studies of our century in the fields of analysis and 

mechanics. It was JACOBI that generalized and modified HAMILTON’s result in such a manner 

as to make its importance and fecundity obvious. The fundamental theorem, which was initially 

limited to the questions of dynamics, was extended by JACOBI to the case of isoperimetric 

problems in which the derivatives of the unknown function that appeared under the integral went 

only up to first order (1). CLEBSCH (2) then proved that the procedure that JACOBI had used 

would be applicable to the general question of annulling the first variation of a simple integral with 

several unknown functions when some differential relations exist between those functions. Any 

problem in the calculus of variations that relates to simple integrals can then be reduced to that 

question. 

 As far as I know, no attempt has been made to extend the JACOBI-HAMILTON theory to the 

case in which one must annul the first variation of multiple integrals. As soon as one proposes such 

a generalization, one will immediately encounter a difficulty. Let us say a few words about what 

it consists of. The JACOBI-HAMILTON procedure is based upon the examination of a simple 

integral (whose variation must be annulled) when it is considered to a function of its limits and the 

values that are assigned arbitrarily to the unknown functions at those limits. Such a function (viz., 

the characteristic function) will satisfy the partial differential equations that HAMILTON 

discovered, and which produce the integrals of the problem by means of the operation of 

differentiation. If one passes from the simple integrals to the case of double integrals then instead 

of two limits to the integral, one will have one or more lines that form the contour of the domain 

of integration and along which one must give arbitrary values to the unknown functions. 

Therefore, it is not possible in that case to obtain an ordinary function that is analogous to 

HAMILTON’s characteristic function. 

 Moreover, the difficulty that was just described can be overcome. In this note, which I had the 

honor of presenting to the Accademia, I will show how for some purposes it can be useful to 

 
 (1) JACOBI, “Zur Theorie der Variations-Rechnung und der Differential-Gleichungen,” Crelle’s Journal, Bd. 17. 

 (2) “Ueber diejenigen Probleme der Variations-Rechnung, welche nur eine unabhängige Variable enthalten,” 

Crelle’s Journal, Bd. 55. 
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introduce functions that, along with depending upon the points of space like ordinary functions, 

also depend upon lines, and in general can be considered to be quantities that depend upon all of 

the values of one or more function in given intervals. 

 Now the question that was examined above spontaneously suggests the thought of constructing 

an element that is analogous to the characteristic function and resorts to the use of the new type of 

function that was just recalled. One will find that the JACOBI-HAMILTON theory is susceptible 

to being extended to multiple integrals in that way. That generalization has defined the subject of 

some of my research, a sample of which I might be permitted to give in the present note. 

 

 

 1. – However, in this note, other than not leaving the case of double integrals, I shall limit 

myself to the consideration of those problems in the calculus of variations in which one treats the 

annulment of the first variation of an integral: 

 

I = U du dv , 

 

in which U is a function of x1, x2, …, xn of u and v, and the determinants: 

 

( , )

( , )

i sd x x

d u v
, 

 

in which x1, …, xn are unknown functions of u and v. 

 That class of problems that relate to double integrals is closely-related to that of the 

isoperimetric problems. 

 Let us see what form the differential equations of the problem can be put into. If we set: 

 

( , )

( , )

i sd x x

d u v
 = is 

then we will have: 

 I = 
1

n

is i

iis i

U U
x du dv

x
 

 =

  
+ 

  
   = 0 , 

 

so, upon supposing that the variations xi are zero at the limits and integrating by parts, we will 

find that: 

(1)     
1

,

( , )

hn
ih

hi

U
d x

U

x d u v



=

 
 

  −


 = 0   (i = 1, 2, …, n) . 

 If we set: 

(2)      
ih

U






 = pih , pi, i = 0 
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then we will have: 

1

( , )

( , )

n
ih h

h

d p x

d u v=

  = 
i

U

x




. 

 Now let: 

H = − U + 
ih ihp   . 

 

 Suppose that (2) can be solved with respect to ih . We then find how those quantities can be 

expressed in terms of the x1 , …, xn , the pih , the u and the v. If we substitute those values in H then 

we will get: 

H = H (x1 , …, xn , pih , …, u, v) , 

 

so varying that while supposing that u and v are constant will give: 

 

H = − 
1

n

ih i ih ih ih ih

iih i

U U
x p p

x
    

 =

 
− + +

 
     

 

  = − 
1

n

i ih ih

i i

U
x p

x
  

=


+


   , 

or 

i

H

x




 = − 

i

U

x




,  

ih

H

p




 = ih . 

 

 The system of equations (1) can then be replaced with this other one: 

 

(I)    
( , )

( , )

i hd x x

d u v
 = 

ih

H

p




 , 

1

( , )

( , )

n
ih h

h

d p x

d u v=

  = − 
i

H

x




, 

 

which has a form that is perfectly analogous to the canonical form that HAMILTON gave to the 

equations of dynamics. 

 Now consider the system (I) of differential equations, in which H is an arbitrary function of 

the pih , the x1, x2, …, xn, and u and v. One can easily prove the converse theorem to the one that 

was just proved, viz., that equations (I) can always be associated with a problem in the calculus of 

variations. Indeed, consider: 

J = 
( , )

( , )

i h
ih

d x x
p H du dv

d u v

 
− 

 
  . 

 

In order to have J = 0 when one supposes that the xi are zero at the limits, one must have 

equations (I). 
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 2. – In the study that we will now make, we start from the system (I) while supposing that the 

variables xi are three in number. We assume that the system (I) is such that the unknown functions 

are defined when we know the values of the x1, x2, x3 on the contour of a region  in which we 

suppose that u and v are variable. The region  in the plane of u, v is bounded by m lines 1, 2, 

…, m . The equations of each of those i will be considered to have the forms: 

 

u = fi (ti) , v = i (ti) , Ti  ti  0 , 

 

and denote the values of the x1, x2, x3 that are assigned along i the by i (ti), i (ti), i (ti), resp. 

Those functions, along with the fi and i , are supposed to be continuous, periodic with a period Ti, 

and generally differentiable. Assume that the given elements are characteristic elements of the 

unknown functions, at least as long as the lines i and the arbitrary values that are assigned to the 

x on the contour remain between certain limits. 

 Let us see how we can consider the integrals of the problem under those hypotheses. 

 Each of them: 

 

 1. Will be a function of the variables u, v . 

 

 2. Will depend upon the functions fi (ti), i (ti), i (ti), i (ti), i (ti) (
3). 

 

 Consider a five-dimensional space whose points are referred to the Cartesian coordinates y1, 

y2, y3, y4, y5, and in which the lines i have the equations: 

 

y1 = fi (ti) , y2 = i (ti), y3 = i (ti) , y4 = i (ti) , y5 = i (ti) . 

 

 The integrals in (I) can be kept as quantities that depend upon the lines 1 , 2 , …, m , and 

the two parameters u and v, i.e., upon adopting the notations that have already been used on other 

occasions, one can write: 

 

(4)  xi = xi | [1 , 2 , …, m, u, v] | , (4) pih = pih | [1 , 2 , …, m, u, v] | . 

 

 In a three-dimensional space whose points have the coordinates x1, x2, x3, consider the lines Li 

that have the equations: 

x1 = i (ti) , x2 = i (ti) , x2 = i (ti) . 

 

 
 (3) Rendiconti R. Acc. d. Lincei, vol. III, fasc. 4 [in this volume: XVII, pp. 294-314.]. 
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It is easy to see that the integrals in (I) cannot be regarded as depending separately on the lines 1, 

2 , …, m , L1 , L2 , …, Lm , and the parameters u and v (4). 

 

 

 3. – Given that, substitute (4) and (4) in place of the xi and pih in: 

 

(II)     V = ih

ihS

H
p H du dv

p

 
− 

 
 . 

 

Let W denote V after performing that substitution. One will obviously have: 

 

W = W | [1 , 2 , …, m] | . 

 

 It follows from that when one give infinitesimal displacements to the lines 1 , 2 , …, m , or 

one varies the functions fs (ti), s (ti), s (ti), s (ti), s (ti) by infinitely little, one will find that the 

variation of W will be expressed by: 

 

(5)   W = 
1 2 3 4 5

1

{( ) ( ) ( ) ( ) ( ) }

s

m

y s s y s s y s s y s s y s s s

s

W f W W W W dt    
= 

    + + + +   , 

 

in which 
iyW  is independent of the fs , …, s , and is what one calls the derivative of W with 

respect to yi relative to i (
5). 

 Since W must not change when one displaces s along itself, one must then have: 

 

(6)   
1 2 3 4 5

( ) ( ) ( ) ( ) ( )s s s s s
y s y s y s y s y s

s s s s s

df d d d d
W W W W W

dt dt dt dt dt

   
    + + + +  = 0 . 

 

 One now supposes that one varies the functions i (ti), i (ti), i (ti) by infinitely little, while 

leaving the fi (ti), i (ti) unaltered, i.e., keeping the i unchanged. 

 Under that hypothesis, one will get: 

 

W = ih ih ih i

ih ih ih iS

H H H H
p p p x du dv

p p p x
   

    
+ − − 

    
     

 

 
 (4) That is why the xi and pih must remain unaltered while displacing an arbitrary Li along itself, while keeping the 

corresponding i unchanged.  

 (5) Rend. R. Acc. Lincei, vol. V, pp. 160 [in this volume: XXIII, pp. 405].  
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= ih i

ih iS

H H
p x du dv

p x
 

  
− 

  
  , 

or: 

W = 
( , ) ( , )

( , ) ( , )

i h ih h
ih i

i hS

d x x d p x
p x du dv

d u v d u v
 

 
+ 

 
  , 

 

because of (I), from which it will follow from a calculation that presents no difficulty that: 

 

W = 
i h i h

ih ihi h i h

S

x x x x

p p du dvx x x x
u v

v v u u

    
  

−    
  

    

   

 = 
1

s

i h i hm

ih ih si h i h
s s s

x x x x
v u

p p dtx x x x
t t

v v u u

   

=

 
  

+    
  

    

   , 

so one finally has: 

(7)   W = 
1

s

i hm

ih si h
s

s s

x x

p dtx x

t t

 

=

 

 

  . 

 

 Let us look for the significance of the determinants: 

 

i h

si h

s s

x x

dtx x

t t

 

 

 

 = 
i h

i h s

x x

dx dx

 
 = ( )s

ih . 

 

 To that end, observe that for the infinitesimal displacement that is given to each point of the 

curve Ls , any element Ls of the arc of that curve will describe an infinitesimal area ds . Let ns 

denote the normal to that area. The projections of ds onto the coordinate planes x2 x3, x3 x1, x1 x2, 

will be: 

ds cos (ns, x1) , ds cos (ns, x2) , ds cos (ns, x3) , 

respectively.  

 However, if x1, x2, x3 are the components of the displacement along those coordinate axes 

and dx1, dx2, dx3 are the components of dLs then one will have that the projections of ds onto the 

coordinate planes will also be given by ( )

23

s , ( )

31

s , ( )

12

s . One will then have: 

 

2 3

2 3 s

x x

dx dx

 
= ds cos (ns, x1) ,    

3 1

2 1 s

x x

dx dx

 
= ds cos (ns, x2) ,    

3 1

1 1 s

x x

dx dx

 
= ds cos (ns, x3) . 
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 Formula (7) can then be written: 

 

(III)  W = 23 1 31 2 12 3

1

( cos cos cos )

s

m

s s s s

s

p n x p n x p n x d
=

+ +  . 

 

 5. – Recall formula (7). It can be written: 

 

W = 

12 31 31 2323 12

1 2 33 31 22 1
1

s

m

s

s

s ss s s s

p p p pp p

x x x dtx xx xx x

t tt t t t

  
=

 
 

+ +    
      

   

 

  = 

12 31 23 12 31 23

1
s

m

s s s ss s s s s s
s

s s s s s s

p p p p p p

dtd d d d d d

dt dt dt dt dt dt

       
=

 
 

+ + 
 
 

   . 

 

 When one compares that formula with (5), one will find that: 

 

(8)  
3

( )y sW   = 

12 31

s s

s s

p p

d d

dt dt

   , 
4

( )y sW   = 

23 12

s s

s s

p p

d d

dt dt

   , 
5

( )y sW   = 

31 23

s s

s s

p p

d d

dt dt

   , 

so 

(9)     
3

( )y sW   = 
4 5

( ) ( )s s s
y s y s

s s s

d
W W

dt dt dt

  
 + +  = 0 , 

 

and consequently, due to (6), one will have: 

 

(9)      
1 2

( ) ( )s s
y s y s

s s

f
W W

dt dt

 
 +  = 0 . 

 

 The preceding two equations prove that W will not change when one displaces the lines Ls and 

s along themselves and independently of each other. That result leads one to state the following 

theorem: 

 

 W is a quantity that depends separately on the lines L1, L2, …, Lm, 1, 2, … 3 . One can then 

write: 

W = W | [L1, L2, …, Lm, 1, 2, … 3] | , 

 

while adopting the known symbols. 
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 W is not a function of degree one in the lines Ls , but if one takes formula (III) then one will 

see immediately that when one extends a notation that was used before on another occasion (6), 

one can write: 

(16)  (p23)s = 
2 3( , )

s

d W

d x x

 
 
 

,  (p31)s = 
3 1( , )

s

d W

d x x

 
 
 

,  (p12)s = 
1 2( , )

s

d W

d x x

 
 
 

, 

 

in which (p23)s , (p31)s , (p12)s denote the values of p23 , p31 , p12 for the values of u and v along the 

line s . 

 If one sets s = s = s = 0 then one will have: 

 

(11)    W = 
1 2

1

{( ) ( ) }

s

m

y s s y s s s

s

W f W dt 
= 

 + +   .  

 It follows from (6) that: 

(12)     
( )

1y
s

s

s

W

d

dt





 
 
 

 = − 
( )

2y
s

s

s

W

df

dt



 
 
 

. 

 

 If one calls that ratio Ms then one will have that (11) can be written: 

 

W = 
1

s

s sm

s ss s
s

s s

f

M dtdf df

dt dt

 

=

   = 
1

s

m

s s

s

M d
=

   , 

 

in which ds denotes the element of area that is described by the element ds under the infinitesimal 

displacement of the curve s . One can write: 

(13)     Ms = 
( , )

s

d W

d u v

 
 
 

 , 

 

while adopting a notation that is analogous to the one that was employed previously. 

 

 

 6. – If one supposes that equations (I) have been integrated then one will get expressions for 

x1, x2, x3 as functions of u and v for all values of those variables in the region . Those functions: 

 

x1 = x1 (u, v) ,  x2 = x2 (u, v) ,  x3 = x3 (u, v) 

 
 (6) See Acta Mathematica, vol. XII, pp. 247 [in this volume: XXII, pp. 373]; Rend. R. Acc. Lincei, vol. V, pp. 161 

[in this volume: XXIII, pp. 406]. 
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define a surface that is contained in the space (x1, x2, x3) and might be called S, in such a way that 

any point in a piece of the plane  will correspond to a point in the surface , and therefore an 

arbitrary line  that is contained in  will correspond to a line G that is contained S. Call G a line 

that corresponds to . In particular, the contour lines 1, 2, …, m in  will correspond to the 

lines L1, L2, …, Lm that form a contour in S. 

 One now varies the lines 1, 2, …, m and, at the same time, the L1, L2, …, Lm , in such a way 

that the surface S will change only in size, but not change position in space, which is to say, one 

varies the 1, 2, …, m and chooses the L1, L2, …, Lm to be lines on S that correspond to those 

varied lines. To that end, if one gives the variations fs and s to fs and s then one will need to 

give the variations: 

 

s = 1 1
s s

s s

x x
f

u v
 

    
+   

    
, s = 2 2

s s

s s

x x
f

u v
 

    
+   

    
, 

 

s = 3 3
s s

s s

x x
f

u v
 

    
+   

    
 

 

to s , s , s , in which the partial derivatives of x1, x2, x3 with respect to u and v are obtained form 

(4) and their values are taken at the points of the contour s . 

 Upon applying (5) and (8), it will follow from those relations that the variation the W is 

subjected to will be: 

W   = ( ) ( ) 
1 2

23 31 12 23 31 12

1

3 31 2 1 2

s

m
s s s s s s

y s y s s
s s

s s s s s s s

p p p p p p

W f W f dt
t t t t t t

x xx x x x

u u u v v v

     
 

=

       − + −        

    

     

   . 

 However: 

 s

st




  = 1 1

s s

x xu v

u t v t

  
+

   
 = 1 1s s

s s

df dx x

u dt v dt

 
+

 
, 

 s

st




  = 2 2

s s

x xu v

u t v t

  
+

   
 = 2 2s s

s s

df dx x

u dt v dt

 
+

 
, 

 s

st




  = 3 3

s s

x xu v

u t v t

  
+

   
 = 3 3s s

s s

x df x d

u dt v dt

 
+

 
, 

so 
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W   =  

23 31 12

1

31 2

s

m
s s s s s

s s s s

s s s s s s

p p p

d df
M f dt

t t t dt dt

xx x

u u u

   
 

=

   
+ − 

    

 

  

   

 

 =  

23 31 12

1

31 2

s

m
s s s

s s

s s s s

p p p

M d
t t t

xx x

u u u

  


=

  
+

  

 

  

  , 

 

in which Ms represents the ratio (13), and ds is the infinitesimal area that is described by the 

element ds during the infinitesimal displacement of the curve s . 

 However, one immediately gets from (II) that: 

 

W  = 
1

s

m

ih s

s ih

H
p H d

p


=

 
− 

 
   , 

 

so, since the deformations of the curve s is arbitrary, one will have: 

 

Ms + 

23 31 12

31 2

s s s

s s s

p p p

t t t

xx x

u u u

    

  

 

  

 = ih

ih

H
p H

p


−


 , 

 

or, when one takes into account the first of the relations (I): 

 

Ms + ih

ih

H
p

p




  = ih

ih

H
p H

p


−


 , 

so one will finally have: 

Ms + H = 0  (s = 1, 2, …, m) . 
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 7. – Observe that because of (10) and (13), the preceding equations can be written: 

 

(IV)  0 = 
1 2 3

2 3 3 1 1 2

, , , , , , ,
( , ) ( , ) ( , ) ( , )

s ss s

dW dW d W dW
H x x x u v

d u v d x x d x x d x x

       
+          

       

 , 

 

in which one has substituted the values of p23, p31, p12 that are given in (10) in H, and s has the 

values 1, 2, …, m. 

 One then has that W, when considered to be dependent upon the lines 1,  2,  …, m, L1, L2, 

…, Lm  must satisfy the preceding m differential equations, which are perfectly analogous to the 

partial differential equations to which one arrives in the theory of ordinary differential equations 

when they are posed in canonical form (7). 

 

 

 8. – The function W of the lines that is obtained in that way is not generally a function of degree 

one. One now supposes that H is independent of u and v; one can prove the theorem: 

 

 If one knows the integrals of the differential equations: 

 

(I)    
( , )

( , )

i sd x x

d u v
 = 

is

H

p




, 

( , )

( , )

ih hd p x

d u v
  = −

i

H

x




  (i = 1, 2, 3) 

 

then one can determine a function of degree one W that satisfies the relation: 

 

(IV)   1 2 3

2 3 3 1 1 2

, , , , ,
( , ) ( , ) ( , )

W W W
H x x x

x x x x x x

   
 

   
 + h = 0 , 

 

in which h is a constant, and the derivatives of the function W are substituted for the p in H. 

 

 We will prefix that with the following lemma: 

 

 The integrals of equations (I) satisfy the condition that: 

 

H = const. 

 Indeed, one has: 

 

H

u




 = ih i

iih i

p xH H

p u x u

  
+

   
   = 

( , ) ( , )

( , ) ( , )

i h is ih h i

i h

d x x p p x x

d u v u u v u

  
−

  
   = 0 . 

 

 One will find analogously that H / v = 0, which proves the lemma. 

 
 (7) See JACOBI’s lectures on dynamics, Lecture 19.  
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 Suppose that one has found the integrals: 

 

(14)  xi = xi (u, v, C, C1)  (14)  pis = pis (u, v, C, C1) 

 

for equations (I). When one substitutes them in H, it will reduce to something that is equal to a 

constant h, so one will have: 

 

H (p23, p31, p12, x1, x2, x3) =  (C, C1) = h . 

 

 Solve the preceding equation for C1 and substitute the value that is obtained in (14) and (14). 

One will have: 

 

(15)  xi = xi (u, v, C, h) ,  (15)  pis = pis (u, v, C, h) . 

 

 Suppose that: 

(16)     1 2 3( , , )

( , , )

d x x x

d C u v
  0 . 

 

 If one solves (15) for u, v, C and substitutes the values that one obtained in (15) then one will 

get: 

 

(17)     pis = pis (x1, x2, x3, h) . 

 

 Substitute those values in H and denote the function that results from the substitution by H  . 

One will have H  = H  (x1, x2, x3, C, h). 

 If one puts the values (15) in place of x1, x2, x3 then H   will reduce to h identically, so: 

 

i

i

xH

x C

 

 
  = 0 , i

i

xH

x u

 

 
  = 0 , i

i

xH

x v

 

 
  = 0 , 

 

from which it will follow from (16) that / iH x   = 0, so one must have: 

 

(18)      H   = h 

 

identically. 

 If one substitutes (17) in (I) then one will find that: 

 

− 
i

H

x




 = 

( , )

( , )

ih h

h

d p x

d u v
  = 

( , )

( , )

ih s h

h s s

p d x x

x d u v




  = ih

h s s sh

p H

x p

 

 
 , 

so 
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13 1312 12

23 2 3 12 1 13 1 1

p pp pH H H H

p x x p x p x x

      
− + + + 

        
 = 0 . 

 

 However, one has H   = h, so one will have: 

 

23 31 12

23 1 31 1 12 1 1

p p pH H H H

p x p x p x x

     
+ + +

      
 = 0 , 

 

from which it will follow that: 

23 31 12

23 1 2 3

p p pH

p x x x

   
+ + 

    
 = 0 . 

 Analogously, one will have: 

23 31 12

31 1 2 3

p p pH

p x x x

   
+ + 

    
 = 0 , 

23 31 12

12 1 2 3

p p pH

p x x x

   
+ + 

    
 = 0 , 

and therefore: 

23 31 12

1 2 3

p p p

x x x

  
+ +

  
 = 0 . 

 

 There will then exist a line function W of degree one whose derivatives are p23, p31, p12, and 

that will satisfy the condition (18), due to (18). 

 

 

 9. – Let us now move on and prove the converse proposition: 

 

 Let W be a line function of degree one in the space of x1, x2, x3 that satisfies the equation: 

 

(IV)   1 2 3

2 3 3 1 1 2

, , , , ,
( , ) ( , ) ( , )

W W W
H x x x

x x x x x x

   
 

   
 = h , 

 

in which h is a constant. Set: 

 

2 3( , )

W

x x




 = p23 ,  

3 1( , )

W

x x




 = p31 ,  

1 2( , )

W

x x




 = p12 . 

 

 If one substitutes the given value in the equations: 
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(I1)      
( , )

( , )

i sd x x

d u v
 = 

is

H

p




, 

 

which are compatible, then one will also satisfy the equations: 

 

(I2)      
( , )

( , )

ih h

h

p x

u v




  = −

i

H

x




. 

 

 In addition to that, one can prove: 

 

 If W depends upon a constant parameter a and one sets W  = W / a , W  = W / h then W

and W  will be two functions of the line L in the space of x1, x2, x3 . When one displaces the line L 

over any of the surfaces: 

 

(19)   x1 = x1 (u, v) ,   x2 = x2 (u, v) ,   x3 = x3 (u, v) 

 

that are obtained by integrating (I3), one will have: 

 

(20)  W | [L] | = 
W

a




 = a ,  (20)  W  | [L] | = 

W

a




 = du dv h



+ , 

 

in which  is the portion of the surface (19) that is enclosed by the line L, and a  and h  are two 

constants. 

 

 Indeed, when one substitutes the integrals (19) in the pih in (I1), one will have: 

 

( , )

( , )

ih h

h

p x

u v




  = 

( , )

( , )

ih r h

h r r

p d x x

x d u v




  = 

( , )

( , )

r h ih ri

r h

d x x p p

d u v x x

  
+ 

  
  = rh

rh i

pH

p x



 
  . 

 

 However, since one has H = const., one will have: 

 

rh

rh i

pH

p x



 
  = − 

i

H

x




, 

so 

( , )

( , )

ih h

h

p x

u v




  = − 

i

H

x




. 
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 In order to prove (20) and (20), consider two lines 1 and 2 that belong to the surface (19) 

and enclose a portion    of that surface between them. From a known formula (8), one will have: 

 

W | [1] | − W | [2] | = 
( , )

( , ) ( , )

i s

i s

d x xW
du dv

x x d u v
 




  

 

= is

is

pH
du dv

p a
 



 
  = 

H
du dv

a
 



  = 0 , 

 

W  | [1] | − W  | [2] | = 
( , )

( , ) ( , )

i s

i s

d x xW
du dv

x x d u v
 




  

 

= is

is

pH
du dv

p h
 



 
  = 

H
du dv

h
 



  = du dv
 

  . 

 

 

 10. – If H = 2 2 21
23 31 122

( )p p p+ +  then equations (I) refer to the problem of the surfaces of minimal 

area. In that case, formula (III) will give rise to a well-known theorem of GAUSS. Let use interpret 

the theorems of § 8 and § 9 . 

 Suppose that we have a double infinitude of lines. All of the ones that start from the points of 

the contour that lie within an infinitesimal area constitute a small tube that can be called a filament. 

 The theorem in § 8 can be stated in the following way: 

 

 The orthogonal trajectories to a system of surfaces of minimal area form a system of filaments 

with constant section. 

 

 The theorem in § 9 gives rise to the proposition: 

 

 If a system of filaments with constant section admits orthogonal surfaces then those surfaces 

will have minimal area. 

 

 Those two theorems were given by Prof. PADOVA in his note “Sulla teoria delle coordinate 

curvilinee” (9). 

  

 

___________ 

 

 
 (8) See Rend. Acc. Lincei, vol. III, 2nd sem., pp. 277 [in this volume: XVIII, pp. 234].  

 (9) Rend. Acc. Lincei, vol. IV, pp. 373. 


