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FOREWORD

If one imagines that the coordinates of the points odirve depend upon one or two
(undetermined) parameters, in addition to the one varidlie one will get a simply-
infinite or doubly-infinitefamily of curvesor, as the French and Italian mathematicians
say, acongruence of curves

The curvature properties of such a family depend upon thatcue properties of the
individual curves of the family, which are studied using thethods of the theory of
curves, and upon the way that the curves are arrangec invVastigation of that
arrangement makes it necessary to consider the orthbgejectories of the family, and
therefore to introduce composed differentiations tlaait lse extended to operations that
can be calledlerivatives with respect to arc-lengihen one adds the requirement of
invariability. The first part of the following treatiseshich deals with simply-infinite
families of curves, and indeed ones that lie in the glaag well as curved surfaces, is
dedicated to presenting and applying that concept.

A doubly-infinite family of curves can be given by finiguations, as well as by
differential equations. The first of those cases walltreated in the second part of this
paper, where, at the same time, the more importantigonestbout families of surfaces
will be discussed; the third part of the paper is dedicttehe second case.

All of this can be regarded as a generalization oftikerly of surfaces, as well as a
theory of the most general curvilinear, but rectangutagrdinates. Namely, the
Cartesian conception of coordinates is capable of twestyd generalization. Firstly,
one can replace the three mutually-perpendicular fasnihf parallel planes with three
mutually-perpendicular families of curves, and thus iobtiaamé’s theory, whose
methods coincide with the ones that are employedeithory of surfaces.

Secondly, however, one can replace the three mypeatpendicular families of
parallel straight lines with three mutually-perpendicdanilies of curved lines, or what
amounts to the same thing, a family of curves, along théhtwo mutually-perpendicular
families of its orthogonal trajectories. Should thst two be determined by the first one
alone then the two families of lines of curvature leé first kind of the first family of
curves could naturally stand in place of them.

In regard to the presentation of ideas, the authoehdsavored to assume as little
prior knowledge as possible on the part of the reader.

Munster i. W, 8 July 1896.
R. v. Lilienthal
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PART ONE

Simply-infinite families of curves

8 1. — Curvature of a planar, simply-infinite family of curves

A planar, simply-infinite family of curves can be repented in two different ways:
In one case, it is representedfinyte equations in which the Cartesian coordinatesof
a point on the curve are given as functions of twoaldesp andt, say in the form:

x=fi(p,1), y=fa(p1),

in whicht remains fixed along each individual curve of the familg &8s value varies
only from one curve to another, and in the other casea Wiyst-order differential
equation say:

dxdy=¢1(xy):d2(xY).

A family of curves is most closely linked with the féynof its orthogonal
trajectories. Both families collectively define actitnear system of curvilinear
coordinate curves.

The tangents to the curves const. subtend an angle with tkexis (Y-axis, resp.)
whose cosine will be callegl (A, resp.). Likewise¢ (7, resp.) shall denote the cosine of
the angle that the tangents to the orthogonal tajes of the curves = const. subtend
with the X-axis (Y-axis, resp.). If we use the first way of represenarfamily of curves
as our basis and set:

then that will imply that:

eo Lx o 1Yy
Ja, op a, 0p
We further take:
E=-A, nN=K.

The increaseslx, dy in the Cartesian coordinates of a point along a curve gbes
through the point can be represented in the form:

dx=kT1-ATo, dy=ATi +«To,
when:
oxdy 0dyox

Tl:aﬂdp+q2dt .I_l:apat apatdt: A dt

Jar Vau Jau
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and
oy = KO, 0y0Y.
Jop ot OJpodt
One can regard the linear differential forinsand Ty as arc-length elements of the
coordinate lines, since the arc-length of an arbitraryectinat goes through the point (

y) will contain the expressio T, +T,>. That way of looking at things can be regarded

as an extension of the usual one, in whichepresents the arc-length of the curves of the
family for To = 0, andT, represents the arc-length of their orthogonal ttajgs forT; =
0.

Since:
dt:VallTO, dp:ATl_aQTO’
A A a,

the differential of an arbitrary functidgh of p andt will be a linear form info andT; .
We set:
dg = (d§), T, +(dS),, T,
in which:
1 0% 1 0% 0§
dg); =——, dF); = ——| —a,—+a,— |.
( )T1 \/aap ( S)TO A\/a[ aizap ailatj

The operationgd§), and (dg), shall be calledierivatives of§ with respect to the arc-

lengths of the coordinate lines.

The notationsg—i, g—i have been applied many times in place of the notations

(d¥);, and (dg), , in whichs (n, resp.) are understood to mean the arc-lengths of the

curvest = const. (their orthogonal trajectories, resp.hisThotation might easily lead one
to believe that one can takeandn to be independent variables. However, the latter is
the case only whef, and T, are complete differentials, which emerges from the

equations:
xa'y_oyo'x g

dpop’ dpop

% azy —ﬂ/ 9°x =0
Op 0pot Opadpot

or
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as is easy to see. The fulfillment of those equatiexpresses the idea that the given
family of curves consists of a system of parallelightalines, and the notation in
question is justified only in that case.

Operations such afg), , (d¥), , which are linear, homogeneous combinations of
differentiations, have also been recently calldterential parameters.However, | will
employ that terminology exclusively for the thingstthamé, who was the author of that
not-exactly-fortunate word construction, understood it tormea

We shall employ the notations:

d(d5), = (d3),, T +(B)er, 5 d(dR)y, = (dF)r T +(dB),. T,

for the repeated application of the operati¢t§), , (d3);, -

Now, a key question relates to the effect of fpassg those two operations. It is
answered by a general theorem.
We take:
V]_Tl:dT, VoTo:dt,

in which v, and v, are integrating factors, of whial is known and equal tq/ a,, /A,
while 1, satisfies the differential equation:

1{6 a, _aﬁjl

(dlogv,),, =

Alopfa, ot

A function § of p andt is also a function of and 7. However, one has the two

: 9°F
representations for—:
otar
1
[ (d3)yy, —(d3);(dlogv,). |
10
and
1

[ (dF)r, 7~ (dF)5,(dlogv,)+ |,

lVO
such that the desired theorem will take the form:
(dB)r, —(dF),, = (dF) (dlogv,), —(dF),, (dlogv,), .

The quantities(dlogv, ), and (dlogv,), will take on intuitive meanings when one

replacesy is the foregoing equations wikandy, in turn.
Since:

(@ =4 (@Ay)y =A (A, =4 (dy),, =7,
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one will have:

(dlogy,),, = = K (d&); = A(dn)-. (dlogV, ), = = £(dK),, =77 (dA) .
We let o, denote the radius of curvature of the cutvesconst. and lepy denote that of
its orthogonal trajectories:

1 1
—=¢(dk) +n(dA), —=k(d$), +A(dr),,
1 0
SO as a result:
1 1
(dlog);,=—-,  (dloguo), = —-

and

d3);  (dF),
08),, ~(0), = WD _ (@D
P Po

That notation shows that the linear differentahf:

agTi+agTo
will be a complete differential when:

(da), —(da), = 2-2

1 0

One will get a differential equation betweenandm when one replaces with « or
A, resp., in the last equation.

Since:
A K
(dk); ==——, (dA); =—,
oo "op
A K
(dK)y, = =, (dA), =——,
o Ao

it will follow that:
(dij :(dij 1.1
pl To pO T pl pO

One often uses the following definition of a fayrolf curves:

fxy) =t

in place of the latter one. One can then undedsthis to mean that it arises from the
general ones:

x=fi(p, 1), y=f2(p,1),
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in such a way that one takies= p and solves the equation:

y="f1 (X1
for t. One then gets:
of of
= dy _, A=- ox
(5 (5 (5 (3
0x oy 0x ay
(af jz of
_ ox __ X _1
ap=1+—~+%, ap=- , ==
Y Y s
ay oy oy
ﬂdx—ﬂ dy ﬂdx+ﬂ dy
T = ay 0x T = 0x oy
1 B 2 ) (0 B 2 )
BEE BRE
ox ay ox oy
of 95 _of 85 of 05 , of 8§
(dg)- = dy 0x 0x0y _ _Ox0x 0dyoay
T )
of Y (of of Y (of jz

ox) Loy

BEE

J (asz *[ay

ﬂ
0Xx

|

help of a differential equation of the form:

dx:dy= ¢ (X
we obtain:
PR
AR
Ty = kdx+Ady,
0§  , 0%
dg), = k—+A1—,
(dB)y ox  ay

]

With the second way of defining a family of curves, whilaccomplished with the

of
oy

y) D @2 (X, Y),
P,

Joi+o2

To=—-Adx+ kdy,

A=

0%, 0%
=-]1—= i
(dS)TO 6)( +K ay ’
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1_ ok_0A 1__ok_0A

p,  Ox ay’ g Oy ox

The derivatives with respect to arc-length thatrewentroduced aranvariable
operations The meaning of that terminology is illuminatedtbe following argument:
If we consider a family of curves to be given hg tquations:

x=fi(p,t), y=f2(p, 1)

then that family will remain unchanged when oneodtices a function o and 7 in
place ofp and a function of alone in place of, and considerg to be unvarying along
each curve of the family.

Now, if:

(] gm0y ovos
' lag or %z = dqor 0qor’ dqor 9qor

then one will have:
T -audatd, o T,= B 47

Ja, Ja,
1 93

== % - 95 , . 0%
(dS)Tl_ \/an’ (dS)TO A\/—( a11 j

The family of curves will remain unchanged for tecond way of defining them
when one introduces another rectangular coordsygeem in place of the y, namely,
u, v. If one calls the cosines of the angles thattémgent to the curves of the family
makes with thel, v axesk’, A, resp., then one will have:

Ti=k’du+ A’dy, To=-A’du+ «’dy,
63 0% 08 . , 08

dg); = : d¥), =—A'—=+Kk'—.
(A= K3, au av (A3, u < av

In both cases, the same way of defining thingsgie the same results. In the first
case, the choice of independent variables hasfaotgeihile in the second case, it is the
choice of coordinate system that has no effect.

Two functions that are formed from derivativesadfinctiong of x andy are closely
connected with that function, which can appear darbportant when one assumes the

various viewpoints.
With Lamé (Lecons sur les coordonnées curvilignas. 6), we set:
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Ba3) = a—g [ j

5 5

DS =

and callA;F the firstdifferential parameteof §, while A>§ is the second. In that way,
the sign ofA;F will have no effect, and can be taken to be + oncefar all.

What form do the differential parameters take whes loases them upon curvilinear
coordinates?

One has:

B -k (dF), -A(dB),

)4

B - A(dg), +x(d3),

oy
93— 2 (d3)... ~KA(d) - (D) PAa . AA k)| e
aXZ '|'2 T Ty T T T2 pl po
O - 2 (d3),. + M0 1, +( D) ) +K ) K F A & ) [_-LJ
ay 1To 0T Ty T pl po

and as a result, one will get:
(AF)? = (dF)z +(dF)3 ,

(d3), (d3),

D § = (dg)Tz +(dg)Tz -
! 0 Ao P

as the definitions of the differential parameters ffrections in curvilinear coordinates.

The differential parameters of a function are sdedahvariant functions — i.e., they
always possess the same value at the same glage-(that one might have also used for
the determination of;, To for a system of coordinate lines. One easily convinoeself
of that by the following argument: In addition to the fignof curves that was considered
before, one also takes a second one and denotes thesiopse, A, o1, &, T1, To that
one defines for it by, A’ r1,ro, S, S, respectively. In addition, one sets:

KK'+ AA"= cosg,
KA'—Ak’=sing .
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Since:
S = k’dx+ A’dy, S =-A’dx+ «’dy,
one will have:
Ti=—-sing S +cosp S,

To= sSing S +cosg S,
(dF)s = cosp @F ), + sing 6F ).,

(dF)s,= —sing (dF ), + coxp €F } .
That shows that the first differential parameteansnvariant function, since:

(dF)7 +(dF);, = (dF)g +(dF)5 -
Furthermore, one has:

(d3): +(d3) 2= (AF),.. +(d3),.. + (), (&B)y, ~ (B)( B)y.

In order to calculate the quantitiesandr;, one can possibly employ the equations:

KI . KI
== (dA)s, A

=—=(dA)g .
" . (dA)s,

In that, one has:

1 (1
dA) = &’ —+dg) |- = - ,
(dA)g K{ cosqz{p:(mlj smv{po UMJ}

1 1
dA). = k'{—si —+(d - —_—- ,
(dA)g K{ Sln¢(pl+(¢)nj COSZ{pO (i¢)oj}
and therefore:

(@3)s , (@3)s, _ (05), , (d9),
r0 rl pO pl

= (d%);, (dg)s, +(d5)+,(dp)- -

It now follows that:

d d d T d T,
(@) +(09) =03 == (0, +(0), =

so the second differential parameter is also aariamt function.
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We shall refer to the foregoing types of curve famibsgarallel andisothermal
curves. The former possess the property that thewogonal trajectories are straight
lines, such that 14 = 0. With the representation:

x=fi(p,1), y=fa(p1),

one will be dealing with parallel curves when:

i@:o

op A
with the representation:

fxy =t
that will be true when:

(dA, ). =0,

and with the representation:
dx:dy=¢1(xy) : g2 (X, Y),

it will be true when dx —« dyis a complete differential.

The namegoarallel curveswill be justified by two properties of those lines thah &&
established as follows:

Letf (x, y) =t be the equation of a family of curves. We fix our ratts upon an
individual curve of the family by assigning a special vaiu® t, and considex, y to be
the coordinates of a poiRtthat traverses that individual curug) (

One now takes:

u=x+hé=x-Ah, v=y+hn=y+«kh

Theu, v are then the coordinates of a pdhbn the normal to the curvi) that belongs
to P. When will Q traverse a second curve of the family? For thatetdrbe, it is
necessary thdt must be determined from the equation:

f(x=Ahy+xkh) =ty +Ato,

in whichAtp is an arbitrary numerical quantity. If one developsléichand side of that
equation in powers df then that will give:

h? h?
Ato = h ml f + E(dAlf)To +§(dA1 f)T02 +

When (dA, f), = 0, Ay f will no longer depend upon and will be constant along the
curve (o). Howeverh will then be constant for any choice&tf, so one will also have
(dh), = 0.

We further consider the quotiedti / dv along the curvet{ + Aty). We will get it
when it is expressed in termsfanddy anddx : dy is taken to be equal o: A. In that
way, we will get:
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K(l—hj—)l(dh)T
p 1

1

o) (1—hj+;((dh)n

1

and for (dh), = 0, we will get:

If one calls points likd® and Q correspondingpoints then the foregoing will show
that parallel curves at corresponding points will posgesallel tangents and that the
distance between corresponding points along two pacalleés will not change.

One definedsothermalfamilies of curves byamé’s process l(econs pp. 31) as
follows: Letf (x, y) =t be the equation of a family of curves, whigdx, y) = 7 is the
equation of their orthogonal trajectories. The fanwfycurves isisothermalwhen the
ratio:

At
(A)°

depends upon only but notz. Although that ratio can generally be calculatedhe
case where the family of curves is given by a déifitial equation, since the paramdter
can only be ascertained by integration, the dentlaidthat ratio must be independent of
r can always be brought into a computable form.

If we keep to the previously-applied notation:

Vo To = dt, v Ty =dr
then we will have:
(Alt)z = I/OZ, Aot = (dVO)T _ﬁ,
P

1

o - i{(d 10gVo)y —i}-
Vs Jo

Aat? )
| -0

g A
(D)
1 { 1 1
——| (dlogv,),, ——}(d logv, ), 1—(d—j =0,
0 0 0/ X

0 1 1

The condition:

will then assume the form:

so the desired result will read:
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ke
p]_ T pO To

One obtains the same equation as the condition foorthegonal trajectories of a given
family of curves to define an isothermal system. praperty of being isothermal will
always be simultaneously possessed by two mutually-peqédadcurve families then.

If we write the condition for isothermal familie§ @rves in the form:

(dlog Vl)TOTl = (dlogy, )Tl T

and replace the expression on the right with:
(dlogv,)y -, + (dlogv, ), [ (dlogv, ), - (dlogv, ), |

then it will follow that:

[dlogﬁj —(dlogvo)n[dlogﬁj = 0.
TOTl TO

0 0

However, the left-hand side of that equation walspess the value:

v
0°log—+
I/0

Vol otar

The quotientv; / v will then be equal to a function gf multiplied by one ofr, or what
amounts to the same thing, there will exist twaoctionsg (t) andgp (t) such that:

V19 (7) = Vo g1 (1).

The differential formd; andT, will then possess a common integrating factomvefcall
it 1/ and take:

lTl =du, lT0 =dv
H H

then the square of the line element in the platido@come:

12 (dE +dVA).
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§ 2. — Simply-infinite families of curves in space.

A simply-infinite family of curves in space will bestablished when one is given the
surface that it defines, e.g., by equations of the form:

x=f(,q), y=f(p,q), z=Ff(p 0),

with the help of a differential equation of the form:
(1) a1 dp+ a12dq=0,

in which a11 and a1, mean functions op andqg. The case in which (1) is assumed to
have been integrated shall not be treated here, ticydar.

One must next address the way that one calculatedetivatives of a function with
respect to arc-length of the curves in the family antlahtheir orthogonal trajectories.

As usual, one sets:

op dq
and in addition:
N=a,/E-2a,a,F+a/G,

auy = -a,,F+aE A, = -a,G+a,F
JN JN

_ 2 _ 2

B = a, NEG-F B = a NEG-F

Ty =&y dp + a1 dg,
To=ax1dp + a2 dg.

The differential equatioy, = O likewise defines our family of curves, sintgdiffers
from the left-hand side of (1) only by a factor. Thdadéntial of a functior§ of p andq
will take the form:
03 0% 0¥ 0¥
&, 67 - 82167 - 81267 + allai
dg = P q T, + P OITO,
A, 8, 3,3, A, 8,57 A,38,

and one will get the following equations for the deri@giin question with respect to
arc-length:
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o3 __ 0% o5 __ 0§

_ &, ap_%l?q _ alz?p_all?q
(dB);, = = ,
8,8, ~ 8,38, \ N
0 0 0 0
_a12j+allj (0'116_0'12':)73'*'(allzG_alllF)ig
(d5). =P oq op 0q
To

A, Ay Ay B \/N\/ EG-F

It follows from this that:
2 (A7 =1, > (@} =1, " (dX); (9, = 0.

This shows that(dx), , (dy),, (d2), are the direction cosines of the tangents to the

curves of the family. Furthermore, it shows that= O is the differential equation of the
orthogonal family, and that the direction cosinéghe tangents to the curves of that
family is represented b{dx), , (dy), , (d2); .
If 11 denotes an integrating factor ©f, 1», denotes an integrating factor ©f, and
we set:
V]_T]_:dT, VoTo:dt
then that will give:
@)=, @,

(2)

(dS:)TlT0 _(dS)TOTl: (d&')Tl(C“Ong)TO - (dS)TO(dIOgVo)Tla

as in the previous paragraph. In order to seegdmmetric meaning of the quantities
(dlogv,),, and (dlogv,), that appear here, we consider the fact that the ak
curvature of a curve that is drawn on a surfacetsnéee surface normal at a point) (
that coincides with the center of curvature of tleemal section that is laid through the
tangent to the curve and the fact that it cutsdhgent plane to the surface at a poB)t (
that one calls theenter of geodetic curvatud the curve. If we fix our attention upon a
curveTo = 0 and leth, denote the abscissa of the corresponding péintefative to the

surface pointX, y, 2), while r denotes the radius of the first curvature of these, then
we will have:

r
— =X cosa+Ycosh +Z cosc,

1

in the event thak, Y, Z are the direction cosines of the surface normhilexcosa, cos
b, cosc are those of the principal normal to the curveowdver, from the firskFrenet
formula, we will have:
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cosa=r(dx)_., cosb =r(dy).., cosc =r(dz)_,,
and as a result, the following equation for thenmalrcurvaturel/h,  will exist:

1_

hr > X (¥ == D (AdX)s, (A, -

If one lets R, denote the abscissa of the poiB} (elative to the surface poir,(y, 2)
then that will make:

L= (dX), cosa+ (dy). cosb+ (dz) cost

1

As a result, one will have the following equatiam the geodetic curvatute R; :

é - z (dX)To ( dX)le =" Z (dX)Tl(dX)ToTl '

1

One will likewise get the following expressions the normal and geodetic curvature of
the curvel; =0 :
1
h,

R% = D (d¥y (AW, == D (A0, (AR, -

0

z X(dX)Toz == Z(dX)To(d)QTO 1

However, wherg is replaced witlx, y, z in succession, it will follow from (2) that:

Z (dX)To(d)QTlTO =- (dlog Vo )T1 J Z (dX)Tl(d)QTOTl =-(dlog Vl)T0 .

One will then have:

1 1
3) E1: (dlogv,), , Eo: (dlogvy);, .
In order to find the differential equation that stzi between the quantitisd R, and
1/R; , one takes the functidf in (2) to be equal t¢dx) , (dy), , (d2), , in succession.
It will then follow that:
2 2
1 1
R N R ot

However:
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1

> (@ (A, == (e, (X, +[ ‘%J ,

Z (AX)y, (AR 57,7, = = Z (dX). 7, (A 7, _L dRriJ |

Tl
It still remains for us to discover the meaning of the esgiom:

z (dX)le ( d)QTOZ B z ( d))TlTo ( dXToTl )

We take:
i:@ Zx(dx) =0 i:@n
o Ty
to abbreviate. Since, from (2), we have:
D X (A7, = D X (AR
that will imply the following system of equations:
dx dx
@), .= sox (@, =% Lo
R o
dx dx
(dX)T , = % + @" X, (dX)TOTl - _ ( )Tl + @I X

0 1

As we know, we have:
1_Xdx+Ydw Zd .
Yo, d + dy’ + dZ

for the radius of curvature of a normal section. Under an application of phevious
system, it will be converted into:

1_0OT +20TT,+0" T}

,0 TlZ +T22

and as a result, the following equation for the €&&&an curvature will exist:

1
PP,

00" -0°%
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We will then get the desired differential equationhe form:

SRR AGRGE
RJ), L RJ) ar (R) (R

One can the regard the family of curves considerd&e thhe arrangement of points:

x=f(p,a, y=fi(p,a), z=f(p,q)

on the surfacex(y, 2) that is the image of the family of curves in fheg-plane that is
established by the differential equation (1).
If one chooses a second surface ¥, z1) and considers the arrangement of points:

X=9(@Ea, Y1=0 (P d, z2=0(p,0)

on the surface to be the image of a planar familgur¥es then one will get two new
differential formsT, and T, in place ofT; andTo , which will emerge from the old ones

when one replacds, F, G with:

ax, ox 0 ax, )’
=) eerga edE)

p

in succession. For the poin (Y1, z1) on the surface that corresponds to the pging)
of thep, g-plane, the geodetic curvature of the culye= 0 or T,/ = O will be denoted by

1/R, or 1/R,, resp., and the Gaussian curvaturelby, p,. If one now assumes the
existence of the equations:

E:El, F:Fl, G:G]_
then one will have:

T =Ti, T, = To, (d¥)y; = (dF);,, (dS)y; = (dB)y, -

However, it will then follow from (3) that:

11 1_1
R, R’ R, R
and (4) will imply that:
1 _ 1
PP, PP

That expresses the known fact that the geodetic cuevand the Gaussian curvature are
bending invariants.
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The Lamé differential parameters should now be defined for aasetf If one
preserves the meanings tlkay, z had up to now as coordinates of a point on the surface
considered and thag Y, Z had as the direction cosines of its normal then dheake:

u=x+rX, v=y+rY, w=z+r/Z,
in whichr denotes a new variable. The independent varighles r will be defined

conversely as functions of the rectangular coordinaéew in that way.
If:

u u
op dq
J= ﬂ 6_\/ Y
op dp
w ow
op dq
then one will have, as is known:
g vy dwy g0 dwy Ov,
au dq  dq au op dp

Now, a functiong of p andq will also be a function ofi, v, w. One denotes the

derivatives— o5 0% a—f etc., that were formed under the assumptien0 by — o8
ou’ av’ du ox
oF 0°F . 2 _ :
FYEr VR etc., respectively.J takes the valugf EG-F° for r = 0, and it further
y  0X
follows that:
GO O £ OX _ OX
%__0p 09 09__09 0dp
x JEG-F* o JEG-F
Since:
a_S: (a12E_allF)(dg)Tl T EG- Fz( C@)To
ap JN ’
95 _ (a,F —a,8)(d3), +a,5/ EG- FP (),
aq JN ’
one has:

ap_ ai, a,G-a,F

T dT’
- I T e
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GQ_ —ap a,k - allF

RN NI =

= (dX-,,

or

gp = (dp)y, (dX, +(dR+, (d¥y, aq = (do)y, (¥, +(d9 (d¥y,,

SO:

= (dF)y, (A9, +(d), (d3,.

Whenr = 0 —i.e., along the surface ¢, 2) — theLamé first differential parameter:

ou ov ow
will have the equation:

(AF2)? = (dF)z +(dF)s =, (g@j
r

+V 2(—j2.
ot
If we takeF =t here then we will have:

At =g

on the one hand, and on the other hand, since:

s = 2 2
11 - U412 ap aq,
it will arise that:
2 2
{3
(Ag)? = (dt); = EG- P2 :

That is the known equation f@&eltrami’s first differential parameter. From the factttha
it is equal tov, , one sees that the orthogonal trajectories ofdhely of curvesT, = 0
will be geodetic lines of the surface §, z2) whenAst depends upon only sincel/R.

will vanish then.

In order to define the secoridamé differential paramete.a §+g§ gv\i a
u

function forr = 0, one considers that:

2 = (@910 08 o g +( ) ol g +( @ o e+ B P
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*+ (%), {( d8) 1.7, ( A, +( B) o )y +( @) o PG +( B  IxF .

That implies the following equation for the secdraimé differential parameter along the
surface X, vy, 2):

(d3);, _(d3),

N T = (dF), +(dF) ., -
e

Since (dx); = 1o, one has the following relation fgr=t:

Dt = vy(dlog,), —%.

Now, one has:
at at at ot

-G—
an:M, alzzM

Vor| EG- F2 vy EG- F2

Here, one now sets; W = a, a1z Vo = — B, for brevity. One will then have, in general:

(d5), =29

vy EG- F2

Since one further has:

da, Oa, _0B_oa /3
1 _op aq op 0g op Joq _ Op dq

= dl ,
R, JEG-F Vo EG- = v EG- P \/EG—F2+( °9Volk,

it will follow that:

<3Iog;1|/0+aalog|/O %+6£

9B 0a
Azt:—ap aq

JEG-F?

That is the known equation for the sec@wdtrami differential parameter.
As one did ir8 1, one shows that one will have the relation:

SRS
R ). L R
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for planar families of curves when the quoti&%%—z depends upon only(so the family
1

considered is isothermal), with which, the orthaglofamily will also prove to be

isothermal, and furthermor&; andT, will now possess an integrating factor &, Avith

the help of which, one can give the square ofitteedlement of the surface the form:

ds* = 17 (d€ +d7?).




PART TWO

Doubly-infinite families of curves defined by finite equations

8 3. — Orthogonal trajectories. Normal family. Special family.

We consider a doubly-infinite family of curves in spacd &ake it to be given by
finite equations of the form:

(1) x=f(p, q,n), y=f1(p,q. 1), z=f2(p,q. 7).

Here,p andqg should have the meaning of parameters, such thatroeihanges along
each individual curve, whilp andq keep their values. In regard to the functibrs, f,,
one assumes that the determinant:

ox 0x O0X
op 9q or
dy dy ady
op 9q ar
0z 0z 0z
op 9q or

is generally non-zero, since otherwise one would bardgalith a simply-infinite family
of curves.

With that assumption, the equatidr 0, along with (1), will determine a surface that
can be considered to be the locus of points at which\a a@frthe family is cut by an
infinitely-close one. One calls that surface ttoeal surfaceof the curve family.
(Darboux, Leconsv. I, pp. 5)

We shall study the curvature behavior of the familyhwite help of its orthogonal
trajectories.

Let a second doubly-infinite family of curves be establisby equations of the form:

x=g(,q,r’), y=01(p,q,r’), z=g2(p,qr’),

in whichp’, g”should mean parameters.

When is that family of curves composed of nothing butagtnal trajectories of the
first family? One denotes the direction cosinesheftangents to the curvps= const. g
= const. by¢, 17, {. One then has:

X oy 0z
() __or n=—0r —_0or
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in which:
a3 = E (_ij
S or .

The curves of the second family are orthogonaldtajees of the first family in the
event that one always has:

ox o0y,K ,0z
—+n—=+(— =0,
¢ ot d ot ¢ ot
or, when one applies the notation:
pas SO 0K OX
' dpor’ 23 dqor’

one will have:
op daq or
—+a,—+a,— =0.
33 ot Ay ot A3 ot
We must then consider the relation:

(3) a;zsdp+axdg+azgdr=0

to be the differential equation of the orthogongkttories of the given family of curves.
The left-hand side of (3) can have the property thailltgo to the differential of a
function ofp, g, r when one multiplies it by a suitable factor. Thedition for that is:

da,, 0Ja, 0a,; da da, 0a,| _
4 2% P93 g | 298 T3, 4 | T8 T %) -
@ al{ or aqj a”’[ op 6rj a“[ oq apj

If that condition exists then one will have:

M (agz3dp+ a3 dq+agsdr) =dr
or
dr = i—gdp—% dqg.
H35; Qg A3

Here, we regard as a function ofr, p andq and think of that function as being
substituted for in (1). Equations (1) can then be considered to be eqaaifaa family
of surfaces whose parameterisNow, since:

o __a, 0 __ 3
op @y 09 &

one will get the following expressions for the completatial derivatives ok with
respect tg andq :



§ 3. — Orthogonal trajectories. Normal family. Spefaatilies. 23

0Xx | _ 0X _a; 0X 0X | _ 0X _ &y, 0X
op) Op a,or 0q) oq a,or

However, that shows that:
0x 0Xx
— | =0, — =0
Zf(apj Zg{aqj

i.e., the curves of the family are the orthogongéttaries to a family of surfaces. In the
event that equation (4) is true, the family of curvesnsrmal family
For the differentiation along an orthogonal tragegtof the family of curves, I€§ be

a function ofp, g, r, such that:

dg =— 05

dp+— 08
op

aq

&
do+
qa

Here, if (3) is assumed to be valid then one shoulcew§ instead ofd §. Since the
differentialdr in (3) is multiplied by a coefficient that is geneyallon-zero, one has:

ap ag, Or 0q @&, 0dr

We denote the factors dp anddq that appear in this by, andgq, to abbreviate. The
increases in the coordinates along an orthogonal toaject the family are then:

OX=%dp+Xxsdg, Jy=Yy,dp+ysdg Jz=2,dp+zdg

in which the quotientlq/ dpis regarded as a function mfq, r.

Since:
2.8%=0, >.&x=0,

SH=E  Yxx=F YK=6

one will get the following expressions:

when one sets:

_You” % N S T S T QO I

JEG-F 7 JEG-F JEG-F?

for the direction cosine§ 1, ¢ .
The aforementioned determinantan also be written:
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X, % <
Jas|Ye Yo 7).
z, z ¢

such that:
Jé n _ 37 _

=Y 4~ %Y HX—%H 4L, Xo Ya— % Xq-
\/g p q \/g \/g q

If Jis non-zero then one will also that hd&&@ — F? does vanish.

We would next like to understandegular pointof the curve family to mean a point
(x, y, 2) at which neithepss nor EG — F? vanishes. It will then be a regular point of the
individual curve that it belongs to, and it will not da the focal surface of the family of
curves.

When one advances along an orthogonal trajectorywdhmeet a tangent§+ o, 7
+ dn, {+ &) that is close to the tange ¢, ¢), in which:

=4 dp+éqdg, anp=nmpdp+ngdg, = dp+ {dg,

0%x _a,0°x)_ & (03, a,0a,

1
QZ'C)_‘/a33 dpor a, or*) 2a,l dp a,, ar

&1: 1 6_2)(_a2362X 5 aa33_&36333 .

NERLTl a,or’ ) 2a,l 9q a, or

Here, one should emphasize the case in which artifenglirections of advance in
guestion, one always finds one for which the tahgé&rv;, ) remains parallel, such that
o&, dn, o¢ vanish. If we set:

2.6 =H, 2.6 6=9, 2.8 =Y

then the differencel W — ®? will be equal to zero for any system of valuesgog, r in
the case considered. A family of curves with thatperty shall be callesipecial while
that difference will generally be assumed to be-pero for ageneralfamily of curves.

The generation of special families of curvesligiinated by the following argument:
A doubly-infinite family of curves can be decompdseto a continuous sequence of
simply-infinite families of curves; e.g., by assugithatq = const. Now, in a special
doubly-infinite family of curves, a decompositionusht be possible such that every
normal plane to a curve in each individual famifyttee sequence is, at the same time, the
normal plane to any other curve of the same ind&idamily. Curves in space with
common normal planes shall be callzatallel curves. Let the coordinates, Yo, Z of
the given curve be functions of Furthermore, let 1por 1 /0’ be the first or second
curvature of the curves, resp., and let apsosp, cosy; cosa, cosh, cosc ; cosA, cos
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M, cosv be the direction cosines of the tangent, principaiadrand binormal, resp. If
one chooses the positive half of that line such that:

coSsa = COS[3COSV — COSYyCOS/,
cosb = cosf3 cosA — cosa cosv,

COSC = COSQa COSW — COS[ COSA,

{53

then theFrenet formulas (. Knoblauch, Einleitung in die allgemeine Theorie der
krummen Flachepp. 241) will assume the form:

and sets:

H [ H

dr Yo, dr yo, dr

U

dcosa _ gcosa  dcosi _ ocosa  dcosa_ _ U(cosa cosdj
p PO )

The normal plane of the first curve that belongghe pointP (xo, Yo, z) cuts the
second curve at the poi@t(x, y, 2. One then has:

X =X + m(cos¢ cosa + sing cosA),
Y =Yo + m(cos¢ cosb + sing cosy),
Z=2 +m(cos¢ cosc + sing cosv) .
Here,m means the distance between the pdht®, andg is the angle that this distance

subtends with the principal normal to the cumg Yo, 2).
Since:

2(: _mcosg o coy + dmcos¢+ nw cog cogr + dmsig @ cgs cod |
dr Yo, dr ol dr ol

the curves in question will be parallel when:

d_rncos¢_msir¢ %—E’ =0
dr dr p

and
d_rnsin¢+mco$ %_E :0’
dr dr o

i.e., when:
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d_m:() and % =
dr

g
dr 0

If ro denotes a fixed value othen one will have:
p=[Zdr+p.
L P

One now considerp to be variable andh to be a function op. X, y, z will then
represent the coordinates of a surface. The cyrwesonst.r = const. are the lines of
curvature of the surface, and in addition the curvegonst. are the planar geodetic lines
on it.

The curve® = const. define an individual family in a special fanafycurves when
one takey, Yo, zo to be functions of and the parametegs mto be functions op andq,

and ¢ to be the integral.[g, dr, plus a function op andg. Now, X, y, z are the
coordinates of a doubly-infinite family of curves for whihe quantities:
&=cosa, N = cosp, {=cosy

depend upon onlg andr. However, since:

a3 = (1— mcowjaz cosc{M com+ M SP coﬁj =0,
P op ap

&, My & will vanish, and thereford W — @,
The normal planes of the curves of a special famifinde doubly-infinite manifold
and envelop a surface.

8 4. — Normal curvature of orthogonal trajectories. Isotropic curvefamilies.
Lines of curvature of the first and second kind.

As always, we fix our attention upon a regular p&irtk, y, 2) of the curve family in
what follows. An orthogonal trajectory of the fdynithat goes through it will possess a
curvature axis that belongs ® that meets the cent& of its first curvature and is
parallel to the binormal of the trajectory. It cute tangentd, 77, {) at the poinR. If p
is once more the radius of the first curvatyreis the abscissa & relative toQ, andh is
the abscissa d® relative toP then when one applies the same notations as in thiepse
paragraphs, one will have:

h = pcosa+ p cosA, h é=pcosb + p, cosy, h{=pcosa+ p cosv;

ie.:
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1 cosa
—= z F——.
h P
However, the firsErenet formula implies that:

cosa _ 0 cosa
Yo 0s

in the event that:
0F = 0xX% + 0y + 07
Since one further has:
Y &dcosa =- ) cosa &,
that will imply that:

1_
1) ho

_ OXoé+oyon+9zd4
OX*+0y°*+07

We would like to call the quantity 1 H the normal curvatureof the trajectory
considered. We can also define it to be the radfusurvature of a planar, orthogonal
trajectory at the poirf® whose plane includes the tangefit/, ¢), as well as the tangent
(cosa, cosp, cos)).

When one introduces the notations:

ezzgpxp’ fzzgpxq’ fl:zqup’ gzzqui

_edg+( f+ f) dpdgr gdg
Ed¥+2Fdpdgt Gd§

one will get:

1_
2) ho

We shall now verify some relations between theffments that appear above.
Since:
1 ox

Q(ZEE,

_ 1 (0 a,0°x), 0x 1
gp = - 13 4+
Jaglorop a,or?) orl . /a,

£ = 1 [ 0’ _a,0°%X L 09X
T Jag\arag agart) or| Ja

it will follow that:

ﬁp
w
Qo

However:
9 &s
OX, _ 0°X _0x &g _a,0°X
o Odrdp or o ay,or’’
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3
GXq: 0°X _0X_ay  a,0°x
or ordg or o ay,or’

If one now generally sets:

w@=——~2

Jag, or

for an arbitrary functiop then that will imply:

_a@

s 1
& = go(x,)+E& 6—?—5(109 a,), |

3) -
5%
A3

$a=0(X)+< Py

1
—5(10935), |,

and as a result:
(4) e=30(E), f+f'=gp (), 9=0(G).

One further has:

o1 {0%3_2 0’ %_@(6%_}6%} az{aazs_gaaaﬂ},
Jag | 9p opdgor a;\ or 20q) 2a;( 0p &a;0¢q

o1 {6%_2 O°X X _ 2y, [6%3_336;%}_&{6_%16_%%

Vs | 99 opdqdr 2a,( 0q a; dr) as\ dr 24p
ie.:
. 1 0a,, 0a, (66\33 6a13j 0a, 0a,
4a) f—f=- 3 _Z%s bt Ml & e Bl 1
(42) %3@{%[& aqj+a23 e A I

The equatiofi = f"then says the same thing as equation (4) in #aqurs paragraph,
namely, that the curve family in question is a nalrfamily.

The quantity 1 /h can have the property that it does not changealoof the
orthogonal trajectories that go through the pBinfThe necessary conditions for this are:

(5) e.f+f':g=E:2F: G
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If those conditions are fulfilled continually then woall the family of curves
isotropic.  For instance, the curves whose normals coincide thghlines of a linear
complex define an isotropic family. If one takes thesafithe complex to be tieaxis
then when the complex is special, the curves in qurestill be nothing but circles whose
planes are perpendicular to th@xis and whose centers lie along thaxis. Those
curves are the orthogonal trajectories to the pehgilames that is laid through tzeaxis.

However, if the complex is not special then the esarin question will be isogonal
trajectories to the generators of circular cylindens, @ane will have:

T r r T
X = psin—+ ¢ cos—, y =— pcos— + Q Sin—, z=r,
m m m m

in whichm means an arbitrary constant. Here, a simple caicalavill show that:
e=f+f'=g=0.

We exclude isotropic families of curves from consideratnd impose the further
condition on a regular point of a non-isotropic fanolycurves that equations (5) must
not be fulfilled for it. The quantity 11 will then possess a greatest valuelt and a
smallest value 111, . Those values (vizprincipal normal curvaturesare the roots of
the equation:

—_ 2 1\2
(6) —EGhz F +%[eG—( f+ ) F+ gg+ eg—[—f; f j =0,

and they belong to the orthogonal trajectories thatlerermined by the equation:

(7) (f;f’E—eFjdpf—(eG— gk dpdq( gFf+Tf’ ﬁ; d=o0.

We shall discuss only the case in which the caeficofdc? in (7) does not vanish, since
the opposite case poses no difficulty.
One takeslq/ dp=t and denotes the roots of (7) thyandt; in such a way that:

1__er(f+f)t+gt

h E +2Ft, + Gt”

The following relations exist between the rogtandt; :

f+
e+

f’ _
- S (L+)+ g1 4,=0,
E+F(t, +t,)+Gtt,=0.

With the help of the latter, one finds that:
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(F+Gt) (F+Gb)=-(EG -F?.

That equation shows thatandt, are always real, since the quant#@ — F? is always
positive.

The direction cosines of the tangents to the orthalgtrajectories whose normal
curvature is 1 h; or 1 /h, shall be denoted bwi , A1, th or k2, A2, b, reSp.

If one sets:

V?=E+2Ft; + Gt?, VS=E+2Ft,+ Gt/

then one will have:

P N Vs A S L 11
V, V, \VA
(9) 1 1 1
_ Xt xb Yot Yob _%t 3!
KZ_ ' AZ_ ' /'12_
VZ V2 V2

The second equation in (8) shows that:
K1 K2+A1A2+,Ul/,12: 0.

We have then found two doubly-infinite families of ortbagl trajectories to a family
of curves that are mutually perpendicular, in additiofhey shall be calledines of
curvature of the first kindf the family of curves.

The lines of curvature, as well as the quantitiedland 1 /h,, are independent of
the choice of variables and the parameter with thefarhich one establishes the family
of curves considered. Namely, the latter will notngeunder the substitution:

pP=¢ (P, ), q=¢x (P1, d), r=¢»(p1, ),

as long ag; is the new variable, whilpi, g1 appear as the new parameters, and the
determinant:

op 09 _0dpdq

op, 0g 0gdp

does not vanish. The coordinatey, z of the point of the family will then be functions
of p1, 01, r1. If one calculates the expressions forhll /1 /hy, k1, K2, A1, A2, 4, L&,
then they will denote the expressions that correspondet@nes that are formed in the
system of variablep, q, r. The basis for the calculations that are necggsanrder to
corroborate these assertions (which shall not be fggcdue to their simplicity) is
defined by the following equations, which are valid for anteaty functiong of p, q,

andr :
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a9

daq a9 0%, _ o5 or
Qapl’

op
=F = + - .
Sn= S op, “0q, or, Or or,

0

The given definition of the lines of curvature of fivst kind assumes only that the
family of curves considered is not isotropic. If orsswames, in addition, that is it not
special, stH W — ®? > 0 (in which case, the family will be callgeénera), then one can
give yet a second definition for the lines of curvaturequiestion, which will now be
considered.

The shortest distance between neighboring tangenfsdnd & + ox, £ + 0 ) meets
the tangenty, ¢) at a point whose abscissa relative to the paing, ) shall bex.

One will then have:

__ 2 O0x& __edg+(f+ f)dpdgr gdg
PN Hdp® +2® dpdg+rW d§

T

Since the determinat ¥ — ®? is non-zerox will possess a greatest valugand a
smallest one, . The values are the roots of the equation:

(20) (HLP—CDZ)‘C2+[gH+eLP—(f+f')CD]t+eg—(f+Tf’j:0,

and shall be called trebscissas of the endpoints of the shortest distance
The values; and > of the ratiodq/ dp =t, which determine the neighboring tangents
that yield the maximum and minimum, resp., are the roitise equation:

f+f

(12) (gCD—TWJtZ—(eLP— gH) t+ f+f

H-eb =0.

We choose the notation for the roots such that:

N e+(f+ f)yr,+gr’
! H+207, +Wr?

The equation:
H +CD(T1+ Tz)'|'l-|J nn=0

implies that the direction cosines of the shortigstance that belong 9 (t1 , resp.) are:

Ki:gp-i_gqu, /]1’ :,7p+,7qu’ ’ui:Zp-i_Zqu,
W W W
or
+q,T +n,T +{,T
K; — 5p gq 2 , A; — ,7p ,7q 2 , /j; — Zp Zq 2,

VVZ WZ WZ
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resp., in which:
W?=H+2®0 n+Wr?, WS =H+20 1+ W2

It shall now be shown that:
K=K, A =h, M=t K, = Kz, A=Az, My = [z,
such that the lines of curvature of the first kind rurafi@l to the shortest distance at the

endpoints. Before we do that, we shall develop samaulas.
If one solves the equations:

prxp:e’ prquf, ZEPEIO

for &, 1, {p, and likewise solves the equations:

qu Xp =T qu %=9 qu ¢=0

for &, nq, {gthen it will follow that:

_x,(eG- TR+ x(fE eh _x(f'G-gR+x(gE f H

P EG-F’ ! EG-F’

and therefore:

H_ezG—ZefF+ ?E _ef' G-(eg+t ff) F+ fgE

, P

EG- F? EG- F?

W = f?°G-2f'gF+g°E |_Iw_cpzz(eg—ff’)z
EG-F? ’ EG-F*

The quantitye g — f fis non-zero then. One now introduces two vatiesdt” with
the help of the equations:

,__et+fr po—_ &F f'r,
f+gr,’ f+gr,
One then has:
f+f
f+f, . e+ (1, +7,)+ 91,7,
T Try+grr=(g-th f2+fg(r,+1,)+g’r,7,’

(EG-F)[H+d(1,+7,) +Wr,1) |

E+F(t'+t)+Gt't"= > >
fP+fg(m+r)+9°nr,
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The right-hand side of these relations vanishes beaduydd). In that way, howevet;
andt”will prove to be roots of equation (7). Furthermore, wilehave:

_(eg-F N x(F+G) - B FY} _ (eg-f F)F+G(x+ % 1)
5p+<(qu_ 2 ] - 2 ] :
(EG-F9)(f'+ gt) (EG-F)(f'+ gt)

If one sets”=t;, t’=t, then it will follow that:

K, =Ky, K, = K2, etc.
In addition, one has:

eg-f f

e+(+f)n+gr’= (f'+gt2)2[e+(f+ )L, +gt],

_ (eg- f f)’(E+2Ft+ GP)

H+2b i+ Wr?
T T G- P (F+ gt

The following relations then exist between thergu®st; , t2, on the one hand, and
h;, hz, on the other:

_rC2 _ 2
12) _EG-F 1 _ EG-F

M eg-ff B P eg-ff h

The name olines of curvature of the second kislall be applied to those orthogonal
trajectories of the family of curves whose tangd€étsy, ¢) define developable surfaces.
The tangentx, &) will be cut by the neighboring tangemt € ox, £ + d¢) in the event
that:

(13) XK(NA—{)+y({HK-EX)+ar(San—nd)=0.
Let the first of the families of curves be specidlere, we take:
$=nép, MNq =N 1o, &G=né,
in whichn means a finite function qd, g, r, which can also vanish. The case that was

excluded herd, = 7, = {, = 0 is treated analogously.
If one sets:

k=2 %0{,=¢{n,), k'=> %0{,-{n,)
then the condition (13) will assume the form:
(k+k't)(L+nt)=0.

Secondly, if the family of curves is general tlogre will have:
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gz:,7qu_Zp’7e| ”:Zpgq_gpzq Zzgp”q_gp”q
JHW-0? JHW-0? JHW-0?
and the condition (13) will become:
QP -fW)df +[gH- (f-f)Pd-eW] dpdg+ (f'"H-ed)dp” = 0.

The abscissa of the intersection point of the teigtmboring tangents relative to the
point (x, y, 2) possesses the expression:

_ OXoé+oyon+9zd
5£2+5,72+5z2 *

For a special family of curves with 1ntt = 0, that expression will always be infinite.
The other value that one gets kof k't = 0 might be denoted b , such that:

ekK-fk
H(k'-nk)
In the case considered, one will have:

_ e, tkind,—-¢n,) P& +KWnd,-4¢n,)
Xp— H ) Xq— H )
and as a result:

2 2 12
E:ez+k’ I::ef+kl<’ G:f +k |
H H H

Since one has:
g=nf, f’=ne

here, in addition, one will find that:

eG+ Eg—-( f+ f) F_ H(k'=nk) eg—%(f+f’)2__ (f —f)?
EG-F? ekK-fk' EG- F? 4(EG-F?)
(F-1) _ 2. :

We set—————= &, in general, and get from (6) that:
4(EG- F9)
1,1_1 .
h h A h b,

For a general family of curves, the abscisgaand p, of the intersection point in
guestion will be roots of the equation:

(14) HY-0)F+[eW-(F+f)D+gH p+eg-ff'=0,
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such that:
eg-ff_ EG-F°
HY-o*> eg-ff

=PLp2.

A comparison of (10) and (14) yields the relations ketwo, , 0, andt; , v in the
form:
(15) ntn=pte,,  un=pel-£ep),

and a comparison of (12) and (14) will imply relationsaee=no, , > andh; , hy in the
form:

i,1_1.1

1 1 5
—= —&°.
hh pp,

The lines of curvature of the second kind define a sifagtely, or two separate families,

or they will be imaginary according to whether equatitb4) (possesses equal, distinct
real, or imaginary roots, resp. For any normal farfgly 0), the lines of curvature of the
second kind will coincide with the lines of curvaturelog first kind.

8 5. — On the theory of rectilinear ray systems.

One calls a doubly-infinite family of curves that asts of nothing but straight lines
a ray system The study of the curvature of those systems wat &iddressed by
Kummer (J. reine angew. Math., B87, pp. 189), which has been followed as a basis up
to now, in essence. (CfBianchi, Lezioni di Geometria differenzigl@p. 24,et seq),
althoughKénigs (Ann. sci. de I'Ecole Normale, 1882, pp. 219) has enrichedttiay of
focal points and focal planes by basing it upon projectjeometry. Kummer
considered only general ray systems. In that way, inteduction of composed
differentiationsx, , X, , etc., would be superfluous, and the definition of the palci
planes would break down for a special ray system. @mnhsis, an introduction to the
study of ray systems shall follow here that startsmfrthe Konigs viewpoint and
represents an application of the developments that gweee in the previous paragraphs.

Let a line with the direction cosines 7, { be laid through a poinPy with the
coordinatesw, Yo, zo. An arbitrary poinP of the line will have the coordinates:

(1) X=x+1& y=yo+ln z=z+1/.

A second line, which should not, however, be perpefatita the first one, possesses
the direction cosineg’, ', . The normal plane to the first line that is laidotigh Py

I

cuts the second one at the poRjtwith the coordinates;, y,, z,. If one lays a normal
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plane to the first line througR then the second line will intersect it at a pd#itwhose
coordinates are:

@ x=x+ <

cosp

| &
cosg

] I ' V2 ]
y'= Yo+t 2= 7+

cosg

We now imagine that we have chosen two mutuallp@edicular planes that intersect in
the first line. Let the direction cosines of themal to the first of those planes;f be
ay, ay, a, ; let those of the normal to the second d&g be 5, B,, 5. If the plane that
goes through the first line and the pdiitmakes the anglé with the plane;) then that
will yield:
_cospy (=X )a +13 &a,

cosp’ (=% )8 +1> &' B,

(3 tani

We would like to consider the plane in questiobéoassociated with the poiat If
one regards the abscidsan (3) as varying then that equation will reprasamencil of
planes, whose axis is the first line and whosegdaare projectively associated with that
line. That association will be special when:

2. (6=%)n{' =¢n)=0.

Here, the lines are either parallel or they witensect at a point whose abscissa relative
to thePy will be represented by:

If we exclude this case then the point at infirmtythe first line will correspond to the
plane E3) that is parallel to the second line. The endpofrthe shortest distance from
the first line to the second one that lies on i fine corresponds to the plane that is
perpendicular tds .

In addition to the poinP, consider a second poifit of the first line for which the
guantitied andA will be denoted by’ andA’, respectively. If one gives equation (3) the
form:

altand+al +azltand+a, =0,

to abbreviate, then one will have:

1 __(aa-aa)cot(-A)+(E+g)+aa+ ga
"~ (al+a)"+(a,1+a,)’

here, in whicH’— | means the abscissa of the pdntelative toP.

Kummer gave the quantityl — A’ the name ofotational angle of the second line
with respect to the first for the line segment PQ

If the angle of rotation is a right angle thewill follow that:
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1 Z+ad)l+ +
(4) __(@E ta)ltaataas,

"~ (al+a)’+(al+a)?

One now considersy, Yo, 2, ¢ 77, { to be functions ofp and g and gives the
increments\p, Aq to those variables, with whick, & etc., might go tog + Axg, § + A,
etc. One will then have:

Xo=Xo + A% - AR :
cosyp
and since:
AX=NAx +1 A&,
one will also have:
a1 = ) AELB,, a=-) Aélm,,

ail +as=cosp Y BA,, a&l+a=-cosp ) ah,.
Equation (3) goes to:

cosp Y a,Ax, +1> a, AE-> a, AEDD A,
cosp D B, A% +1D BAE-Y B AEDY EAX,

tanA =

and when one takés— | =h, (4) will be replaced with:

1_ D AENX
h cosp Y AX*

A'x, A'y, A'z will be replaced withdx, dy, &z when one passes to the limit. One will then
have:

_Dady+ 1) a,df
(5) tand = WATEDN AR

_ Ydéax
B D ox

(6)

in the limit.
In that way, one will have:

>

_ _[ 0%, 0 0%, 0%  ,0¢& 0%
K=X, dp+X; dg=| —2 +]| —= — O ldp+| =2 +|— - —2 |dq.
e AT [ap op 52569} P (6q 0q 5256q} |

Equation (5) represents lmear sequence of pencils of plapnea which each
individual pencil will be established when one determinesahedq/ dp.
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Thesingular individual pencils of the sequence, at which all pointefline &, <)
are associated with one and the same plane (vipe@as projectivity), are théocal
planesof the ray Xo, ¢).

One sets:
0%, 0¢ 0% 98 . 0% 08 0% 6
fo= S 20l f =y %0
Zapa ° Zaqap 0 Zapaq 0 Zaqaq
N 0%( 0 _,0n %[, 00 _,0n
o Zap(nap Z<9|ri’ % Zaq(naq Zaqj’

to abbreviate. If one is dealing with a special ray syste which:

9¢_p9¢  on_on o _ 0¢

09 o’ dq dp  d0q dp°
then the focal planes will be established by the egustio
kodp+ k,dg=0 and dp+ndg=0.

One focal point lies at infinity, while the abscisgaf the other one will satisfy the

equation:
o e K) k %

For a general ray system, the focal planes wildbeermined with the help of the
equation:

(H fi-®e) dgf +[H g~ ®( §- §-W ¢ dpde(® g-¥ § dt=0,
while the abscissas of the focal points will sgtitie relations:
(8) HY - F+[eW—(f,+f) D+gH] p+ego— f, fs =0.
One way of generating a ray system with imagirfacal points can be obtained as
fO”o‘I\'I:'/:I:e three functiond, V, W of the complex variablgs+i g and set:
U=x+iX1, V=yo+iyr, W=2z+iz,

in which the real and imaginary parts have beerars¢ed. X , Yo , 2 are then the
coordinates of one surface, whie, y:1, z; are the coordinates of the other. A pair of
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values p, g) associates a point of the one surface with a poitihe@bther one, and the
connecting lines from one point to its associated peithdefine a ray system.
The direction cosines for the rays are determinedi®yetuations:

X% - Y Y% _ 4745
g R ] ,7 R 3 Z R ]
in which:

R= (% =%)+(%- )’ +(2- °.
One then obtains:
Hzgza(xl—xo)g :_eo+fo,
R op Jp R

q):gza(xl—xo)g = %th
R op 0q R

q):gza(xl—xo)g: eo—fo,
R Joqg adp R

wzgza(xﬁxo)g = fo=9
R g 0dq R

HqJ_cpZ:zw_

R2
Equation (8) takes on the form:

200 —20R+R*=0
and possesses imaginary roots.

We now consider equation (6). When one emplogsnbtations of the previous
paragraphs, it will assume the form:

1 edg+(f+ f)dpdg gdf
(9) - =- .
h Edp +2Fdpdgt Gd§
In this, one has:
e=eg+lH, f=fo+ld, f'=f+1P, g=go+IW¥,
and when:
o ,0n , o ,0n
k= x |pn—=—-—|, k’= — -1,
2z p(nap Z6|0j ZX‘{nap Z<9|ij
one will further have:
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1| oé o ,0n 1(,0¢ (.00 ,0n
= —le=>+kn—=-0=L1]|, xq=—| f=+K|n—=—-7=L|],
% H{ap [ ap Zapﬂ X H{ ap [”ap Zap
so one will also have:

E:ez+k2, I::ef+kl<, G:f2+k’2

H H H

EG_FZ:(MJZ

The differenceE G — F? vanishes only when the point is a focal point withahscissa.
Namely, for a special ray system:

ek—fk=g K~ fk+ HI(K-nk),
but for a general one, one will have:

9n9¢ _0n9¢
= 9 0a_390p

, etc.,
Jrv-o?
and as a result:
Hf -de Hg-of
(10) k=28 = 19701
JHWY -2 JHWY -2
ek—fk=HEI" 11

JHY-0?
eg—ff=1’(HY -+l [e@W - (f,+ f) P +goH] +ego—T, f, .

If the point §&, vy, 2) is not a focal point then that will imply the twommal principal
curvatures and the lines of the first kind, as in the ptesvparagraphs. In order to arrive
at Kummer'’s principal planes, one must show that the tangentsngd and the same
family of lines of curvature of the first kind are pllehto a ray, or what amounts to the
same thing, that the direction cosings &>, etc., do not depend upbn

When one employs the expressionsxprxy above, one will have:

9¢ 9 _,0n
. (e+ ftu)ap+(k+l<1;)[/7 o Zapj
T Rt T (kK D)

(v=1, 2).

The two quotients:
_k+KY,

_e+ftV

14
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must then be independentlof
In order to prove that, one takes:

k+kt
u:

e+ ft

and replaces the quantity dq/ dp with:

in the expression for 1. If one lets] denote the determinant:

s N
9¢ o0n
op 0p
9¢ on
Jqg 0g
then one will have:
f:eCD+kJ,
H
and
e+ (f+i)t+gl=—CKk-TK
H(k'— fu)
E+Z:t+Gtzszk)22
H(k'- fu)
SO

¢
74

S[KH-k®+@E@®-fH-kJu+edd],

1+,

_KH-k®+(ed- fH-k) w elt

1
h

(f k—eK)(1+ )

41

The quantitiesu; and u, are the values ofi that come from the maximum and

minimum of 1 /h, resp., and as a result, they will be the roothefequation:

U2+k H‘qu_eJ_l_

eb-fH-kJ
Now since:
k=ko, k'=ky +1J,
one has:
u1+u2:—2k‘;H_k°cD_q’ J;
ed-f,H-k J

i.e., the quantities; andu, are, in fact, independent lof
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Thespherical imageplays a key role for the general ray system. Onesiradii of
the unit sphere that are parallel to the positive habfethe rays of the system and
considers the endpoint of a radius that lies on thedéthe sphere to be the spherical
image of the ray that is parallel to the radius. hat tway, any surface that is generated
by rays of the system will be mapped to a curve on thesphere.

The lines of curvature of the second kind run through deaeble surfaces. Such a
line will be mapped to a spherical curve whose tangentgaaedlel to the tangents to the
lines of curvature of the second kind that run througldthelopable surface considered.
We call the direction cosines of those tange®tsis, (& ; ka , Aa, (. We further let:

(10)[S|C] dgz:K3S_|_+K4SZ, d/]ZA3S_|_+A4SZ, dZ:/,l3S_|_+,U452

The symbolsS, and $; mean linear differential forms that will yield theffdrential
equations of the spherical images of the lines of curvatinen they are set equal to
zero.

There must be a representation of the differentiech$ dx, , dyo, % that takes the
form:

X=k@S+tbh9)+tkrk(cS+dS), etc.
Now, one has:
> 0%(7d{ ¢ d7) =0

or

cs*-(a-9 $ $- bE=0.

In order for that relation to be satisfied 8y= 0 andS; = 0, ¢ andb must vanish. One
now has:

_ast+(ar 9 Kk, § S+ dB
a5 +2ady Kk, § St 0 B

1_
h

for| = 0. Since the quantity possesses the valpe for S = 0 and the valug, for S, =
0, it will follow that:

a=-p0, d=-p,
and

(11) K=—-PLKS-PKkS.

We employ the representations (10) and (11) in order teecbaquation (5).
One has:
2. a6 =2 a,0%, 2. B.d%=2 B.0%,

which will then imply that:

_(1-p)SY ak,+(1-p) Sy ak,

tanA )
U= B+ (1-p) S, Bk,
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The values ofl that belong t& = 0 andS; = 0 determine the two focal planes. If we
denote those values By andA; then we will have:

_tanA (-p, ) Bkt tad, (- p, > Bk,

12 tand
(12) 2 (1-2) Y B+ (= p) X B,

in which one takes:
>-;
S

One now fixes one’s attention on two non-singulahivimual pencils of the linear
sequence that is established by (12). They might belontheovaluesr and 7
respectively. If one considers every plane that is tladugh the rayxg , &) to first
belong to the individual pencif) and then to the individual pencit’() then one will get
a point in the pencilz that corresponds to it whose abscisdaasd a point in the pencil
(77) that corresponds to it whose abscisdd idow, since the relation:

_ tand, (' - o, )Z,BXK3+ tand, (- p, )Z,Bxkﬁ"

tanA
o =) Brst (=03 BuT

exists, along with (12), the two individual penciy &nd () will determine a projective
point association on the ray( ) whose equation is:

(13) (I _pl)(l ”_102) —
(I=p)0"-p)

r
T

That will then show that the focal points of the & , &) are the double elements of
each point-association of the type considereddhatobtains.

The two focal planes determine two spherical tatgyéhat go through the spherical
image of the rayx , &) that might be calletbcal tangents Likewise,r and7’ determine
two spherical tangents that go through the samet pdithe sphere, and/ 7’ is their
double ratio with the pair of focal tangents. Fri8), that is equal to the double ratio of
every of pointsl(1”) that correspond to the pair of focal points.

The point-association (13) will be an involutiorhen the double ratia / 7’ is
harmonic.

The focal planes prove to be double elementspbgective association in a similar
way. Any point on the linex, &) corresponds to a plane in the pentg)] &s well as one
in the pencil ¢"). The former is determined by the andlewhile the latter will be
established by the angh

Now, since one has:

| = p(tand - tand, )" Bk, +p, (tam — tad, ) Bk,
(tanA - tank, ) Bk, + (tai— tad, ) Bk,
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as well as:
| = pi(tand’ = tank, )" Bk, +p, (tamd' — tad, ) Bk 0
(tanA' - tanh, )’ B, + (tamd' - tadd, ) Bk,
one will then have:

(14)

(tand - tand, ) (tanml’ — tad,
(tanA - tan, )(tanm'— tand,

r
T

According to the choice of and 7', that equation will assign every plane that goes
through the rayx , &) with a second one projectively. The double eltmef that type
of assignment are the two focal planes.

In connection with those remarks on ray syste@sichard’s theorems (Ann. de
I'Ec. Norm., 1889, pp. 333; cfBianchi, pp. 261) shall be established from the viewpoint
that has been assumed here, in order to showhattroduction of the derivatives with
respect to arc-lengths have a simplification ofdakulations as a consequence, and then
in order to communicate an, as it seems, as-yettirea surface-theoretic theorem that
completesGuichard’s result. In order to explain the theorem in dios it is necessary
to preface some remarks that can be regarded egeamsion of the developments i2.8

We choose two linear differential forms:

T =m1dp+ a2 dq, To = ap1dp + a2 dq,

and consideil; = 0 andT, = 0 to be the differential equations of two faesliof curves
on a surfacex y, 2). In that way, we shall assume that:

D(d¥2 =2 (d¥? =1, D (dX) (dX, = cosg £ 0,
10— a2 1 =A% 0.

If 11 means an integrating factor férand . means one fof, then one will have:

1(0a,, Oa 1({0a, OJda
dlogy,), = =| —2-"11 | dlogv,), = —| —& -——22 |,
( g 1)T2 A( ap aqj ( g z)T1 A( aq apj

As a consequencé&; andT; will be complete differentials when:
(dlogv;),, = (dlogv,), = 0.

For an arbitrary functio§ of p andqg, one will get:

(15) (d3)q,, —(dF)y,, = (dB)y, (dlogvy),, - (d3),, (dlogv, ).,
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as in 82. One must now address the problem of understanding timeegggc meaning of
the quantities(dlogv,), and (dlogv,),. To that end, we introduce two further

differential forms by the equations:

T _ T, +T,cosp T :Tl+Tzcos¢.
! sing = ¢ sing
T/ =0, T, =0 are then the differential equations for théh@gonal trajectories of the

curvesT; = 0, T, = 0. Four individual curves of the four familiesnsidered go through a
point on the surface. One gets the following espigns for its geodetic curvatures:

1 1
—= dx), (dX_., —= dX), (dX_.,
R 2. (@%)y (dX).. R 2. (@) (A9,
L T (g = =D (A (e
er’ 1 171 er, 2 212
Since:
(@5, = —Ccosp (dS Y+ d3) o dB)= (d3), —§OS¢ @s ), |
sing sing
one will have:
—cosp (@x) , + (Ox). ., (dX),;, —cosg (dx) .
(d¥)y 5= o (Y= . L
L sing 2z sing
and
i_ cotg _Z(dX)TZ(d)OTlT2 i: cotg _Z(dX)Tl(d)QTZT1
R, R s ' R, R sinfg

If one replaces in (15) with the quantitieg, y, z, in succession, multiplied in the
first case by(dx).,, (dy);, (d2), then by(dX), (dy),,, (d2),,, and then adds them
together then:

(dlogv;),, = Cow[i—&w}i_ 1 cotp

R R) R R
(16)
1 cotgp 1 cop
dlogy,), =—-2¢ A
(dlogvah =2 R +°°s¢(% Fﬁj

On the basis of those equations, the theorem t@rbeed can be expressed as
follows:

The differential forms jTand T will be complete differentials when:
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1 _cop_ 0 and

R, R, R, R

cotp _ 0

i. e., when the tangents to the curves=T0 (T1 = O, resp) are perpendicular to the
connecting lines of the centers of geodetic curvature for thesdiwe0, T/ =0 (T, = 0,

T, =0,resp).
If one takesTl; =du, T> = dvthen the square of the line element will take the form

ds’ =du? + dv? + 2 cosg du dv.

Now, let two families of curves on the unit spheeediven that are not mutually-
perpendicular. We shall next answer the questionGéthard treated of finding the
condition under which those families will be the spt@rimages of the asymptotic lines
of a surface.

If one considers the curvés = 0, T, = 0 on the unit spheref,(n, {) to be the
spherical images of two families of curves on a surfacg z) then one will have:

dx= (a9, T+(d3y, T,

in which (dx), , (dx), , etc., are not direction cosines, however.

Since the asymptotic lines of a surface run perpenditaléneir spherical images
when the curve3, = 0, T; = 0 on the surface coincide with the asymptotic linesef t
surface, one will have:

dx= A(dé), T, +u(dé), T,

in which A and  denote proportionality factors. The direction cosioethe normals to
the surface aré, 7, {, and since it would generally emerge from (15) that:

D &) =D &Y,
or
> (dé)y, (A9, =" (dé)y, (AW,
then it would follow that:
A=u.

In order for the differential forrdx to be a complete differential, the relation:

A[(dE)Tl'Tl _(d)OTéTl] +(dA) TZ( &) 1*1_( ) T1( ) T
=/ [(d"()Tl'(C“Og Vl)T2 _(d'i()Té (d|OgV2)T1]

must exist. If one poses the corresponding condifmmdy, dzthen it will follow that:



§ 5. — On the theory of rectilinear ray systems. a7

Asing(d logv, ), = @A), sing+A{Y @€ ), (O Yy =2, (A )y (& )y of

(17)
Asing(dlogv, ), = @A), sing=A{D" @), (0 )y =, (@ )y (F )y} -
However:
2. (d&), (dé), = cot(dp),, + cowp) @), @),
and

>.(dé)y (dé),. =—sin@p), =3 (@¢), (dE);,
When one employs the abbreviations:

i—&w:A i—&w:B
R R R R T

the first equation (17) will go to:
(dA),=24B,

and one will correspondingly find:
(dA), =24 A

in place of the second one. The condition in qaeswill then demand that the
expression:
AT +BT

must be a complete differential, or that the follogvrelation must exist:
(dA);, —(dB); = (A>~ B cosg,

in which cased, and therx, vy, z in turn, will be determined by quadratures. tdey to
find the geometric meaning df one observes that the reciprocal values of teiseof
curvature of a normal section of the surfacey(2 are provided by the expression:

: 2singT, T,
AL -2coT, T,+ T, )

As a result,— 1 / A% will be the Gaussian curvature of the surface.th previous
condition equation exists in such a way that B = 0 thenA will be constant. The
spherical image of the asymptotic lines of a swfa¢ constant negative Gaussian
curvature will then possess the properties thaewtated in the theorem above.

The focal points of a ray system lie on two sugfathat one calls tHecal surfaces
of the system. The midpoint of the line segmeat timks the two focal points of a ray
lies on the so-callethidpoint surfaceof the system. We next represent the differestial
of the coordinates of the latter by linear form$SpandS; .
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Since:
dxo = dx + &) Edx,,
when one sets:
S Ed=pS+p S,
one will have:
=S (-omk+pd +S(-pK+pPd).

Shouldxo , Yo, 2 be the coordinates of the point of the midpoint surfaee bne would
have to replacg, with — o1 . One writeg, instead ofo, and gets:

=S (-pr+pLd +S(Pra+p2 <.

One now taked; = S, T, =& . The quantitiesp, A, andB are then determined.
Furthermore, let:

@y = K5 (@) = A, (@D = 4,
(dX)TZ' = Ky, (dY)TZ' = A (dZ)TZ' = U,.

The differential fornmdx, is a complete differential. As a result, one \ndlve:
_(dp)ssz_lo(ng)s2 +(dp) §§(+ nx,—(do) §K4—,0( k) ,s_( dp) ;_ RK

=(Acosg+B) (-pKs+p1¢) — (A+Bcosg) (0K +p24).

If one multiplies that equation and the correspondings dhat are derived fady, and
dz, in succession, bx;, A;, 4, and then byk,, A,, ,, and finally, byé, ,, ¢, and
adds them each time, then since:

D Ky (dky)g = —Asing, D K3 (dk,)q = cosg sing B,

D K, (dk;)g =Acosgsing, > k,(dk,)q=-Bsing,
that will give the system of equations:

(dp)s —P1—20A=0,
(dp)g —P2—20A=0,
(dp)s, —(dp) g+ 20cosg =p1 (Acosg +B) —p; (A + B cosg).

If one replaces the quantitips andp, in the third of those equations with their values
that one infers from the first two equations then théitproduce alLaplace differential
equation forp . After integrating it, the determination &, yo, Zo , and therefore the
determination of a ray system with a prescribed spHencage of its developable
surface, will require only quadrature&uichard, loc. cit, pp. 344)
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We now make the assumption tlhaandB vanish. We then have:
(dp)ss = (dP)s, s
and the third equation of the system above will asstiedorm:
(dp)g s+ pCOSP=0.

If X, Y, Z are the direction cosines of a normal to the midpsuntace then one will
have:

X:Y: Z
=P Kt PRt pSING SIp, At p At pSING - p, st P, pSING

Now:
D (=P Kyt Pkt psing &)k 4(dp)s, —p (dk ) +&(dp) g+ pa ] =0,

and as a resultz X (dx)g s Will also vanish. However, that says that the cuSies 0,

S =0 -i.e., the lines of intersection of the surfadd the developable surface of the ray
system — are conjugate curveSu(chard, loc. cit, pp. 345)
The coordinates of the points on the two focal surfackde:

X1 =X+ p¢, Yi=Yo+p1, n=2+pd,
X2 =Xo— P, Y2=Yo—p1, =20-p{.
One then has:

=219 +20 S, de=-20KS+2:{S.

The direction cosines of a normal to the first fomarface X, y1, z) are thenk,, A,,
M, , while those of the second one ag A,, 4;,. As aresult, as is known, the first of
the focal planes, which has the equation:

D (x=%)k,=0,
will contact the second of the focal planes, which tie equation:
D (x=%)K,=0.

The lines of intersection of the developable surfacd®fray system with the two focal
surfaces are perpendicular to each other. Since one has:
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YK ([@p8)s =0, YK, (dp,&)s=0,

in addition, those lines of intersection will be, a& game time, the lines of curvature of
the focal surfacesQuichard, loc. cit.,, pp. 346)

8 6. — First and second derivatives with respect to arc-length
Representing the second derivatives of the coordinates witaspect to the first.
Distinguished types of orthogonal trajectories.

A family of orthogonal trajectories of the givemfdy of curves is established by two
differential equations of the form:

(1) ai3 dp+ a23 dq+ Q?; dI:O,
mdp+ ndc=0,

in which m andn mean functions op, g, r. Since the first of those equations must be
true for any orthogonal trajectory, the lines that deeermined by (1) can be called
simply “orthogonal trajectories (or curvear)dp+ n dg= 0.” The shift components:

X=X dp+txgdg Jy=ypdp+ysdg AZ=%zdp+zdq

that were introduced in are then referred to the orthogonal trajectatjes 0 anddqg =

0, or in other words: The curvep = 0,dqg= 0 are considered to be coordinate lines. We
would like to introduce two arbitrarily-chosen familiesoofrves of coordinate lines that
are determined by the equations:

mdp+n;dg=0, nmpdp+n,dg=0

in place of them. The coefficients; , n; , my, ny will then have to satisfy only the
condition that their determinant must not vanish. Wes and v, be two temporarily-
undetermined functions @f g, r, and set:

v(mdp+ndg =aidp+ a12dq=Ty,
Vo (mzdp+n2dq) 2021dp+ azqu:Tz,

arzdp+az dg+agsdr = ay To

The differential of a functiof of p, g, r will be a linear form inly, T, T3 . If we give it
the form:
d§ = (d§), T, +(d¥),, L+(d),, T

then we will have:
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a,s. —a,.s
2 (dF), =——=L"—"2, (dF),= (A, = —
Q1,0 5, = 01,0 5 Q.0 5, = 0,0 5, v Ga3 or

(Ar,=¢  (Ay,=7 (A=

—0, 5, t0, 35, 1 0F

Since:

(d¥),, can be considered to be the derivativg ofith respect to arc-length of the curves
of the given family. If one sets:

Vl:\/nzzE—ann; F+ nf G VZ:\/nfE—quqH nf G
mn,-mn mn,-mn

then (dX), , (dy),,, (d2),, will be the direction cosines of the tangentshi® ¢urvesT, =

0, and (dX),, (dy),,, (d2), will be the tangents to the curv@s = 0 . In that way,
(d¥),, or (d§),, will be the derivatives of with respect to the arc-length of the curves
T,=00rT, =0, resp. If one replacep anddqg with T, andT; in the partial differential:

0% =Fpdp+Fqdq
then one will get:
0§ = (dF), T, +(dS), T,
so:
d§ =05 +(d3),, T,

We introduce the following notations for the setdalifferential of a functiory that is
formed under the conditiofy = O:

0% = T’ + (§ g+ T ) dP A+ § , dG+5 , d pF, 4@
= (8),: T +(08)rr, +(R) 1 ] TTH®) - TH H) 0 TH @) 0 T

Here, we have set:
((dF)y, ), = (AF)r 1, (dF), 7, =(dF), -

while the following equation will be true f@¥T; ando T, :
5TV = (Crl/l)pd[:)2 +[(a|/1)q +(a|/2) p] dpdq+(avz) q dd+avl d p_avz a ' (V: 1! 2)

We shall now address the problem of expressings#eond derivatives of the
coordinates with respect to arc-length of the csivkthe given family and the linds =
0, T. = 0 in terms of their first derivatives and geonaatly-intuitive quantities. The
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solution of that problem requires the introduction of tiwdher families of orthogonal
trajectories that are, at the same time, orthogwwagictories to the lineék, = 0 orT; = 0.
We shall letp denote the angle between the lifegs 0 andT; = 0, such that:

> (dX); (dY_ = cosg.

We then take:
_ T, +T,cosp T :Tl+Tzcos¢.

-I-r
! sing 2 sing

We will then have:

3) (dF),, =

and

—cosg @ ). + ©F ),
sing

@) - (d5), ~cosp @5 ),
sing

Y (A% = Y (A% =1, Y (AW (g =0, (AW, (A, =0,
(@9 (A8, = X (@), (X =sing, Y (d) (dY,, =~ cosg.

That shows that the curv@s =0, T, =0 are orthogonal trajectories of the given fgmil
of curves, and furthermore that the curigs= 0 are orthogonal trajectories to the curves
T, = 0, and the lined; = 0 are likewise orthogonal trajectories to theediT, = 0.
Finally, (d3);, or (d3),, is the derivative of with respect to arc-length of the curves
T, =00rT/ =0, resp.

We shall direct our attention to certain curvasucd an orthogonal trajectory to a
given family of curves and apply their defining atjans to the families considered,
namely,T,=0,T.=0,T, =0orT, =0.

We define thaormal curvatureby the formula:

X2 DX LRS
o 9

1_
h

If we denote the normal curvatures to the cufl’es 0, T, = 0 by 1/h., 1/h , resp.,
then it will follow that:

hTi = Y&, hTi = &),

The curvature axis of an orthogonal trajectorysdtie normal plane of the curvye %
const.,q = const.) at a point that shall be called the gentés geodetic curvaturd /R.
If &, ', ¢’ are the direction cosines of the line that is padicular to the directionc,
oy, &), as well as the tangeét 7, ¢, then one will have:
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1_ D XE Y&
R os’ os"

If we denote the geodetic curvatures of the cufiyes0,T; =0, T, =0, T/ =0 by:

4t 11
R’ R R’ R,

respectively, then it will follow that:

! 1
reg d T d 2 _= d - d .,
R, 2. (dx) (dy R, > (@9, (a9,
L__ _cotp 1
El'_ Z(dX)Tl' (A%, R, —Sin¢ Z(dX)Tl, (X1,
L__ _cotp _ 1
R T2 @0 (B = T S (0 (D

In addition to the normal and geodetic curvatuoe &n arbitrary curve, it is
recommended that we should consider a third ortewtbacall thecurvature of the curve
relative to a normal surfage.e., relative to a rectilinear surface whoseagators are
normals to the curve, and which we shall defindiraging values as follows: Let the
coordinates, y, z of the points of a curve be functions of the Valad, and the normal
surface will be determined when we are given theation cosinesa, b, ¢ of its
generators. The lines that are perpendicular ¢oginerators and the associated curve
tangents might possess the direction cosales’, ¢c. One considers a regular curve
segmenfPP’whose initial point and endpoint correspond tovkiest andt + At, resp.

A half-line goes througl? that defines angles with the positive halves ef¢bordinate
axes whose cosines aaeb, c. One associates the pol on that half-line with the
point P, on the curve segmeRP’in such a way that any line segmém, will be equal

to the arc-lengtiPP,, and draws a straight line, through the poinP, that is parallel to
the line @', b’, ¢”) and goes through the poiRf. The perpendicular projection of a line

L, onto the normal plane to the curve that belong® tuts the lined’, b’ ¢’) that
belongs taP at the poinQ,. The limiting casd®, = P corresponds to the poi@l, = Q.
Q shall then be regarded as the center of curvatiutee curve that belongs ®relative
to the normal surface that it is based upon. # takes the abscissa@frelative toP to
be equal td and denotes the line element of the curve$ws usual, then one will have:

1 da _ ,da
T=-Ya—=>a—,
I ds ds
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and the coordinates &f will be:
x'=x+la) y'=y+lb, z'=z+lc"

One must not forget that the choice of half-liaglf, ¢) will have an effect. If one uses
the half-line ¢ a, — b, — ¢) then one will get the center of curvature as the pibiat
corresponds symmetrically to the poirt ¢, z’) and has the coordinates:

x"=x-la’, y’=y-Ilb, z"=z-lc"

The curvature 1 [ vanishes when the normal surfaege l§, c) is developable, in
which case, the normal surfaca’,(b’, ¢’) will also be developable. If one lets the
generators of the normal surface coincide with the biads to a curved line then 1 /
will be the second curvature of the line.

The concept of the curvature of a curve relative tooemal surface that was
developed can be made fruitful for the study of the cureabf families of curves in two
ways when one focuses on the tangents to one and mhe fsamily of orthogonal
trajectories along either an orthogonal trajectoryhe tangentd, 77, {) or a curvep =
const.,q = const. In that way, one will get the following vedufor the curvature of the
curveT, =0,T1=0,T, =0, T, =0, relative to the normal surfacé £, ¢):

== 3 (dY)y, (), = %{ cosp , 3 (d¥),, (df)n}

1_
E_ > (e (46 = Sn¢{

{Z(dx)Tl(daTz + 22 }

2

cosp

+ Z(dx)Tz(df)Tl} ,

T Z(dx)T2 (d'f,()T2 =

2

== 3 (A9, (d6), =

T1

L
sing
%{Cw’ +Z(dx)T1(daTz} ,

2

such that:

1 1 co
—= > (¥, (dE)y, = =1 D (dX);, (dé); + :
Iy sing
1 1 1 1
=+ =
O P M
One gets the following expressions for the curvafutg, (1/L; , resp.) of a curve

= const.,q = const. relative to the normal surfa@x), ,(dy),,(d3,) [((d¥),(dy), ,
(d2);), resp.]:
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1 1
L_ Z (dX)Tl' (d)QTlT0 - Wz (dX)T2 ( d)QTlT0 )
1 1
L_ Z (dX)TZ' (d)QTZT0 - Wz (dX)T1 ( d)OTzTo ’
such that:
1.1 _
(4) ST

That equation corresponds to a general propertyhefcurvature that we speak of,
namely, that the sum of the curvatures of a cuelagive to two normal surfaces plus the
derivative of the angle between the two surfaca$ wespect to the arc-length of the
curve will yield the value zero.

Finally, we direct our attention to two more pgialong the tangents to the curies
= 0, T1 = 0 that go through the point,(y, 2, namely, the intersection points of those
tangents with the curvature axis of the cupve const.,q = const. that belongs to the
point (X, y, 2. We denote the radius of the first curvaturéhat curve byp, the direction
cosines of its principal normal Iay, b;, ¢;, and those of its binormal lay, b,, ¢c,. One
will then have:

(5) a; =p(d$)y, , az =p[n(dq), —{(d7)].

The intersection point of the curvature axis with tangent to the curie = 0 possesses
the abscisseb, relative to the pointX y, z). For the coordinates of that intersection

point, one has on the one hand, the expressions:

x+(dx), R, y+(dy),R, z+(d2; R,

but on the other hand, when the intersection poasta distance g#’ from the center of
the first curvature of the curye= const.q = const., it will also have the expressions:

X +p* (d&), + pp'[n(dd), —{(d7).], etc.
One will then have:

= 2 (d);, (d¥, .

That will imply the corresponding abscissas for ititersection points of the tangents to
the curvesl; =0, T, =0, T, = 0, with that axis of curvature relative to themdx, y, 2):

=== (dé); (d¥y,, == > (d&);, (¥, === (dé); (d¥y, .

Tz T1 Tz

The formulas that were developed put us into atipasof exhibiting the desired
expressions for the second derivatives of the doatels with respect to the arc-lengths
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of the curve$ = const.g = const.;T, = 0,T; = 0. One gets the following expressions for
the coordinates :

(dX)Tz — (dX)Tl’ +i,
R h
cosp  sing cog  sip
(dX)q,, = ( R R J( dx + [ h h }‘,
_ (dx)y, _<
(dX)TlTO_ LTl Pl,,
cosp _ sinp cogp _ sip
d T,T, A T T |6
= {sz %Jm[m h}(
L (), _ &
W =R Pt
(@), () (dy, ( >)
@, =7 e (@0 = e
(@), (9,
(6) (d )T0 Prl Pl—l .

The corresponding equations for the coordinagesand z emerge from these by
simultaneously switching, { withy, 77 orz, ¢, resp.
The vanishing of a coefficient that appears insthequations can be regarded as a

salient geometric property of the curve family adesed. If1/l; or1/l; vanishes then
the curvedl, = 0 orT; = O will be lines of curvature of the second kind.

An orthogonal trajectory whose normal curvatureistaes everywhere shall be called
anasymptotic lineof the curve family. If such a thing is not siyati then its binormals
will coincide with the tangentsé( 7, ¢). In the event thal/h, or 1/h, is zero, the
curvesT, = 0 orT; = 0, resp., will be asymptotic lines.

An orthogonal trajectory whose geodetic curvatuamishes everywhere shall be
called ageodetic lineof the family of curves. If such a thing is natagyht then its
principal normals will coincide with the tangeni§ @, ¢). In the event thal/R; or

1/R, is zero, the curve, = 0 orT, = O, resp., will be geodetic lines.

An orthogonal trajectory whose tangents are, atsgime time, principal normals or
binormals of the curves = const.,g = const., shall be calledmincipal normal lineor
binormal lineto the family of curves. 11/R. or 1/R vanishes then the curvés= 0 or

T, = 0 will be binormal lines, but whelv P, or 1/B, equals zero, the curvds = 0 or
T, =0, resp., will be principal normal lines.
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If 1/L; or 1/L; vanishes then the tangents to the cufises O orT, = 0 along the

curvesp = const.g = const., resp., define a developable surface.
It remains for us to consider the coefficientg@X), ., and(dX), . . If we set:

()57, = Bo(X) +O.16, (A5 = Sou(dX)r, + O,

to abbreviate, then for finite values 8 and R, the equationf:, = 0 will say that the

tangents to the curvd@s = 0 will be perpendicular to the connecting line of thater of
geodetic curvature of the curvés= 0 andT, = 0. Likewise, for finite values ok, and

R, the equatiofi> = 0 means that the tangents to the culiges 0 are perpendicular to

the connecting lines of the centers of geodetic curvéburtde curves; = 0 andT, = 0.

A family (A) of orthogonal trajectories shall be calldjoint to a family B8) of such
things when the tangent to a curyg at any regular point is perpendicular to that tangent
(&+ & n+ on, {+ o that neighbors the tangerd, (7, {) along the curveR), or in
other words, when the tangents to the cui¥e fossess the directions of the lines of
intersection of the two neighboring normal planesh® ¢urvesp = const.,q = const.
along the curveR).

Now, since:

O =~ Z (dX)Tl(dE)T2 ) O =~ Z (dX)TZ(d'f,()T1 )

the equatior®,, = 0 or®;; = 0 means that the curvés= 0 orT; = 0 are adjoint to the
curvesT; =0 orT, =0, resp.

A remark in regard to the lines of curvature of the #istd might find a place here.
A family of orthogonal trajectories can also be defibhg setting the ratid, : T» equal to
a function ofp, g, r. One then finds the following expression for thenmalrcurvature of
the trajectories in question:

G)ll-l—lz + (612 + e 21)T1T2+ e 22-r§
T,°+2cop T, T,+ T’

1_
h

in which one sets:

1 1
— =011, — =0y,

hy, h,

to abbreviate, and the equation of the lines of curvatutieedirst type will be:
2 G)12 + G)21 1 2 _
T, - ©,,C08¢ |+ (22~ O11) T1 Tz + [O22COSP — 3 (Or2+ O20)] T,= 0 .

In order for the lines of curvature in questiorb®defined by the curvds = 0,T; = 0,
one must have:

%(@12 + ©@,1) —©11c0S¢ = 0,
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%(@12 + @71) —O,2cos¢ = 0.

Should the determina@;;— ©,, vanish here, then we would be dealing with an isotropic
family of curves. Thus, the conditions would read:

COS¢: 0, O+ 0,=0
or

(7) cosp =0, i+i =0.

ITl | TZ

The lines of curvature of the first kind then define a eystof two mutually-
perpendicular families of orthogonal trajectories ¥ahnich the sum of the curvatures
relative to the normal surfacé, (7, {) vanishes at every point.

8 7. — Effect of transposing two successive derivatives withgpect to different arc-
lengths. Lines of curvature of the first kind as coordinatdines.
Fundamental equations.

Just as the differenc€dg),, —(dg),, was expressed in terms of the derivatives
(d¥), and (d3),, and some geometrically-intuitive quantities in the tfitsvo
paragraphs, the three differenc8l§), —(d)., (AF)rr —(dF)rr, (AF)rr -
(d3);, will now be represented in terms of the derivati(eg); , (d3),, ,(dJ), , and

some geometrically-intuitive quantities. That is eglewt to finding the integrability
conditions for a linear form iy, Ty, Ts .

We set:
m = g a = S ,
A3 833
to abbreviate. We will then have:
0¥ 0¥ 0¥ 0§
= —-a,—, =-—-a,—.
S p or 54 aq  ‘or

That will yield:
Bo)a— G = (@) — (al)q)g—f ,

%, _[ﬁj __ 93,05 0% _(ﬁj =93, 05
p q

o \or o or ' ar Lor or or

On the other hand, one has:
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Sp = 0y (dS)y, +0,)(AdS)y,, Ta = G, (dT)y, +a,(AS)s,, g—f= V as (d3)y, -

The determinanty; a2, — ar2 a21 Will be set equal t®. It will then follow that:

(1)

It further follows that:

{ EG- F2 = D%sin%g,
f-f'=D(O,-0,).

(Spa = (@) (AF); +(@)(dF), +a fa (A7), . +a f d5)s ]
+ 0, dF) 1, 1 +aAdF) ],

(Bap = (@1,)4(AT)y, +(a)(dF), + @ @ (dF) . +a 5 AF)y ]
+a22[all(d8:)T2 T + 0’21( d&)Tzz] .

A second expression for the differengg){ — (5q¢)p Will emerge from this. If one sets it

eqgual to the expression that was found above theinwill yield the desired relation in
the form:

(ay,), —(a.) (@), (a
(dg)Tsz _(dS)Tle :%(dg)'[ +22psz)q(dS)E
(2)
L@, —@yay o
D 0
0 0
If one proceeds correspondingly with the diffemﬂcﬁ—(a—gj andﬁ—(a—gj
or o J, or o J,
then it will further follow that:
aalz -a aall —0226a21+0’ 60’22

(dg)TlTo_(dg)ToTl: - or - or (dg)Tl+ o - a (dS)T2

3) D/,
+Lla [i(loga ) —%}—a [i(loga ) —%} (d3 ),
D 22| 2 33/p ar 21| 2 33/q ar o !
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Ja. Ja Jda Ja
12 arll —ay, arlz a, o 21_0'11 a 2
(dg)TZT0 _(dg)TOT2 = (dg)T1 + (dS)T2

@) D3, D\ &,
Lo |4 04| g s 9%
+B{all [E (log a33)q ar } alz[ 2 (log a'33)p or }} (d§ )To :

We introduce some abbreviations for the coefficientshenright-hand sides of (2),
(3), (4), and set:

(dg)Tsz _(dS)Tle = Cn( dS)T1 + 92( d5) T, + Qo( &) T’
(5) (dg)TlT0 _(dg)TOT1 = Czl( dg)'r1 + 92( dS:) T, + 90( @) T
(dg)TZT0 _(dg)TOT2 = Qe,l( dg)'r1 + Qz( CK) T2+ %0( @) T

If one takes, y, z in place ofF here in succession and compares the relations that

thus arise with the corresponding ones for theesyg6) in the previous paragraph then
that will yield new expressions for the quantit®s in a geometrically-intuitive form,
namely:

6. =- §o§¢ L Co%p _ _co¢ +_1’
singR,. R, sing R R
cos¢ _ cog cog 1

C12: B +— T
singR, R, sing R R
©) qo=cos¢{hi—ﬂ— sirw[l—l—l—lJ ,
C :—C0t¢ i__l +_1 —_l _l__l =—
“ L L) h ®TsinglL, L) ®°

R,
:i _1—_1 :—Cot¢ _l—_l +_1 :—_1
S e LT W=

One can now takg in (5) to be the nine direction cosings(dx), , (dX), , etc., and one

would then get twelve differential equations in terious curvatures. There is little
reason to pursue that tedious path. First of @ik would give preference to the
rectangular coordinates in the choice of curvilneaordinates, and one would then
avoid the introduction of arbitrary functionsy( n;, mp, ny) and employ systems of
orthogonal trajectories that are determined by ¢imdygiven family of curves. We have
learned of two such systems, namely, the linesuovature of the first kind and the
system of principal normals and binormals. Howevke latter will be undetermined
when the given family of curves consists of nothmg straight lines. We then take the
lines of curvature of the first kind to be coordandines and introduce some special
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notations under that assumption. We shall w&teor S, in place ofT; or T,, resp. The
first family of lines of curvature in questio®{ = 0) shall be the one whose tangents
possess the direction cosinas A;, 14, while the tangents to the second fam@y € 0)
possess the direction cosines A2, (6. If we take:

=01, 2= 0z, a2 = 03, Q22 = Oy

here then it will follow that:

6,=0,dp+0,dq S,=0,dpto, dg
E+F V, t F+ V,

- o oEtFL_VML - _F+Gt_ Vit

V1 t,—t V1 Lt
E+F -V. F+ V.

g cE*FL_-Vit _F+GL_ Y,

Vz t,-t Vz -1,

OX=K1 61+ K 6, .

We couple the last of those equations with the followemark (Cf.,Darboux, Lecons
sur la théorie générale des surfacedl, pp. 3): Consider the tangents to four orthogonal
trajectories that go through the regular pomty( z2). Each of the latter is an individual
curve of a family that is determined by the fact that ridtte dq / dp is set equal to a
function ofp, g, r. The four functions in question shall be denotedihyr», 73, 11, and
the corresponding values &z by Sa , Sz : Sas : Sa
6l 611 612 613 614
tangents that we speak of is:

(621 _623j[622_624j
611 613 612 614 _ (Tl—Tg)(TZ—T4)

[621 _624j[622_623j (T, =T )T, 1)) .
S, 6,)\ 6, 64,

, resp. The double ratio of the

The equatior§ (p, q) = const. determines a surface that is formed frmthing but

curves of the given family. One now lays four ssahfaces through an individual curve
of the family and calculates the quantiteswvith the help of their equatiors, (p, q) =

cv. In that way, the quantities, will be functions ofp andqg alone, and therefore the
double ratio considered, as well. However, thatgsal to the double ratio of the tangent
planes to the four surfaces at a point of the cuawe we will see that it does not change
along the curve.
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We further denote the valuesl—, i, i , resp., under

Lyt 1
. RR 'R "R R R'PR
the prevailing assumption that the curdes= 0, T; = O are lines of curvature of the first
kind. ¢is set tol/l; , in such a way that from (7),& 1/I, must be replaced with &

by

When# is written for1/L, , from (4), 86, 1/L; will go to —#. Finally, the derivatives
(dF);,, (dF);,. (dF), shall be denoted by (3), 8 (3), gs (3), while the second
derivative (dF),, ., will be replaced withyqs ().

When one takes:
010,— O 03 =0,

the determinations of the quantities that are contained in equations (2), (3), (4)then
one hand, and (6) on the other, will now imply tei&ations:

:(Uz)p_(al)q :i
1 o Rl

_(04)p_(02)q __i
C12_—0_ = R

(@), — (@)
G = 8 = 22,
c :0-390(0-2)_0-490(01):£
21 ,
4 h

g. g,)— o0 g
= 390( 4)0 4go( 3):79_5,

1 03, 0a, 1
Cy=—40, i(logag) ——}—0' [—1009&3) ——}} -,
20 { 4[2 3/p ar 3l 2 33/q ar Pl

_9 go(al) -0 90(02) —c-9

Cy = pn
C, = g, 90(03)_0190(04) :i
2 p hz )
(8) 1 d d 1
Cso :;{0—1[%009 a33)q _a_arz} _02[% (IOg 3-33),3 _6_?1}} = _P_z .

We shall now infer an important consequence from fifth and seventh of these
equations. From (7), one has:
o.
tl == _31 t2 "
o, o,

and as a result, one will have:
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2

J-¢€ _go(t1) = go(tz)

If - &vanishes thena—?’, as well asﬁ, will be independent af
04 04

Equations (2), (3), and (4) will now assume thenfo

1 1
12 ~ Y2 == 9 TS Y2 +2 o\U /»
012(3) = 924(3) R 9(3) R 9A3F) +2¢€ 943)

©) 00(3) - Goi(3) =% 0(3)+ (9-£) 03) ——Fl, ad3),

00(3) - 9(3) = (£ -9) 0(3) +% 0.3 —% af3).

It follows from equations (6), & that:

dx, = L +ij6 {— a +£Ej62+[ﬂkz—éjTo,
R h R R

1

(10) dKZ: _ﬁ_ggjel+(£+ij62+(_79/(1_ij-ro,
R R h R

e e R K

An application of equations (9) to the represeaoteti(10) will yield the differential

equations:
QH_Q(E):A(& _1j _Z
h) 7 R\(h h) R
g[ J @1()——[—1 —1j +Z
h) 7 R{h h) B
(11) 9 [i}rgl[i R
"L h R) B> ¥ BR '
1)_1(1 1), (1, 1), (1 1
90“)‘91[32 ‘E[ﬁ eHn* J”[n J’

gz[iJ+gl[i :_1+_1+_1+£2+2&9,
R R) hh R K

63
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g (ij.{.g (ij:—l+—l+ 1 g
\h,) *\R) K B RR '

1) (o) o Af 1_ 1) e+ e-9
g{ﬁj_gl(ﬂ)_( ej P R

\R) 7 2\R R) (h h h b
Those equations play the same role in the theoryrofliés of curves that the so-
called fundamental equations do in the theory of surfaces.

If one represents the family of curves considered tighhelp of a new variable
and two new parameteps andq; , as was done in & then the derivativeg; (%), 92 (F),

O (§) that are defined with the new independent variables valleual to the

corresponding derivatives that are defined with the add@pendent variables. We can

T : : - .11 1
then call those derivativaavariant operations Similarly, the quantltlesﬁi, R P
1

(11 cont.)

%, & and g will not change their values when they are catedavith the help of the

2
new independent variables. On that basis, we shdlbw the quantities in question, and

| 1 . " .
likewise — and—, with the common name gkometric invariants.

8 8. — Ray systems. Families of planar curves. Orthogonal trajectes of a family of
surfaces that belong to a triply-orthogonal system of surfaces

Having concluded the necessary theoretical dismusswe now turn to the practical

guestions that should next relate to the curves g@ifzen family. When are they straight
lines? When are they curved, planar lines?

In 8 6, (5), we found the following expressions for thieedtion cosines of the
principal normals and binormals of the curves iesjion:

a=p% (&), a=p[nd (-]

in which p means the radius of the first curvature. If wialelssh, once and for all, that
the signs of the cosines, &>, etc., are chosen such that:

E= Mt — A2, n=MmK—K b, {(=KiAd—M Kk

then it will now follow that:
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K. K K. K
1 a = L+2 a = s N A
@ lp(a PJ Zp(% Plj
@ R e
o R° R

Therefore, the curves of the family well be straiyes when 1 P, vanishes, as well as
1/P,. From (8), &, one will then have:

aﬁ a%
%(Iogagg)p - 66:’33 =0 and %(k)gasg)q _ 66:’33 =0.

Knowing the three quantitiess, az3, ass will then suffice to decide whether one is
dealing with a ray system or not.
We obtain the following equation for the secondvature:

1 5 K, K K, K
— =2.a0(8)=p [—1+—2 g [——1+—Zj:
gL 2R )% "R
le.:
(3) i,=—z9+go(arctan5 :
P R

We will then be dealing with a family of planayreed lines whei?; andP, possess
finite values, in general, and when:

(4) 9=, (arctan%j .

1

When is the family of curves considered a norraalify?
From (1), 87, one has:
f—f
=&

5 L —
© 2 EG-F?

If equation (4) is true then the planes of thaviddial curves of the families are, at
the same time, contact planes of a surface whoselioatesx , Yo , 20 depend upop
andg. Here, one sets:

ax, ) ax ) X, 0%,
2eXl) e X(R) Reri

and if one understandsandv to mean functions gb, g, r then the coordinates of the
family of curves can be brought into the form:
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% 0% M 0z, 0%

op 09 _ op 09 _ op 09
Uu+—— Y=Yot—U+—V, Z=7y+—u+—V.

VE VG VB VG VE VG

The expressioh— f"now depends upon onlsp, Fo, Go, in addition tou andv.

One now fixeau andv while directing one’s attention to the bending surfaufethe
surface Xo, Yo, 20), instead of that surface. In that way, any cyrweconst.,q = const. of
the first family will be associated with one of tbecond, whereby only the position, but
not the form, will be different from the original, canhe quantityf — f” will remain the
same. If the family of curves is a normal familgmhthat property will not be lost when
the arrangement of its individual curves is changed ndihg of the surfaceq, Yo, ).

Ribaucour found that theorem by a different method [J. de Ma(1891), pp. 251].
We now return from that digression to equation (5)!c&in= 1/l , for £ = 0, the

X=X+

Vv,

curve tangents& n, {) along the lines of curvature of the first kind will ohef a
developable surface. Therefore, the lines of curvaturtheoffirst kind will be, at the
same time, the lines of curvature of the family of acet whose orthogonal trajectories
define the family of curves.

In order for the family of surfaces in question to bgloo a triply-orthogonal system
of surfaces, fronDupin’s theorem, the tangents to the lines of curvaturegatrery
curvep = const.g = const. must define a developable surface. One furtihelitomm 4 =
0 is necessary for that to be true. It shall nowhmmwvn that the two conditiorgs= 0, J =
0 are also sufficient. I vanishes then, from 3§ the differential formTy will possess an
integrating factor, and one can set:

To=ndw

From a remark that was made in the previous paragrapguttientso: / oz andos /
oy Will be independent of whene — & = 0, and the differential forn®, / g1 andS&, / g
will then possess integrating factors that depend uponpalydg. There will then be
equations of the form:
S1=1duy, S, =mdv.

The square of the line element in space will generalig he expression:
ds =dxX +dy’ +dZ = G2 +G 2 +T,°.
In the case = J = 0, we will then get:
ds’ =1 du’ + m dv + n dw.
The family of surfaces = const.,v = const.,w = const. then define a triply-orthogonal
system, and the given family of curves will then cehef the lines of intersection of the
surfaces = const.y = const.

Let the general expression for the square of the lieenent in terms of the
differentialsdp, dg, dr be:
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ai dp2 + 23;5 dp dq+ aoo dq2 + 2313 dp dr+ 2253 dq dr+ as; dr2.

In order to establish whetherdoes or does not vanish, we need to know only the
coefficientsais, az3, ass. We will now show that knowing all of the coeffictsa,,, will
suffice for us to decide wheth&rdoes or does not also vanish wien 0. To that end,
we shall derive a new expression dunder the assumption that 0.

The system (10) of the previous paragraph implies that:

J= ZKZ gO(Kl) =- Zkl go(Kz)a
such that:

29 = ZKZ gO(Kl) _Zkl go(Kz) .
In order to convert that equation, we employ the esgoa:

X, + X, +
K= > thl, K= —-—= thz,
Vi Vs

and first assume thét andt, have finite values. We will then find that:

ZKZ gO(Kl) _Zkz gO(K])

6
©) (-t T % 00 -X % a(x)]+ Fa(t- 9+ Gt ol 1- 1 & W}

1
iV,

From (3), &, one has:
2% %06 2 % 6Oy =f'-f

The sum on the left will then vanish wigh The quantities; andt, are the roots of
equation (7), &:

(1) Fxu@-GoEFIt+E®G)-CGaE]t+Eg(F)-Fw(E) =0,

SO.
[F 900 (G) =G tho (F)] t* + [E 30 (G) — G o (B)] t + E oo (F) —F oo (E)

+ Qo O2t[FR (@) -G (FI+Ex(F)-FgpE)}=0.

One writes that in the form:
M+Ng(t) =0,

to abbreviate. If one replaces the quartfity M with its expression that one infers from
equation (7) then it will follow that:
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A(Gt+F)
F0,(G)-Gg(P’

in which:
E F G
A=109,(B) o(F) (9.
J9o(B) 9(F) 99
Furthermore, one has:

N=[Fg(G)-Gag(F)](2t-t-t).
One then has:

A Gy+F % (t) = A Gt, +F
[FO(G)-Ga(Rl* t-t [FO(G)-Gg(Rl* t-t

Qo () =

and fore = 0, one will get:
_ A(EG-F?)
ViV,[Fo(G-Gg( AI(t- 9

in place of (6). Wherr go (G) — G o (F) vanishes, a root of (7) — e.d:,— will be
infinitely large. Now, since:

F+Gt=0,
one will have:
=S o= G%FX
1 , 2 )
JG JGAVEG-F?

That shows that fog = 0, the difference:
ZKZ go(Kl) - Zkl go(Kz)

will also vanish, and therefor2 The determinam will become:

é[e & (E) —E @ (G)] [G g0 (F) —F goo (G)],

and will then vanish in any event. As a resulg gguatiorA = 0 will be the necessary
and sufficient condition for the vanishing 8fwheng = 0. That will lead to the value of
A in the general case.

One has:

E=og’+07, Fzoom+oao, G=o02+0p2.
1 3 2 4

If follows from the system (8), Bthat:
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Qo (1) =-

Q

2

- &’ (e-9), %o () =~

=19

-0y (£-9),

=

Qo () =—=-0a (-9, Qo (0z) =-—

|

Lo (6-9) .

F|Q

Hence:
2

QO(E)__Z[UH thzj QO(F):—Z[M+MJ, Qo (G)=-2 (UZ Uzj

+
h R hh

h h
Go(E) - Egg(G)——Za(alaﬁg-zgé)[ _1j

Eg(F)- Fgo(E)-zaala-s( 1}

Fo () - Ggo(F)-zaam[l 1}

h h

h h

a1 1Y
- 5
Aw(hl hJ( °)

If A vanishes thegwill be equal tod.
One further has:

E F G
A._ 1 |0E oF oG

loar o o
\ &
( 3) °E 0°F 0°G
or? or? ox?
and

E=ai1- ais :

F:alz_ a13a'23,
A3

G=ay- 823 .
A3

A3

The connection between the determinardand the coefficients of the square of the line
element is made clear with that.

If we think of the conditions = % = 0 as being fulfilled and set

S1=1duy, GSo=mdy To=ndw

as above, then for an arbitrary functigwof p, g, r, we will have
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103 10§
AT T

10%
: O(S__G_W

The differential equations (11), Bare then equivalent to the differential equations
that Lamé presented as (14) and (15)Liacons sur les coordonées curvilignes et leurs
diverses applicationgpp. 80, 81. Lamé denoted the quantitids, h,, Ry, Rz, P1, P, by

I

ror’ r,, r,ryra, respectively.

8 9. — Cyclic families of curves.

One calls a family of curves that is composed of nothirtgecirclescyclic, following
Ribaucour’'s analysis. (Cf.Ribaucour, C. R. Acad. Sci. Paris, t. 76, pp. 478, 830, as
well as the presentation Bianchi’'s Lezioni di geometria differenziakend Darboux’s
Leconst., 1)

The most important theorem tHatbaucour presented in regard to those families of
curves says that when such a family consists of tl®gonal trajectories to a family of
surfaces, the latter will belong to a triply-orthogbsygstem of surfaces. | will give two
proofs of that theorem, the first of which, which wadlmined before (Math. Ann., Bd.
44, pp. 456), starts with a well-defined form for the anadtiepresentation of the
family of curves, while the second one employs thdiogla that were developed in7g

We can establish a doubly-infinite family of circlestbg equations:

X =Xo + R (a1 cosr + B sinr),
Y =VYo + R (a2 cosr + 5, sinr),
z=2 +R(ascosr + B sinr) .

In this, %o , Yo, z (viz., the coordinates of the surface that is describethdyenters of
the circles), as well a&&; o1, a», as ; £i, [, 55, are functions of onlp andq. a1, o, a3,
like B, B, [, are the direction cosines of two mutually-perpendiciihes. We denote
the direction cosines of the lines that are perperalicalthem byy, 4, 5. If we set:

OR 0%,
€11 = — +sinr +cos a,—,
n=g Zﬁl Yag:

OR 0%,
Cp1 = — +sinr +cos a,—,
= G SIS A 30+ cos Y O

012—21/1 +Rcosr2y1 p1+Rseryl ’30,

022—21/1 +Rcosr2y1 ql+Rseryl ’30,
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then we will have:

Xp = (a1 coOSr + B sinr) Ci1 + A Ciz, Xq = (a1 cosr + B sinr) Co1 + A Coz,
1[ oc,
=— + +
Q(IO R (alcosr :81 sirr )_I’ n—- or }
[ . 0c ac,
= —| (a,cosr + 3, sim =2 +y,—22 |,
< R_( | B )—ar Oary }

In order for the circles of the family to be orgjomal trajectories of a family of
surfacesf — f’must vanish; i.e.:

® 6 Zee, B = ¢, B, O

ar Lo o

As a calculation will show, that condition will asee the form:
A +Bcosr +Csinr =0,

in which A, B, C are independent af It can then be fulfilled identically only whex=
B=C=0;ie.:

[Z 00'12 10,31 Z 00'12 10,31] Zlgl Z I Z Zlglg_xg;j: ,
R Dol Y8 PR zyl""’lj WA WAL

op EX: Y0 q
0% 5, 00 _ 0a, ), 0R 0% _OR< 0% _
R[Zylapzylaq 20 Z &F ] apz Yaq oq=Top

One can also give the first of those equationgdha:

(3) azcu 6021+620126C22_62021a Cll_620226 Cy.
o?> or a*> a a’a 92 9

=0.

It must now be shown that the determinant:
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E F G
j=|%E O 06
or or o
0°E 0°F 0°G
ar? oar* or?

vanishes. When one recalls (1), one will have:

E=c/+c;, F=C11Ca+C2Cp2, G=c+c,},
oE oc, oc, dcy, 501
——=2c. 11492 2 lic 2
or Cu or Gz or ( 22

Z(Cl aCll + acZZj ,

( 6C21 +Cy, aaczzj _
r

As a result, one will have:

F96_goF - ZC( 26c21_ &j

or or or or

OE _0dG oc oc, oc, oc
G_ E_ 2C 22 + 2 _ 1_ 21 ,

ar or (C“ o By ey a7y j

oF oE oc, oc,
E—-F— =2c¢|¢g,—2-¢,—2
o or c(qz o j

in which one has se&t= C12Cp1—C11Co2 .

2
If one replaces the second derivat%ef— in J with:
r

sz vo. 9°Cp 00,00, 0c,0¢,
(C” 292 o & @ @

then all of the terms id that include only first derivatives of the quaiastc,s will
cancel, and it will become:
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o’ o a* a a’ a @’ 9

ac, ac, d%c, d°c d’c d%c
+ (021 arl_czz or lj(cﬂ a,zl+ Cyy a 212_ Clla, 221_ Clza 222 :

J= 4C{C(—62C11 0c,, _0°c;,0 Cor 0°c,,0 Cuy 9% c,0 Clzj

However, the right-hand side of that equation walhish as a consequence of (1) and (3).
In order to achieve a second proof of the theaiteahwe speak of, we start from the

remark that the first curvature of a curve of aicyhmily is independent of, and its

second curvature will vanish. That is expresseal @&sult of equations (2) and (3) 088

in the form of:

J__,[1 J_,[L
“ ﬁ‘g{%) r%g{a}

One now takek to be the quantity 17, in the second equation of the system (9), 8
and taked- to be the quantity 1P, in the third, and consideesto be zero. When one
recalls (4), it will then follow that:

1 1 1 1 1 1
+Bl 91(79)+79 gl(glj Hgl(gzjﬁ_ﬂ{gz(gj*_?} )

1 1 1 1 1 1 1
—|-=0,(N-Fg,| = | =—0,| =|-F — |+—=.
gZO H Png( ) 92( sz hzgz(aj |:gl( F;_j F%Z:|
If one subtracts the second of those equations fhenfirst then one will have:
1 1 1 1 1 1 1 1 1 1
5 — |- —|+=gN+—=9g(HN-—g|—=|+— g —|-F| —=+— |=0.
()%{%jg{aja%()ag*)h%(J u%(g (? 6]

In order to simplify this relation, we employ thgseem (11), &. The fourth and ninth

equations imply that:
g i_g _1 =39 1 + 1 —_19 _1+_lg _1
“R) (R RR RR) R LR B\ R
1 1 1 1
_El{go [Ej - 91(79)} +$2{ go(_%j + 92(79)}

Gio

N‘U||—\

the seventh and eighth imply that:
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_ 1(1 1} 1(1 1}
=- — ] =-—"+
hR(R B) hBUR P

and the fourth and ninth imply that:

1 (1} 1 (1}_ 1(1 1} 1(1 1} [1 1}2
e e e e g T e e By B
h (k) h™(R) hR{R B) hBUR R h b

As a result of that, the relation (5) will be ecalent to the following one:

,9[_1.{-_1.{- l+_1%
P B PR PR

however:$ vanishes wheg is equal to zero.

We prove the further theorem: If a doubly-infinfiemily of circles with constant
radius 1 /c consists of the orthogonal trajectories to a fanaf surfaces then the
individual surfaces of the latter will possess tansGaussian curvaturec:

Here, in addition to the assumption tlaat & = 0, one also has the assumption that:

such that:
ig i +_19 _l =0
R\R) BRTIR)

It then follows from the third and fourth equation(11), 87 that:

g (EJZCZ-FL
"(h h*

and it follows from the seventh and last equatiat:t
1)1_ ., 1
9 E =C +E-

Furthermore, from (11), 8, one has:
g(ij:i(_l__lj
‘() Rlh h)

(3362
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(B G

For§ = 1 /hy, the third equation in (9), Bwill become:

(2ol

However:
SRS e
“lh) ™h) (h h)ARKh hBR)
So:
1 _ ¢
hhR R

If one forms the second equation in (9Y, ®r § = 1 /h, then one will recognize that
one correspondingly has:
1 C

hhR

2
H .

However, the two quantities 1P and 1 /P, cannot vanish simultaneously without the
circles degenerating into straight lines. We then

1 2
—=-c
hh

as stated.

A ray system is given at the same time as a cjafiuly of curves. One will obtain it
when one lays a perpendicular to the plane of itebecthrough its center. The centers
then define a surface with coordinates:

(RAt+RK)RR

_y+(BATRAIRP,
RZ+ R

—,+(RU+RILRPR
R*+R’ |

R+ P’

Xo =X +

Yo )|

and the normals to the planes of the circles pssbesdirection cosines:

P«x,— Rk, /= RA,-RA B, -Ru

5,: ’ ’ - .
P12+P22 P12+P22 P12+P22

We will come back to this in §2.
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8 10. — Families of orthogonal trajectories, referred to theties of curvature of the
first kind. Normal curvature. Geodetic curvature.

One will get a family of orthogonal trajectories @mfrvesp = const.,q = const. in
such a way that one represepts, r by functions of one variableand two parametees
b that satisfy:

9,99, , 0"
Byt B+ By

Along such a trajectory, one will have, on the onedha

dx—%dt = (x @+xq jdt,
ot ot ot

and on the other hand:
dx=x1 61+ kK 6,
such that:

0Xx 0X
61 . 62 = ZK]-E:ZK:L&'
If we set:

0x 0x
zkla ZKZE

2 = o 2
D6 D
ot ot
then a; and a» will be cosines of the angles that the tangent ¢otthjectory that goes
through the pointg, g, r) will make with the tangents to the lines of curvatoféhe first
kind.
Conversely, if one thinks af, and a, as being functions gd, g, andr and seeks to
determine the corresponding family of orthogonal ttajes then one should consider
that:

=

pat Xq——/](/(10’1+/(20'2)

in which A means a proportionality factor. It then follows froms that:

op, 09 op, 09
0,—+0,—= A, O,—+0,—= mA;
Yot ot ¢ Yot Yot -
le.:
@:A010'4—0’20'2 % :/]_0-30'1*'0-10'2.
ot o0,0,-0,0, ot 0,0,-0,0,

One then gets the finite equations of the family a@fectories by integrating the
simultaneous systems:
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813(0’20'3—0’10'4)+8.23(0'30’1—0'10’ 2) _
A3

dp:dg:dr=aqvam-v» -~ +0 a2

Along with a family of orthogonal trajectories, @rs also given the family of those
orthogonal trajectories that intersect the first perpendicularly.
If we set:

Ti=;n61+m:6,, To=—- 61+ G

then the first family will be established by thdfeliential equationl, = 0, while the
second one will be established by the differerg@lationT; = 0. Now, for an arbitrary
functiong of p, g, r, one has the relations:

(dF), = o1 (B) + a2 (3), (d¥)r, =~ @20 (3) + 01 G (J),

such that, in particular:

a. a
(dS)r, = - K —tea, 1K, ‘gaz__zj’
h h,

a a
(dé),= K |-—2-¢£a, |-k, £a2+—1j.

h

For the normal curvatures of the families in questive get:

1 a’? af
T = d T d T:_l _2,
h, 2. (dé) (A9, hl+hz
1 a? at
= =— 3 (dé),, (), = T2+ 5
h 2. (d&),, (A, +hz

1 1. 1 1

g S S

h. h h h

Those relations say the same thing for familieswfes thaEuler’s theorem on the
radii of curvature of normal sections says in theory of surfaces, and implies the
theorem on the sum of the curvatures of two mugtadrpendicular normal sections.

The equation of a family of asymptotic lines viaé:

2 2
a 9 _
h h

The asymptotic lines then define two distinct figesi in general. They will be
imaginary when 1 h; hy is positive. If we assume that by/vanishes then, from the first
equation in (11), §, we will have:
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1 2
T

However,R; is the radius of the first curvature of the asyotiptlines, which coincide
with the first family of lines of curvature of thest kind here. We will then be dealing
with straight asymptotic lines when:

_2¢
g1 (8 = Pl-

Coincident asymptotic lines in a normal family valivays be straight then.

If 1/ hy hy is less than zero, so 1h{ is positive and 1 h; is negative, then the
asymptotic lines will define two real families. dHdirection cosines of the tangents to the
one are:

K h +K,4/—h

vh-h

K, hl_KZ\/__hZ  etc.
h—h,

2 etc.,

and for the other, they are:

It emerges from this that the lines of curvaturehef first kind bisect the angles that are
formed by the asymptotic lines. Those angles bélright angles whelm + h, = 0.
For the geodetic curvature of the families congdewe get:

) % - Z(dX)Tl(d)QT T, =" al(da2)T1 +a2(dal)T1 +ZK1(dK2)T1 ’

1

However:
0'1((:10'2)T1 _0'2((:167'1)Tl =01 () =92 ()
and
a, «a
Z‘,Kl(d/(z)T1 = _é +€2 )
SO:
1 a, «a
— =0 (@)~ () + = -2,
Ry R R
and correspondingly:
1 a, a
=0 (o) —Q(am) + ++=.
R, R R
The equation:
a, «a
Q2 (1) =01 (a2) ——=+—2=0
R R
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is consequently the differential equation for the geodetes of the family of curves,
while:

O (01) + 2 (a2) — =

is the differential equation for those orthogonal ectgries whose perpendicular
penetration curvedDurchdringungscurvenconsist of geodetic lines of the given family
of curves, as long they are simultaneously penetratioves of that family.

We add some remarks about that. Should the clives0, T; = 0 be, at the same
time, geodetic lines then we will have:

oo et
—= g,| arctan— |, —=-g,| arctan—= |,
R a, R, a,

g (i} g (ij =g (arctanﬂj— g ( arctana—lj
2 Rl 1 FQZ 12 az 21 az

If we now consider the first equation in (9)/8as well as the fifth one in (11), then it
will follow that:
1 - 2¢ g{arctanﬂj—ﬁ :
101 102 aZ

If £ vanishes then the family of curves must be speaciarder for it to possess two
systems of mutually-perpendicular, orthogonal titjges that consist of geodetic lines.
If £is non-zero then it will have the property in qu@sonly when the differential form:

CRCHEE S

and therefore:

R R (200,¢

is a complete differential.
From 88, (1), for the family of principal normal lines, @mhas:

m = ) a; =

SO
SO

and from 88, (3), the second curvature of the curpes const.,q = const. is determined
by the equation:

i, =-J+ go(arctanij.
o P

1

When the principal normals, as well as the binosmate geodetic lines, one will then
have:
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1 —E: 0.

PP, P

We shall now consider the curvature of the curigs 0, T, = 0 relative to the
normal surfaces{ 7, {). We get:

T

= Z(dx)Tz(df)Tl: aLaz (%_Elj + £

== 3 (X, (06), = a1 a2 (hl éj c.

The curved> = 0 will be lines of curvature of the second kind when:

or
, 1 |1 £*
a‘==% |=- =
2 4 (1_ 1}
h h
If follows further from (16), & that
1 1
._ 1. 1p P,
a’ = 2121_ 1
h h

If the quantities 1 p; and 1 /p, are real and distinct then the lines of curvature of the

second kind will define two separate families. The dip&ccosines of the tangents to
the one family are:

1 1 1 1
“h o, h o,
Ps P etc.,
11
h h
and those of the other are:
1 1 1 1
“np"n o,
Py P, , etc.
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The roots that appear here in the numerators must beniletd such that:

Jl 1 Jl 1
—-—+ | =—-—= +¢=0.
h o \h p,

For the anglep between the tangents in question, one has:

1 1
cos¢ = 1_281 . sing= %
h h hoh

The lines of curvature of the second kind possess the sagte bisectors as the lines of
curvature of the first kind and will be mutually-perpenthcwnly whens vanishes.

The curvature of the one family of asymptotic lines redatio the normal surfaceg,(
n, {) will be:

and that of the other will be:

Since the curvature in question is equal to the secondtcwe of those lines for non-
planar asymptotic lines, far= 0, one will haveEnnepers theorem, according to which
the square of the second curvature of an asymptotic line surface is equal to the
absolute value of th&aussiancurvature of the surface. (Gottinger Nachrichten froen t
year 1870, pp. 499)

We finally consider the family of curves that is adjao the family of curve3; = 0.
We put the direction cosines of its tangents intafdhe:

KB+ K B, MB+A B, Wb+ ib.

From 86, the equation:

2 (K B+ K, B)(dE), =0

will serve to determing, , £, from which it will follow that:
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One now focuses on a regular pdhof the family of curves. The last equation will
then associate every tangeat,(a,) that goes througR with a tangent£,, ) that goes
throughP and which one calls itadjoint That association is projective. All of the
tangents €n, a») will be associated with only a single tangef (5,) when:

2, 1 _ 1

=0;
hh o0,

i.e., when the basic family of curves is special.
The elements of the projectivity that correspond tondedves will be determined by

the equation:

2 2
@’ @,

i.e., they will coincide with the tangents to tisym@ptotic lines that go through
The projectivity will be an involution whes vanishes. The concept of “adjoint
tangent” will then be equivalent to the concepftaoinjugate tangent” in surface theory.
We would like to call the tangent that is adjotatthe tangentf, ) the second
adjoint of the tangentdx, a»), the one that is adjoint to the second tangefitbsithe
third adjoint to the tangentdi, @), etc. The condition for the" adjoint to coincide
with the tangentd,, a») is that:

plp2£2:co§£.
U

(Cf., Serret, Handbuch der héheren Algebr&econd edition, Bd. 2, pp. 203)

A. Vossbegan the consideration of the projectivity thaisvepoken of in his papers
on families of curves. (Math. Ann., Bd. 16, pp. E6&l Bd. 23, pp. 45)

We conclude this paragraph with the easily-prosgdations:

——Z(daTo (), = 422,

1

a,_a,
__Z(daTo(d)OTz Fl P’

Tz

T 00, (0, == @200 (@) + 0105 (@) + 2

T
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8 11. — Family of curves that relates to a second one.
Locus of centers of geodetic curvature of the lines of curvate of a ray system.

We say that a family of curve€() is relatedto a family of curves@) when every
point (x, y, z) of the latter is associated with a poirt, §, z’) of the former, and every
tangent £, 77, {) to the latter is associated with a tangefit 4, {’) to the former. That
can be expressed by the equations:

X'=x+taakm+ahk+tad,
y=ytahi+tatataos,
Z’=z+ahtap b ta {,
'=+mmtrmmitaé, N'=n+r+ah+mhtany, {={+mpn+ b+ ad.

Here,a;, ap, ap are arbitrarily-chosen functions pfq, r, while a1, a», ap are ones that
satisfy the relation:

a’+al+a; =1.

We shall characterize the quantities, <>, R1, Ry, etc., that pertain to the family of
curves C’) by a prime. The problem of calculating those quastitiéh the help of the
corresponding quantities that are true for the fantlyqan be solved completely on the
grounds of the developments that were given i% 88d7. It represents the analogue of
the problem in the theory of families of curves tRéditaucour called “geometry around a
reference surface” in the theory of surfaces. [J. dehMf (1891)].

We would like to explain the procedure, which is generglliye complicated, with
two examples, and we shall choose the first onestthé case in which the familZ ()
consists of orthogonal trajectories to the family.( Here, we must set =a; =ap = o
= 0, such that when we preserve the notations of thaopiseparagraph:

=¥, n'=(y, {=(d2,.
Since:
> (d¥)y, &1 =D (A9 &5 =0,

here, we will have:
K, =§cosf+ (d).sinS Kk, == ¢sinB+ (dX), cosp.
The following two representations are true for theedéhtialdx :

(dX), To+ (X7, T2 +X To = &, ) + &, &', +(dx); Tg.
One will then get:
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G, =sinBT,+cosBTy, &) =cosBT,-sinfBTy, T, =T;.
For an arbitrary functio, that will then yield:

(dF)r = G (), (dF)r, = 9,(S)sinB+ g, (§)cosB,
(dF)r, = 9,(S)cosf- g, §)sing.

If we apply that tof”= (dX); then it will follow that:

_(dX)TZ +i: £+K_’2
R, h R B

(dé(r):z +E: [%—S'K;jsinﬁ{s’/(ﬁ%j coss,

(dLX)T2 _Pi ( hl+g szcosﬁ+[£'Ki+KE;j sing,

Sso: 2

1 _ sin,[>’+ coys 1 _ cosfB _ sin8

PR h B R R

Sin’g+£’cos,[>’— sing cos,[a’, cospf _g'sinB= cosﬁ_ﬁ,
hi er I}z hz RI'Z sz

_cos,[a’+£ 'sin 3= sing _cosB S|n,[>’ +£'cosfi= cos,b’+ sing

n L. R h L, PR

Those equations determine the six quanti®s P, h, h,, &, and3. We emphasize
the special relations:

25’:i+i, sin ${R%_31J+ cos ${i——1J =0.

ITz T 2 Lt ITz LT].

The familyT, = 0 is then a normal family wheFll- +—1: 0. Its lines of curvature of the
Looh

first kind will be the curvep = const.g = const., and the curv@s = 0 when:

1_1
L,

I
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If one considers the orthogonal family = O, instead of the family, = 0, then one can
switchT; with T, and T, with T; everywhere, such that:

28’ :i+i.

T T

In the event that both familielg = 0 andT, = 0 are normal families, one will have, as a
consequence of (4),&:

From (7), 86, that fact shows that one is dealing with lines of atuke of the first kind.
Conversely, the two families of lines of curvature & tinst kind are or are not always
simultaneously normal families, since for the oneifjapone has:

28'=—¢€+ 9
and for the other:
2e'=¢e- 3.

If the curvesT, = 0 define a normal family then one can easily convoreeself that
there is an integrating factor for the different@irh T, . Namely, from (6), §, one has
2&e’=-cz1, and from (4), §, the vanishing o€s;; emerges from the equation:

da,, allaalz
or or

a, =0.

However, that represents the condition for the exegteof an integrating factor for the
differential form:
Ti=0a11 dp + 12 dq .

It still remains for us to determine the quantitkls R,, and$’. We have:

%= K, G(K) é: KK, 9= YK aK).
Now:
0,(S) = cosB (dg),, +sinB (dT),,,
6(3) =- sinB (d5), +cosB (d5).. .
6,(3) = (d3),

which then implies that:
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é = cos,[z’_PiTo+ (dﬁ)ro_— Siﬂ[{é_ a5 }2]
é :Sin'g_PiTojL(dﬁ)“’_jLCOSgE_ ﬁﬁ)@:l,

9 = L+(dh);.

Tl
Let the following be remarked in regard to the dboad above that:

12 Qo (011) — 11 Qo (a12) = O.
Since:

Ti=m 61+ a2 6;,
one will have:
ann=o o+ o3, Q=01 0> + @, Oy,

and as a result of equations (8);,8he condition in question will go to:

go(arctanﬂj+£—ﬁ—ala2[i——lj =0.
aZ hl h2

One next assumes that the family of curves consfdtse normals to a family of parallel
surfaces. g 1 /P, and 1 /P, will then vanish, but alsé, since one family of parallel
surfaces always belongs to a triply-orthogonalesysdf surfaces, which will also emerge
directly from the last equation in (11)7&lirectly.

Moreover, if:
1 -1
o= 1 1 “2= 11
RRTR R TR

then the tangents to the curvies= 0 will be parallel to the connecting lines oé ttenters
of geodetic curvature of the lines of curvature.
The seventh and eighth equations in (11j p®ssess the following forms here:

QHZL QH:;
\R) hR’ \R) Rh’

and the quantity’vanishes. As a result, we obtain the theorem:
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If one lays a line through any point of a surface that is parallel to tn@ecting line
from the point to the center of geodetic curvature of the linearghture that belong to
the point and one performs the same construction at all points of the esutfzat are
parallel to the surface considered then the lines that one speaks lofiefile the
tangents to a normal family of curves.

As a second example, we consider the surface of sent@urvature of a family of
surfaces. We must then takequal to zero from the outset, and we will have:

X'=x+hé, y'=y+hn z'=z+h{
&=k, n'=A, {'=n

for a family of center surfaces, moreover.
One gets the two expressions dor :

S (hy) &1+

592(“)*{1_%}/(2} Gl{f(ﬂ go(hl))+m+m T

R R
= K6 +k,6,+K,T,.
Now, let:
K, = cosy + Ky Sin Yy, K,= &sSiny— K» cosy .
It will then follow that:
%TO: Ty,
1

[1_%j62 +%TO = siny &, — coy G,,

01 (h1) &1+ g2 () G2+ [1 +go ()] To = cOY &, + siY &,

The first of these equations shows that the farofiycurves considered is a normal
family, since ify is an integrating factor offp thenu P1 / hy will be one forT,;. In the

event that 1 P; and 1 /P, vanish, from the third equation in (11)78one will have:

1 +Jo (h]_) =0,
and therefore:
% (X") =0, % () =0, Q(z)=0.

When expressed in words, that means that only eneecof curvature surface belongs to
a family of parallel surfaces.
When one considers the first and third equatiothefsystem (11), g, one finds that:
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= o

=" e - B4
GP) hz_hl{smz//Gl co¥y G, PZTO},

61 =

o Dy o o 1o o[ 3] 1]

and it follows from this that for an arbitrary funati§ ofp, g, r :

9,(3) h %,(8) h

0,(%) = 1(H)[COS¢I+E siny |+ h-h siy ,

4 - 40 o
_g@®hPR 1)]_a@®h R, 6@)R

%@ =75 ) {PZ g{ PH (h-ne

The quantities that come into question for the famf curves considered can be easily
calculated with the help of those formulas.

The angley will be given by the vanishing af or ZK; g,(k,); i.e., by the equation:

h [sing cos//j( siy co¢/j+ hy sing cogy _
o) L h R R h R B b

It further follows that:

hzsmz// h sir'|¢/+cos§£/2
h R(h-h) ga(bl R h

1_ hcosSy — h (cogy sy
h, R(h-h) g(h{ R h

i: siny
R h-h

-9,®),
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i: cosy !
R m—h+92(¢/)’
2=t {iz-gl(_lﬂ(smh OF | SWIE 4| gsing - < | B
P g R R R h ROh-H P P) |
5 =i {iz-gl(_lﬂ(sw_ OF |- SR | S scosy |2,
P a(h)|R R h R RE b B P t
___hB
=210 __g ).

np(h-ty *¥

The second family of center of curvature surfaselich are represented by the
equations:

X"=x+hy ¢§ y’=y+han, z2’=z+hy ¢
g(//: K2, A”:AZ, Z”:ﬂ2

can be treated in the same way.

One can correspondingly examine the families ofesi that are determined by the
centers of geodetic curvature of the lines of ctunaof a given family of curves. For
ray systems, those families will either be likewrsg systems or they will consist of
hyperbolas. The proof of that assertion mightraethe conclusion of this section.

We saw in 88 that the quantities 1P, and 1 /P, vanish for a ray system. As a
result, from (10), §, we have:

dé= Kl[—gwstj +K2[£61—2j :
hy h,

H;]_:—g
h

If we take:

-£6,, H2:$61—2
h,

thenH; andH, will be linear differential forms imp anddg whose coefficients depend
upon onlyp andqg. For an arbitrary functio, one gets:

1

dg),, .
hz( D,

6 () =- %(dm LR, G (B) = (), -

We then get:

%: ZKZ gl(Kl): - %sz(dKl)Hl +£zK2(dK1)H2 !
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é: ZKl 9,(k,) =~ ‘9ZK1(dK2)H1 _%Z’Q(d’(z)m '

The differential equations:
H, =0, H,=0

determine two families of curves on the unit spH&rey, () whose tangents are parallel
to the tangents to the lines of curvature of thet kind of the ray system. If we denote
their geodetic curvatures by K{ and 1 Kj then, from 8, we will have:

1 1
E: S ACLAME K_2: D IACLAN
As a result, we will get:
1.1 _ & 1_¢e_ 1
Rl hl Kl KZ , RZ Kl h2 KZ

In order to find the geometric locus of the cesit@rgeodetic curvature of the lines of
curvature of the first kind along a ray, we mustirads the type of dependency of the
guantitiesR; andR; onr in the event that the ray system is representeétidogquations:

X=X +ré Y=Yo+rn 2z=2+r/{

in whichxo, Yo, 2z are functions op andq alone.
In regard to the quantitiés andh,, we find from (12) and (14), &that:

1_ 1 Y

h pp h

The values ofy, t2, o1, pofor r = 0 shall be denoted by, t20, P10, P20, resp. We will

then have:
vy =t10 1, T2 =1t I,

PL=Po~l =P,

1_ Ty~ 1 v, r

hl (plo_r)(pzo_r) , hz (plo_r)(pzo_r)

The quantitys was defined by the equation (see pp. 34, lin@& foottom):

£ = (f-1)°
4(EG-F*)’
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It follows from the formulas on (pp. 39, line 4 from twonh) thatr means the same thing
here ad did inloc. cit, namely:
f—f=fo—f,,

EG-F’=HWY -d? (o10—r)? (020—1)*
If we then set:
5,_ f0 B f(;

" 2JHY -2

thene will be independent af, and it will follow that:

!

&

£= .
(,010 —I’)(,OZO—I’)
In the case considered, one has:

agz=1, 9o (8) =

98
or’

and expressions that were exhibited forh,/1 / h, , ande will satisfy the third, sixth,
and last differential equation, resp., of the sys(&1), 87.
We now get:

! !

r=t, & £ I
1 K, K, 1 K, K,

Rl (plo_r)(pzo_r) , Rz (plo_r)(pzo_r)

Along one and the same ray, the centers of geodeticature for the lines of
curvature of the first kind will generally lie algrtwo hyperbolas thenTheir equations
will then possess the common discriminant:

Elut_f 1 1
2 2 '
4| KK, K? K;

The hyperbolas will then be lines wheh= 0 ; i.e., when the ray system is a normal

system or when:
1=_¢ [LK_j
G T\ Ky Ky

That relation can be easily put into a geometicaliuitive form. In 810, we found that
the anglep between the two focal planes had the equation:

-2¢
1
h,

Cos¢ =

=g Y
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When we employ the expressions that were given abavé fd, 1 /hy, andg, it will
take the form:

Ccos¢ = 2¢ :
Yo~ Ty
If we take:
Kl
—L=tan
K 7

2

then ¢ will mean the angle that the connecting line of¢haters of geodetic curvature of
the spherical curved; = 0 andH; = 0 makes with the spherical tangekt, (11, 14), and
the relation in question will be equivalent to tbBowing one:

cosg =sin 2y.

In order to find the locus of the centers of gemdeurvature of the lines of curvature
of the second kind along a ray, one notes thatteouéll), 85 must be written in the
form:

OX0==P10kK3 S~ Q0K S
here, such that:
OX=0%+1rdé=(—-p10) 3+ ([~ 0 K2 S.
If one then takes:

Ti=0C-p00 S, To=0—-p0 S

then:
d d
(dF);, = 4% (dF)y, = 5,
= 0Op r= P

will be the derivatives of the functio§ with respect to arc-length of the lines of
curvature of the second kind.

We denote the geodetic curvatures of the cufges 0, T, =0, T, =0, T/ =0, by
1/R;, 1 /R4, 1/R,, 1/R,, respectively, and likewise those of the sphercaesS; = 0,
S=0,S =0,§ =0 will be denoted by 1K, 1 /K4, 1/K;, 1/K;, resp. The equation
that was found in 80:

1_1
sin¢5:—’il 'iz,
hoh

in conjunction with the one that is true for ghbabove, will imply that:

2 _ 2¢
i _i' Pio = P2 ,
P P

cotg=-
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and will yield the following expressions fé&randB:

A= L—L B= i—L
Ké (1010_1020)K3, K;, (1010_1020)K4
One now gets:
1
— =) Ky (dky), =
Rs. Z v (I’ _plO)K
— K -
Z ( 4)T2 (I’ _pzo)K

The locus of centers of geodetic curvature of ithes|of curvature of the second kind
along a ray will then be defined by two lines tgatthrough the focal points.

It further arises that:

Cosp ks lks) —D K [Kks), _ cotg . A

1 :
o _ZKs (dK3)T1'

R; S|n¢ ( _plo)Ka r_:020,
IS (e, = RO 0PI K R), B, cotg

R; S|n¢ r=p0p (I’ _,020)K 4

Along a ray, the locus of centers of geodetic cumea of those orthogonal
trajectories of the ray system that are, at the s@ime, perpendicular penetrating curves
of the lines of curvature of the second kind Wwidirt consist of two hyperbolas.

The first of them, which corresponds to the curVgs= 0, will degenerate into a line for

A = 0, while the second one will degenerate intma forB = 0.
If one gives the latter equations the form:

A 1 cotp B 1 cotyp

r—pzozi % , I'= P th R4

then that will show that foA = B = 0, the lines of curvature of the second kirkg their
spherical images (8), will possess the property that the tangenti¢ocurvesl, = 0 or

T, = 0 are perpendicular to the connecting linesefdenters of geodetic curvature of the
curvesT; = 0 andT, =0 orT, =0 andT, =0.
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8 12. — Transformations that relate to a family of curves.

Just as we related a family of curves to a secondrotie previous paragraphs, we
can also relate a single functi@rof p, g, r orx, y, z, and a system of such functions to a

family of curves. The problem then arises of expressingéhigatives of§ with respect
top, q,r orx,y, zin terms of the invariant operatiogs (%), 92 (&), 9o ().
One gets the first of those transformations inftllewing way:
One has:
dF=h (F) G1+ R ) G2+ () To.
Since, from &:
To = (a12dp + a3 dq + agz dr),
and from (7), &:
Gi1=01dp+xdg G2=cdp+ adq,
that will make:

6—3=01 0,(F) + 0, 9,(F) + et 94(3),

op Jas,

) B =, 03)+ 0. 0,(3) + -2 9(3),

aq \/g
B = 2 94(3).

In order to give an application of that transformatiwe, consider the surfacg( yo,
Z) that was derived at the conclusion 0 §rom a cyclic family of curves under the
assumption that the family of circles was a norraaiify, and the radii to the circles kept
the constant value 1c/(). We will then have:
L +&j :
R

_ 1(k K, _ 1(A A, _ 1
X=X+ —|—=+—=1, yo—y+?—+— , H=2+—
We next determine the direction cosines of the ntsrmeeour surface. Since:

S0 R

c\hR E R R c

Jo (X0) =do (Yo) =do () = O,

we will have:
Y, 0y,
op 9q| _ 10G:(Y%) G(¥%)
0z, 0% 0.(z) 6(z)|
dp 09

We found in ® that:

() Cf.,Bianchi, Lezioni di Geometria differenzialpp. 322, no. 186.
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go[ij:(;2+£, go[ijzcz+i.
h h h, h,

As a result of this, one will get from the thifdurth, ninth, and sixth equations in the
system (11), § that:

R —
%57 7h

95

and

g (Ye) 9 Vo)
0,(z) 9.(2)

_[1_ )k _k
“(h n)IR B)

The normal to the surface at the poim, (Yo, Z) is then, at the same time,
perpendicular to the plane of the circle whose eehts the coordinates, yo, 0. Its

direction cosines then coincide wifh) 7', {’ (8 9). In regard to the latter, one has:
n_ 1 (kK K, ¢ n_ LKk K, ¢
=—— | L1+ 242 | = | L1+ 2+,
@ c%(e P hj ik ce(e R

It follows from the proportionalities:

01 (%) 91 (Yo) 191 () =01 (&)1 (7”) 191 (),

G2 (%0) 1 G2 (Yo) 1 G2 (20) =92(¢") 102 (7) 192 (")

that the operationg: () andg () imply differentiations in the directions of thiees of
curvature of the surfaceq( Yo, zp). If one then defines the two operatiogS§) and
0, (3) by the equations:

c’P c’P,

——0@) 6E)=—00),
fcz+i2 /cz+i2
h h,

9, (%)=
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then g, (%), 9;(Y,), 9;(7) will be the direction cosines of the tangents tsthlines of
curvature whose arc-length jsc? +% Gc?_llD and g, (%), 9, (Y,), 9,(z) will be the
1

direction cosines of the tangents to those linescarfvature whose arc-length is
2+ =0
h' c*R
That implies that the radius of curvatureof the first line of curvature satisfies:
1 , , cPk
— ==2,9(%) 4() = —*,
) 2.9 P,

and the radius of curvatum of the second satisfies:
1 , , ch

—_ :_Zgz(xo) glz(g) =-—2.
3 R

Therefore, the surfacew( Yo, z0) possesses a mean curvaturecéfﬂ—
2

0[O

j, but

The radii of geodetic curvature of the lines ofvature, which we would like to
denote byR and R,, are also easy to calculate. In order to do thas, simplest to

employ the relations:

. H i[_l__lj g,H: —_1(;__1j
o) Rlo p,) "o,) Rl p,)

which are true because of the first two equationd i), 87, and get:

i:i(i_ij i:i[i_ij
R 1R P/ R 1R R

c*+ c*+

b’ h’

constant, negative Gaussian curvatupd. —

In order to express the partial derivatives otiaction§ with respect tag, y, z in
terms of the operatiorgs, (§), we apply the conversions (1) to the system:

35 _ 05 0x 95 dy , 05 07
op O0xop dyop 0z0f
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0§ _ 05 0x 0§ dy 0§ 02

aq axaq 6y6q dzoc

35 _ 35 dx 05 dy , 35 0z
or o0xor odyor o0zor’

and obtain:
) NN ] ) ]
6 63Xk, |[+0 0.3 -Y Lk, +j‘% 0®)-Y 3¢ | =0,
) NN ] ) ]
AEIOERLVALED g@—Z%xZ +j‘;i 90(3)—23—?(5 =0,

90(3)—23—55 = 0.

The first two of these equations give:

91(8:) Z_K O

gz(g) Z_K =

as a consequence of the last one.
One will then have the transformation equations:

0

a—f = K, 0,(3) + K, 0,(3) + € 943),
5
oy
[
0z

2) = A 0,(8) + 4, 9,(3) +17 94(3),

= ,Ul gl(g) + :uz gz(g) + Z go(g)

Everynth derivative ofF will be ann-fold linear form of the nine direction cosings x,

I

We apply the system (2) in order to transformlthené differential parameters. For
the first differential parameter, we get:

2y = (08 (08 ,(08)_
@3) AX(3) —[ axj +[ ayj ( azj 0,3+ 6,(3)° + B(3),

and for the second one:
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0 0 0
£.(8) = x§ c’)§ c’)zf

(4)

1 1 1 1
= 0,4(8) + 9,5(F) *+ 9ooS) - gl(g)[€+3j_ 2(3)[§ +—Pj— g&&)(—g +_I‘1J

If one would like to make the partial derivatives§ with respect tq, g, r more

evident in these conversions then it would simplesbne to appeal to the abbreviations
that were introduced in3:

5 = 0% _a; 0% .= 0% _a,, 0%
"7 ap asgar’ " oq a,or’
with which, one will have:
g,5 —0,5 -0,5.t0, 3§
gl(&):M, gz(g):w
0,0,—-0,0, 0,0,-0,0,

One then has the following representation for tte differential parameter:

®) A(S) =

EG- F? a, '

In order to arrive at a corresponding statementtfe second differential parameter,
we set, for the moment:

Ao G8-FS,  __E§-F3,
o ’ o ’

SO:
A=00 S — 3% Q) B=0i3@)-a&d @)
and

a®=2a+28 @ =2a+%B.
o o o o
It now follows that:

91 () + 922 () = A{g{%} 9{%}} B{Q(%}f ge(%j}%( B+ B).

However [cf., (8), ¥]:

g[%}g(%j = L{0(0y-0.) +0{0, -0} -—[% %j
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g[%}g[%j = H0(04-0,) +0(0,,-0,) -—[% %j

The desired result then reads:

8,8) = —— [GS"_F{‘*} —[E&*—Fi”}
JEG-F? || J EG- F EG- P ),
_9:.@3) _9,(3)

R )

(6)

1
03 +_+oog
g()[@ rlj@l()

In order to apply equation (3), we shall use the methatdwas developed to prove a
theorem that goes back Wéeingarten on the condition for a family of surfaces to belong
to a triply-orthogonal system of surfaces. (J. heeangew. Math., Bd. 83, pp. 4) Let
0, and let denote an integrating factor for the differential form:

a3 dp+aysdq+agsdr,
such that:

M (agz dp + ap3 dq + agz dr) = dit,
t=f(p,q,r).

Now, if § is a function op, g, r and one imagines replacingvith its expression in terms
of p, g, t, then the complete derivative ®iwith respect t (g, resp.) will be represented
in terms of§, (Sq, resp.), since:

dr = i—gdp—% dq,
M3z 8g3 Qg3
R . . 0F
and the derivative gf with respect will become —.
M8, OF

Since the complete derivativestafith respect tg andq vanish,g: (t) andg; (t) will
also be zero, and the equation for the fiené differential parameter dfwill become:

(2 (2] (2] o=
2 o(2) (2

If we set:

then that will imply that:
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\/_3_

as3
It follows from the differential equations that anaet for 1 :

Opay,; _ OHay, Opay,; _ 08, Opay; _ M8,

aq op or op or aq
that
0a,; _0Oagy 0ay; _Oas,
or 0 or
(logpp=-2—P  (ogp=-2 %
3 3

and if one recalls (8), &

'U|I—‘

1

(7) g,(logu a;) = R g,(log 14/ as;)
1

such that one further has:

U

0./d)=- =, 0,(Jay)=-

Weingarten's theorem says that the expression:

a33 a’33
o0X d,7+ 0z o«

is a complete differential along any surfaceconst., so the first equation in (9)7 §vill
be true when the family of surfaces const. belongs to a triply-orthogonal system.
If ¢ is a function of, y, z then under an application of our transformatiomialas,

the differential form:

09 ., 00  0¢

L déf+—L +

0x ¢ oy 7 0z «
will go to:

_9@)6,_ 9,6,

h h,

Should the first of equations (9), Bbe true for the latter differential form, then one

would need to have:
_ 9@, 94(9) _ _ 9(9) , 9,(¢)
hy h, Rh RAR

or:
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12 (9) +—92F\52¢) =0

Wheng =,/ a,, , the last equation will be replaced with the faling one:

ol s
gzpl

however, because of the last equation of the syElémn 87 :

:O;

1B H

J=0,
which provesNeingarten’s theorem.
One obtains a known theorem on parallel surfawas €quations (7). & (X, y, 2) =

t is the equation of a family of surfaces théent will depend upon only when the
complete derivatives)\ t), and Q1 t)q vanish. However, that comes from the vanishing
of g1 (A1t) andg; (A1 t); i.e., from (7), the quantities 1Pf and 1 /P, are zero. As a result
of that, the orthogonal trajectories of the fanafysurfaces define a ray system, and the
family itself will consist of parallel surfaces.

An application of equation (4) will then yield tiselution to the following problem:
Discover the conditions under which the family afves will consist of the orthogonal
trajectories of an isothermal family of surfacesewk = 0. In the stated case:

A, (t)
AL (t)

A=

depends upon only so the complete derivativég andAq will vanish, or what amounts
to the same thingy; (A) andg. (A) will.
Now, from (4), one has:

Az(t)=go(ﬂ aga)—ﬂ as{%+éj,

SO:

1 1 1
= ——| g, (logu ————}
e loonm)
The equations:

00 (A=0, gA)=0
assume the form:

- gl(logﬂ@){go(logﬂ@) } 0o 1004 a) - ( j (Elj =0,
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_QZ(W@){%(W@) }goz(mgﬂ@) U {_é)o

If one considers (9) and (11),78hen the last two equations will go to:
g ij_g(_lj:_i+i(_1__l W2
(R) "lh)  hR R{h h) B

g ij_g H -
(R) Tk

The essence of that result consists of the factthigatonditions that were found for the
existence of the integrating factor did not contaimnywhere, while it would not be

possible to construch if one did not know such a factor. One gets the vaiig
expression for the second curvature of the orthogoagictories of an isothermal family

of surfaces:
1(11}1(11}(11}1
=g, —Ft—|—-=g| —F+— [+ —+— .
R~h h) B (h h h h) RRB

If the family consists of nothing but minimal surfadésn the trajectories in question
will be plane curves.

el

+i(_1__1 3
R R(h h) B




PART THREE

Doubly-infinite families of curves defined
by differential equations.

8 13. — Normal family. Special family. Orthogonal trajectories ad the most
distinguished types of them.

We now turn to the case in which a family of curveda&dined by differential
equations of the form:
dx:dy:dz=¢:n:¢,
in which:
52 + ,72 + ZZ — 1’

as before, whil&, 1, { mean functions of, y, z
The family of curves considered will banarmal familywhen it is possible to convert
the expression:

fdx+ndy+ {dz

into the differential of a function af, y, z by multiplying by a suitable factor. As is
known, the necessary condition for that reads:

98 _ 0N, p98 991, (91 _9¢ )
@ ‘{ay azjﬂ{az 6xj+z[6x ayj 0

The left-hand side of that equation must be proportiomahe quantitys. In order to
determine the proportionality factor, one notes thamft2), 812 and (10), & :

9 M _yesike
oy 0z R

The desired proportionality factor is then equal to 2.
When one employs the notations:

¢ _ o< _ 9¢ _ o7 _
xSy e R et
(2) e =3(L- ), &=1(&-4), &a=1(m-4&),

it will follow that:
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(3) e étenteld.

As in 86, we understandy, by, ¢; or ap, by, ¢; to mean the direction cosines of the
principal normals or binormals to the curves of theilfa@mnd understangb and p’ to
mean the radii of their first or second curvature.

One will then get from the firgtrenet formula that:

§§t6n+4:{ =2(e,4 — &),

(4) = é+n,n+n,d =2(€;¢-¢ed),

DO D|E |

¢+ {,n+¢,¢ =2(e] — &¢).
The first curvature then satisfies the equation:

1 2 2 2 2
(5) ?=4(el +e2+ g -¢£?).

One will be dealing with a ray system when:
£=¢e’+e’+¢ o e:e:e=¢:n:4,
and the ray system will consist of normals to dax@ when:
e=e=6=0,
or in other words, when the expression:

fdx+ndy+ {dz
is a complete differential.
The theorem that was quoted on pp. 101 regardangllpl surfaces can be put into a
form that has many uses with the help of that tesliila family of surfaces is given by
the equation:

S Xy, 2=t
then one will have:
0% 0% 0F
Z: ﬂ

_ox _ oy
é n ﬁ’ ﬁ’

() ()5 e
0x ay 0z

in which:

=)
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However:

etc.

One will then be dealing with a family of parallirfaces when L is constant or
when:
oL dL odL _ o0F 0% . 0F
0x 0y 0z O0x 0y 0z
If we take:
=na-J{h
then we will get:

(%) a=20(-cé+e), L=20(-€n+e), c=2p(-€{+e),

and we will get the following equation for the sedaurvature:

We now move on to a consideration of the orthofitnagectories of the family of
curves. Ifu, v, w mean three functions &fy, zthen the differential equations:

dx:dy:dz=u:v:w
will determine a family of orthogonal trajectoriben we have:
fdx+ndy+dz=0
identically. The differential equations shall lzedsto befound in normal fornwhen:
U+ VvV +wW =1

The given family of curves ispecialwhen a system of functions v, w can be
determined from the property that when one advammlesg any corresponding
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orthogonal trajectory, the direction of the tangefit/{, {) does not change . The
systemu, v, w must then satisfy the relations:

Su+tébv+&w =0,
mu+mv+nsw=0,
Qu+Hv+Gw =0,
fu+tév+<Ew =0.
If we take:
§ & & &
n 1, s 1
G4 ¢, ¢
s n ¢ 0

) A=

then the possibility of the coexistence of the previootations will emerge from the
vanishing of the determinant. Namely, if we Ag} denote the adjoint of the element of
A that is in thew™ column and the’™ row then we will have:

EA=Da, NA=Doa, {A=Dza.

However, the equations:
DN1a=D24=N34=0

imply the necessary and sufficient condition for éixéstence of a systemv, w with the
property in question.

The normal planes to the curves of a special fahdfe only a doubly-infinite
manifold, and thus envelop a surface. That will folloishwhe help of a remark Byoss
(Math. Ann., Bd. 23, pp. 48) about the vanishingphamely:

If one takes:

m=-({x+ny+dJ2
then

¢

a=-, ,3: Q, y=-=
m m m

will be theHessiancoordinates of the normal planes. Moreover, if:

m,=—X&+ymn+zd)
then the functional determinahbf the quantitiesr, 5, ywill take the form:
Em-Em+E L,mEm+én & mé mréd

—| mm-nm+&n  n,m-n m+n* o, mn mnd
{m=-¢m+&¢ {,m-¢ m+nl ¢, m{ m{?
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However, one has:

Em=-&Em+E* E,m-Em+én &, mé méd €
A= L mm=nm+én n,men mEnt o ongmwen mend 0
m | ¢m-(m+&l {,m¢ m+nd {,mi ml* ¢
0

¢ n ¢

If one adds the first row in this, multiplied By m, the second one, multiplied lyy/ m,
and the third one, multiplied k®/ m, to the fourth row then that will yield:

A=-mtJ.

As in 86, we now focus on the coordinate lines and derivativéls igspect to their
arc-lengths. The differential equations:

dx:dy:dz=u;:vi:w,
dx:dy:dz=u: vz W,

which are assumed to be in normal form, will determiwe families of orthogonal
trajectories, which might intersect with an anglegpihen:

Sm+tnpvu+t{wi=w+nwvw+dw=0.
If we take:
u, = —ul_L.JZCOw, = ——ulcgs¢+u2’ etc.
sing sing
then the differential equations:
dx:dy:dz=u:v:w,
dx:dy:dz=u,: V,: W,

will determine those orthogonal trajectories of taenily of curves that penetrate the
previous two families of curves at right anglebwé now set:

dx=u T1+uw T+ T
then one will have:

_ Uy dx+ \, dy Wod:
Tl - . ’
sing

_updx+ v dy+ Wod:
T2 - . ’
sing

To=¢dx+ ndy+ {dz
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and the derivatives of a functighwith respect to the arc-lengths of the curVgs 0, T;
= 0 will take the form:

0 0 0
(dS)le ula_§+vla_§+ V\{a_gz,

0 0 0
(dS)Tzz uza_§+vza_§+ V\éa_gz

We now connect this with the determination of the wiggtished types of orthogonal
trajectories that emerged ir6§
From the above, the differential equations of the pralmormals and binormals are:

dx:dy:dz=e{-e&n:esé-elen-ef,
dx:dy:dz=¢é-e . en—-e:{-6;.

In (7), 86, we found the following condition for the lines of cunva of the first
Kind:

cosg=0, Y (dX)(dé); +> (dY, (&), =0.
When one makes use of the notations:
ann=+¢, axn=1p, as3= (3,
a2 =3 (&1 + m), a13=3(&+ 4), a =1 (m+ ),
the second of those conditions will assume the form:
Up (811 Uy + &2 Vi + 833 Wy) + Vo (Bu2 Up + @pp Vi + @3 Wi) +Wo (By3Up + A3 Vp + agzWy) = 0.

Since one has:
U U +Vovi +Wowy =0, wé+tvon+w =0,

in addition, the two systems of values, ¢, w) in question will be defined by the
equations:

@®) { (a u+a,vt a,W w¢ y+(a v g, ¥ g, W o )

+(az Ut avt+ a,W(§ w77 =0,
fu+nv+w=0, v¥+V+w=1.
The lines of curvature of the second kind are then dayethe condition:

2= Y (@9 (), =0

or
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U(Gw+bSwv+EwW)+ Vi (mw+mvi+tmw) +wW(Gw+ow+Gw) =0.
If one appends the relations:
WS+V7+WE=0, wu+V v+ ww=0
to the first of those conditions then the desired dedigiquation will take the form:

) { (GLU+ S VHEWEIT W= Y+ (7, Uk, Ve, WS WS W
(fLu+{,v+ W v=7 9 =0.

The asymptotic lines will be determined by the condition:

== Y (AW () =0

H—1_'T|H

That will yield:
(10) a11u2+a22v2+a33wz+2a12uv+ 2a3UwW+ 2a3vw=0.

Finally, the quantity:
1
g = z (dX)Tl’ ( dX)le

1

will vanish for geodetic lines. That implies thetekrmining equations far, v, w :

-9 W@ w4 (7 e g BV DY Y
ox o9y 0z oX 0y 02

(11)
+(év-nu) u(’)—W+vc’)—W+Wa—W =0.
ox oy 0z

The family of orthogonal trajectories that is andfdo the family that is defined by the
differential equations:
dx dy:dz=u:v:w
is determined by the system:

dx:dy: dz=(nd,={n) w(nd,={n,) w(ni,={n) w
(12) ((&E-EQDUH({E,-EL)vH({n,—Ed ) we
(5/71—/751)U+(<(/72—/7<(2)V+(<(/73—/753)W
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8 14. — Isotropic families of curves. The quantitiels, hy, o1, o, t1, t2 .
A way of determining the lines of curvature of the first kind.

The normal curvature of an orthogonal trajectory essss the expression:

(1)

=—(a11u2+a22\/2+a33V\/2+ 2a2UV+ 2a3UuwW+ 2a22VV\b .

>

We next seek the condition for that expression tantdependent od, v, w; i.e., the
condition for an isotropic family of curves. One ahbt it most simply by eliminating

one of the quantities, v, w— sayw. If one multiplies 1 h by ¢? and divides by’ (u? +
V2 +wA) then that will yield:

= - U(a,{*-2a,d{+a ) +2uva,d’+ afn- and- af{)+ M ad’-2 apl+ ay®).
U (E2+ Y +2uvén+ VV(n*+{?)

>

If A denotes a proportionality factor then the case istiue will occur when:

E2+P=Q(an*+aé’-2a3€Q),
7P+ n?=A(an (P +ags 2 - 2ax 1 ),
én :/1(8-12(2"'8335/7—813/7(—82355)-

After the last of these equations is multiplied b§n2and when one considers the
previous two, that will imply that:

28°n° =2 RQas N P+ 2as 2 N2+ N> (E2+ ) —n? A (aw {* + ags &9)
+E2({P+ 07— (e P +ass &),
or
/72+<(2:/1(8-11/72"'612252—28125/7)-
If now follows by addition that:

2=A{an ({®+n) +an(E2+ %) +as3(E2+nd) -2anén-2asE{-2ann .

The expression in brackets admits a significant sfrogtion. One has:

8¢+ ANt el =5(E+EN+ L) = P

a
5’
(2) auf+a22/7+a235=%(/715+/72f7+/73()=%,

8, &+ ay + a335=%(515+52/7+53():%,

and therefore:
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2 =A(aq1 +ap2 + agy).

We then find the conditions for the case that welspéa the form:

(E2-¢Pa,+(E?+{Ha,+((*-¢&) a,+4a.é{ =0,
(3) (2+n®ay+(° =% a,+({*-n? au+daqy{ =0,
(&2 -n?)a,+(*-&E%a,+(*+E&?) agt4a,nE=0.

Each of these equations is a consequence ofhke wto.

If one would like to use those conditions to shitmat the families of curves whose
normals define a line complex of degree one argap& then one should consider that
here one has:

_a+tyy-fz _btaz-yx _Ct+px-ay
é N 7 N , 4 — N

in whicha, b, ¢, a, 5, ymean constants. One finds that:
N& =< (yn—-pB9), N&=y-4$(Sy-ad, Né&=-B-§(an-pB9),
Nm==y-n(B{-yn), Nm=n(ad-yi, Nms=a-n(an-p94),
Na=p-{(BJ—-an), NG=-a-{(yy-aq), NG={(Bs-arn).

One recognizes the existence of equations (3)tiwételp of those formulas. Moreover,
since:

elzz‘—;[mf(a&ﬁmym, ez:%[ﬁ+/7(af+ﬁ/7+m],

& = %[w C(aé+Bn+yd),

one will have:
_as+pBn+y{ __aatbftcy

&=
N N2

One will then have a normal family only when theelicomplex is special.

We exclude the possibility of equations (3) beinge and ask what the largest and
smallest values of 1 A would be. Ifm andn mean two temporarily-undetermined
functions then the partial derivatives with resgeat, v, w of the expression:

A P +apn VP +agaW+ 2aUV+ 283V W+ 283U W+ 2m (Eu+ v+ W)
+n (U2 + V2 +wW — 1)

must be set to zero. In that way, the systemanigle:
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8, U+ @, V+ g, Wk nE+ N0,

(2) a,Uta, vt a; Wk mp+ nw0,
a, U+ a, v+ a, w m’ + nwO0,

which gives the relation:
futnv+{w=0.

Equation (8) of the previous paragraph shows that the valugsw that appear here

represent the direction cosines of the tangents tingee of curvature of the first kind.
In order to see the meaning of the quantifyne should consider that:

1k, K
a + a + a = — = | 142 ,
11ét+tapntasd{=el-en Z(F’l sz

1(A A
a + + = — :__1+_2,
pé+tapN+taz{=ai-ead Z[H sz

N

1
a135+a23/7+a33( :e]-,?_eZg:E( l+&j.

el
U

One will then have:

1
m=- —
2R
for u = k4, etc., and:
1
m=- —
2R,

for u= k2, etc. The quantitg has the two values Ih{ and 1 h, . They are the roots of
the equation:

1
ay, + E 3, A3 5

1
a5 a'zz+_ A3 ni_ 0.

(3) h =

A3 Q3 aaa'*'ﬁ Z

The determinant:
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a; a, a; ¢
G, 8y 8y /]
A; By Ay ¢
¢ n ¢ 0

shall be denoted blp, and the adjoints of its elements Dy, , in which i gives the
column andv gives the row. In place of (3), one will then get:

(4) 1, 4440 5o

h? h
The connection between the determindhtndA is obtained as follows: One has:
ap=&tes=m—e3, az=rmte=4L—e, az=(te=&-e.

Thus:
3 $te §;me &
D= h—8 1, ns+¢6 17 .
¢ te {,—§ {3 ¢
'3 n ¢ 0

If one denotes the adjoints of the first three eet®m of the last column of this
determinant byA, B, C, for the moment, then one will see tlBaemerges from andC
emerges fronB by a simultaneous cyclic permutation of the symkplg, ¢, and the
numbers 1, 2, 3. However, one has:

&, & €
-A=\n, n, n|+{(ab&+rem+tesd)-—nEet&+emtresd) e &,
¢ (G ¢

such that:
D=A+¢g2

We have denoted the two values oftithat yield the points at which the tangefjt (
will be cut by a neighboring onef ¢ o) by 1 /o and 1 /o, . In order to determine
them, we can appeal to the fact that here:

D ox(na-¢ ) =0 and > §ox =0
or
0X:0y:02=0€&:0n:04.
If we take:
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then the values df that are compatible with these equations will coincidé ymi and ..
For the corresponding quantitiesv, w, one then has:

(@i‘*‘%j u+év+S&Gw =0,
1
1
ZlU+ZSV+(Z3+EjW =0.

They satisfy equation (9), 83 and are the direction cosines of the tangentisddinnes of
curvature of the second kind. The quantitiegpldnd 1 /o, are roots of the equation:

1
§(1+E 52 53
1
/71 /72+E /73 =0
1
+ =
¢, ¢, {5 -
or
iz+§(1+/72+53+§(1 g(2 +§(1 53 +/72 75 =0.
h h n 1, Zl Z3 Zz Zs

In regard to the conversion of the last term irs thgquation, one remarks that with the
help of the relations:

$Svtnm+44=0,
A14 can be brought into the form:

—{Em-m+rmG-mo+tEE-4E).

However, since:
EA=N14,

the equation for the determination@fand, will be:

1.6+n7,+¢
5 Bl ) 2 3
(5) 2 ™
We found the expression:

-A=0.

D oxo&
2%

t=-
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for the abscissa of the shortest distance between the neighboring tang§rand ¢ +

o). We assume that the family of curves is a geramalsuch thaf is non-zero, and
ask what the largest and smallest valuesmight be. We take:

a=é&u+bv+&w,
b=mu+mv+nw,
C=4u+ov+Bw.
Since:
futnv+{w=0,
it will follow conversely that:

1
u :Z(An a+l, b+A, o,

1
(6) V:Z(AH a+l,,b+A, 0,

W:%(AB ath,b+A ;0.

If one then sets:
3 By +Ayy) = by =byy
then one will have:
_b,a’+b,F+b,é+2h,ar2 hae2 b b

(7) t= A&+ + Q)

In order to determine the distinguished valdgesandt, , we set the derivatives with
respect ta, b, c of the expression:

—-tA+2m(fa+nb+ {0

equal to zero, and when we further take:

a®+b*+c’=s,
we will get:
b,a+b,b+ h,cte A+ m§=0,
(8) b,a+b, b+ b, ctr M+ mg =0,
b,a+b,b+ b,ctt A+ mg =0,

which is added to the equation:
fa+tnb+{c=0.

The values in question efthen satisfy the relation:
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b, +tA b,, by, '3
by, b,+tA by, n
by, by, b+ttA {
'3 n 4 0

which is quadratic, the factor efA? is — 1, and that of A is:

= (b +boo+bis) + (1 é+bion+bizd) + n(biaé+ b n+br3d)
+{(bizé+bzn+bazl),

while the absolute value has the form:

b, b, b ¢
b, b, by 7
by by by ¢
¢ n ¢ 0

In order to convert those coefficients, we first aekthat:
b1 = 2823/7(—8-22(2—833/72, bio=-—auzsn{+azsné —8-2355‘*6112(2,
by, = 28135/7—83352—811(2, bpz=—anné{+and —6113/75‘*612352,

b33:2812/7(—811/72—82252, b13:—8-23/7<(+8-22(<(—3-12/7(‘*6113/72-

If we now set:
a =a;; +axy t+aszz ,
m=anétanntad,
m=appé+apnn+taxd,
s =aizé+axnn)t+and
then it will follow that:
aaé+an+azd=0,

and
b11:0'(52—1)—250'1+811, bo=nd{a-na-¢ar+a,
bo=a(n®-1)-2na+ax, bz=nda-{a—nas+as,
b33:a(52—1)—2503+a33, biz={fa-¢az—{an+as.

That shows that:
b1+ +bss=—a, biné+bpn+bss{=0 v=1,23),

such that the coefficient ofA will be equal toa .
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The absolute value will become:

a,-a 3, A3 '3
a5 aQ,—a A3 n

=D
A3 A3 au—a ¢
$ n 4 0
after a simple conversion.
The defining equation fan, andt, then has the form:
(9) N —agrA-D=0.
As in Part Two, (4), (5), and (9) will imply that:
i-}-_l: i+_1, i: 1 —52, t]_:M, = M
h h o p, hh pp h, hy

One gets the following equation for the values,dd, c that satisfy the system (8):

(10) { (bya+bh,b+th, 97 ¢ D+( B & b b b )X as )

+(0a+ b, b+ b, 96 b-7 2=0.

If one takes:
am+bom+caozs=a’
then that will imply that:

bipat+tbpb+bisc=—aga-¢éa’ +taas+bas+cas,
bioa+bxb+bxc=—ab-na’+aaz+baz+cas,
biza+bysb+bssc=—ac-{a’ +aasz+b as+cCas.

One will then get:

1) { (a,a+ta,b+a, 97 ¢ D+(a & 3, b 3 ) af )
+(aza+ ay, b+ a; 9(¢ b-7 =0,
in place of (10).

As a consequence of (8)18, the system of values b, c that are established in that
way will be proportional to the direction cosindstlte tangents to the lines of curvature
of the first type. We denote them &y b’, ¢/, anda’, b”, ¢". Now, according to (6), the
system of valuea’, b’, ¢’ will determine a shift of the poink,(y, 2) for which one has:

OX:0y:.:0z=Uu":v' W’
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That will determine a tangent that is close to thgean ¢ 77, (). The direction cosines
of the shortest distance between the two tangenizrapertional to the quantities:

nc'=¢b, {a'-éc, éb'—-na,

or the quantities”, b", ¢, from (11). The shift that corresponds to the vahie®", c”
for which:

OX:0y:o0z=Uu" V' :w'

likewise determines a shortest distance between twghipeiing tangents whose
direction cosines are proportional to the valaés’, ¢’ In that way, the two shortest
distances in question prove to be parallel to the tangerttse lines of curvature of the
first kind.

To conclude this paragraph, let one of the ways olu&iag the quantities;, «»,
etc., be emphasized. Those quantities must be propalrtio the adjoints of the first
three elements of the last column of the determimar(@). Whenv is one of the
numbers 1 and 2, amg means a proportionality factor, that will imply:

a, &, ¢
(12) pyk=- a22+% a8, 1 :Dﬂ_éﬁumamir—b(az;aggf
a, a33+% ¢
a.
:D41—5D+E1.

Likewise:
a. a.
vav:D42_/7D+_2, pv,uv:D43_ZD+_3,
h, h,

and as a result:

P1 A p/(—a(l !
1K PLKi= o ——— |
h h

However, since it was found above that:

one will have:

_1(1_1) __-f(1 1
(13) pl'z_a[ﬁ mj’ P 2%[@ mj'
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That shows that when only one of the quantpigsanishes, the lines of curvature of the
first kind will coincide with the principal normals andnbrmals, but that one will be
dealing with a ray system when both quantifigsanish. The way of determining, 4z,
.. will then become entirely unusable for ray systems.
One further gets from (12) that:

6-e¢

P2 K1 = { D4z — 1) Daz —

However:

a; @, ¢ |a; @, ¢
ZD42_/7D43: Qs 4y N|t|a, a, 1
a, Qs 1 Q3 Uy ¢

=811(0’2(—0’3/7)+812(0’35—0’15)+313(0’1/7—a’24z):50'1_qu<(u-

If one sets:

N=&&+ENM+EL, Nov=mé+tmn+nd, Naw=0G8+0m+ B4

then one will have:

Z%f_ 32+a'el Z%UV N, 2N13+a,e2 ZQ/Z _ ;N21+0’63,
and

N, — N g-¢&_ N;y,—N € £
14 K=—2—2-qge+tem— =2 B+ diglag+—|.
(14) P2 K1 > e 1 h > h [1 hzj

Frobenius found the last expression fps k<1 under the assumption that= 0. (J. f. reine
angew. Math., Bd. 110, pp. 25, no. 26) It breaks down fomdyfaf parallel surfaces.

8 15. — The quantitiedy, P2, Ry, R, and .

We infer the definitions of the derivatives of a fuant§ of x, y, z with respect to the

arc-length of the curves of the system and the demstof the lines of curvature of the
first kind from equations (2), 2 in the form:
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ok ok o35
=K,—+A—+u—,
9(8) =k ox oy arr
0F 0¥ o3
1 =K,—+A,—+ U,—,
1) 9.(3) =k, ax dy luzaz
0§ ., 0% , ,0%
= +pn—"+7==
and employ them in conjunction with (10),78n order to calculate the quantitieg P,
R, Ry, 7.
One has:

P)=¢8+néb+{&,
so, from (2), 8l4:

P@=2m=2@{-e1).
However, since:
1 1
El: Klgo(g)i 32: ZKZ go(aa
one will have:

=2kt A a,+pag)= 2@k, et el ),

(2)

=2(k, 0.+ A0, 0 ) = —2(@K T €At et ).

,\,'U||—\ ,:U||—\

We infer the further expressions from (13),48

1_ 2p 1_ 2p,
©) RT1.1° B 1_1
h h, h

A rational expression in terms éf 7, ¢, and their derivatives shall be derived with their
help whose vanishing will say that the lines ofvaiure of the first kind coincide with
the principal normals and binormals of the familyorves.

(12), 814 implies that:

2 2 2
al D41+0'2D42+0'3D43+0'1+a 2+a 3

h W’

p12: D421+ D422+ D423_D2+2

One now sets:
a; &, a;
a, a, asl =A
a3 83 g

and denotes the adjoint of the elemgptby A,,. One will then have:
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A= A+ ao A + a3 Az, NA=a A+ o A+ a3 Az,
(A= Aiz+ ar Az + a3 Ass,
Dav=—-a1Anv—-aAn—- AL,

and as a result:

Zav D4V ==

Furthermore:

SO:

Yal =&yaa,+ny.a,a+{y.a,a,,
Ya,a, =& (@1 a—Aun—As) +17 (a1 0 + A1) + { (aws 0 + A
=- D41—§((A11+A22+A33) tma,

> a,a, =—Daz— 17 (Au+An+As) + @2 a,
> a,a, =—Daz— (A +An+As) + a3 4,

> af =-(A1+Ap+As+D).

Finally, one has:

Z D2 + (Awur + Az + Agg) D

= E2 (A7 - A A +AZ+ AuAsy) + 177 (AL = Aur Aso + A2+ AxaAs))
+ 7% (AZ- A1 Az + A2+ AoaAga) + 2817 (Aus Azs — Ar2 Asd)
+ 21 { (A2 A1z — Axz Arn) + 2 & { (Aa2 Aoz — Az Ara)

:A[—52(6122"'833)—/72(6111"'833)—/72(8-11"'6122)+2<(/76112
+2n{axn+2é{ag =—aA,

Y D:-D*=-aA+DY a’ :A[hl hzj Zni

As a result:

(4)

and

& [m hlj{ zrfj
P [m hlj{ zr:j
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1 A +(aA-D)Y a/
—=-16 s :
i3
h h
If Zaf vanishes then the family of curves in question will be a ray sysnfeﬁ alis
non-zero, but the expression:

(5)

~U
U
N

A+ (@A-D> a/}

vanishes, then the lines of curvature of the first kind will coingvth the principal
normals and binormals.

In order to determine the quantitiegsandR,, we start from the equation:

0K oK ok, k, ¢
K) = K 14+ ) 14 1="2,5
gl(l) 16X 16y 'ulaZ Rl h
It yields:
1
iz ZKZ gl(Kl) :_Zkl gl(Kz)’
such that:
_i: 6K2+6)l 6;12”'( 04, j ( 6,uz_’ul/(j
R ox dy o0z Y ox
0
o %L 2 o[ 05 2]
0
+K1(ulaakz %j ( %j_

However, since:
K=MKk =(, Kilb—[h Ko=—1],
one will have:

04, 0K, ou 0K,
A A - ——2 =/ —
1( 9% Ix j ,Ul( - —H— Ix j 14—t

and
MOG—-thm+rmb—rKrrmm—-Aié&=—2 ke + A e+ 1h 6).

As a result:
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(6) and correspondingly :
_1_1 0k 0h, 0m
R, B 0x 0y 0z

The quantity:d is given by the equation:

9= D K, oK.
If one applies the formulas:

Ke=nth—{ A1, A={rn-<¢w, = —-nK
then one will get:

d=K[{Go (A1) = 7o ()] + A1 [ o (t4) = {do (k)] + 4 [17 Qo (K1) = € o (A1)] -

One replaceg? with 1 —n 2 — {2, etc., here and takes:

, 04, ou ou akj ok, 04
7 x| XM 2Ly ki B )
0 1(62 ayj 1(ax E ”{ay axj
and one will get:
9=+ £0,(x)
or
(8) Jd=¢&'+¢.

If one replaces the quantitias, A1, 4 in brackets in (7) Witk A, —n o, &t — ¢ K2,
n k> — ¢ Az, resp., then since:

> Kk 0,(6)=—€e=D.Eg,(k,),

that will imply the further equation:

gm0 O |, (%_%}y 0Kk, _04,)
2laz oy ) "2lax az) "*lay ox

The expression fog? that equation (8) yields is not rational & 7, ¢, and their
derivatives. One can find representations?dhat are rational in those quantities along
various paths. The simplest of them seems to béotlesving: One starts from (14), §
14, which will make:
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N32 —Na3=2p2 k1 —2%—28 a'l+£j.

1
2p=——
P2 Pz(

and from 813 and §14, one has:

From (13), 814, one has:

1
h

._3||—\

2e =25+ % K o =Kk
R R

1 B
SO:

1 E 1 E
N32—N23:K( ——j—K [—+—j+2a£f.
‘\hR R) “(hR B

If one differentiates that equation with respect,tthe equation:

1 ¢ 1 ¢
Niz—Nzi = A -— -4 +— |+20¢
S 1(@% FJ {hl? Bj ¢

with respect tg, and the equation:

1 £ 1 £
N21 —Ni2 = 1 (———j—ﬂ (—+—j+2085
‘(bR RB) "*(hR B

with respect t@ and adds the results then when one recalls (12,)th&t will give:

0(N32 _ N23) +6( N~ NS]) + a(N21_ le) =ag, (&) - 291(‘9) _ 2g2(‘9)
ox oy 0z ° P P

+& a’z+2(i2+—12j+g0(a)——12——12+252+,9(_1__1j _
R° R h™ b h h

However, since:

(9)

9.8, 66, ala—£+aza—£+aaa—£ :
P P, 0X oy 0z

1 1 — 2 2 2
?’LE =4(a +a, +ay),
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1,1 2o (i_ijlazﬂm,
h* R’ h h 4

the relation (9) will contain a representationsdbin the desired form. That will become
important where = 0. One will then get the condition under whibl family of surfaces
whose orthogonal trajectories coincide with theif@s of curves considered to belong to
a triply-orthogonal system of surface®= 0) in the form:

(10) 0(N3, = Nyy) + 0(Ny;— Ny) + O(N,; — Ny, =0.
0x oy 0z

This form of the condition equation was derivedFrgbenius in J. f. reine u. angew.
Math., Bd. 110, pp. 23.

Equation (10) can be likewise given a very int@tform of a different sort. One
finds that:

N3z —Np3 = Z(G% —%j = 2o (&),
dy 0z
so one can replace (10) with:
(11) 09,(8) , 9%(8) ,04(9 _

X oy 0z
Finally, if one introduces the notation:

0§ . 05, 0%
==& +—=n +—
o) ox "’ ay”” 0z’
and considers that one has:
a_el-{-a_%.i-a_%: 0
ox dy 0z
identically then one will find:

(12) a(e)ta(e)+d(es) =0,

in place of (11). That form of the condition eqaatwas published bWweingarten in J.
f. reine u. angew. Math., Bd. 83, pp. 9, and was aktablished also IByrobeniusin the
previously-cited paper on pp. 24.

8 16. — Family of curves with a prescribed family of asymptotiaries.
If a family of curves possesses real asymptotieslithat are not straight then it will

consist of the binormals to each of the two famild asymptotic lines. When a family
of curves is given, that fact is closely relatedie question of finding those families of
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curves C) for which the former family of curves defines a familf asymptotic lines,
and to further determine the second family of asymptotis lofehe family C).
To that end, we define a family of curves by the equation

(1) dx:dy:dz=u:v:w,
in whichu, v, ware functions ox, y, zthat satisfy the equation:

W+ +w =1

and takedu / 0x =uy, 0v/ dx =V, etc.
The family of curves will be a ray system when twdh# following conditions are
fulfilled:
uu+u v+ uy w0,
(2) v, u+ Vv, v+ \, w=0,
W u+w, v+ w w=0.

In that case, one understanfls;, { to mean three functions af y, z that satisfy the
equations:
futnv+{w=0,
E2+nt+t=1
and sets:
$'=v{-wn, n'=wg¢—ug ¢'=un-vg.

If the family of curves in question is not a ray systdwen the direction cosines of its
principal normals must be denoted &Y 7', ', while those of its binormals might be
denoted by, n, {.

The differential equations:

(3) dx:dy:dz=¢:n:¢

then determine family of curve€) for which a family of asymptotic lines is defined by
equations (1).

The normal curvature of the orthogonal trajectoriethe family of curvesd) that is
characterized by (1) is, in fact:

—U(G U+ LVHEW) V(U RV W) -W (G ULV GW
or
S(Wu+twv+tuswW+7(Viu+Vvov+vawW+ (Wi u+wWo v+ W W) .

If the family is a ray system then the coefficieot<, 77, { will vanish here because of
(2), but in any other case they will be proportionah direction cosines of the principal
normals, such that the normal curvature will possessdhue zero in any case.

A family of orthogonal trajectories of the family\C) will be defined by the
differential equations:
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dx:dy:dz=mu+né . mv+np" . mw+nd’,

in which one might have:
m +n® = 1.

If we denote the direction cosines of their principatmals byé”, n” ¢” and their first
curvature by 1 f; then we will have:

i": M(mu+ nf’)+a(m—U+rf’)(mv+ W,)+('3(m—l:kﬂ")( m W ﬁ')
r, 0X oy 0z

In order for those principal normals to represéettecond family of asymptotic lines of
the family C), we must have:

EE+nn+qE=0,
or

(ng‘q+ nzg‘fl’)(mw rf')+( M & u+ Eff’z)( my /i)
+ (MY Eu+m &) (mw 7) =0.

The factor ofr? vanishes here, and what remains is:

m(EXEu+n D Eu+'Y Eu+r B EE+ D EE+ W EEY)

(4) ! ! I T I T

(&Y EG+N Y EE+{Y.EE) =0.
That equation can be considered from two viewgomtcording to whether the
coefficients have a definite geometric meaningtnedato the family of curvesQ) or
relative to the originally-given family of curve$)( If we remain in a neighborhood of
the family C) then we will set:

u = monmntak, vV = At A, W= atht+tale,
f=—mmrK+mkK, n' =—mA+ai, {=—mm+nl,
so from 810:
_1 _1
a,l:—hz, ar = hl .
11 11
h h h h

We will then have:
Ewm+rnvi+d{w =—ué&-VIi-wW{a

=-mua(@)+va () +wa (4]
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—k2[Ug () +va () +we ()]
~ S ug(@+rve@n)+we(d)]

—_ al 0'2 al a2
=K | 2-€a, |tK,|ca,+—= |-& 2+—=2 |,
1(*1 j ( 1 nj ‘{a PJ
and as a result:

EY Eu+ny &y, +ZZ§(U3—_0'10'2(;1 hlzj -—\/%/ El+£

Furthermore:
' 2 a | _ a, a
DEE=-DEE= Kl[hl+£alj K{EO’Z hzj 5( Fi+F5j
SO:
1 1 1
u Efl+v 552+W 553 - L ar | —— =
AR ' (hl hzj (\/ h
al a’ 1 1
&N EE Y EG+ Y EE =+ —
2 (3 2 h h h h
We then get:

HESN

That includes the theorems that were found befoa¢ the two families of asymptotic

lines will coalesce into one Whenhl—rb: 0 and that they will be perpendicular when

£+_1: 0.

h h

If we refer equation (4) to the given family ofreas (1), in the second place, then we
will have to replace, v, wwith &, 77, {, respectively, and further take:

== kit ke, n'=m=m A+ a A, {=C=mth+ b,

Emm=—mmKnt+tmk, n =p==—mA+mA, {(=CG=—mh+nlb.
If the family of curves (1) is a ray system thenand a» will be subject to only the
condition that:

a”~+a, =1.
In the other case, we will have:



§ 16. — Family of curves with a prescribed family of asytiptines. 129

1 1

m = a a> PZ
1,1 1,1
R* B? R* B?

such that, with the notations of1®, the curvesl, = 0 will coincide with the principal
normals, while the curvel, = 0 will coincide with the binormals to the fam({ly).
Equation (4) will now take the form:

m(qZ aé&+h)y aé,+ Q. afH+éy, 556 +nYy. 32 +ZZ j

0
(anz +h>° az + Gy, aza—azij=0-
Here, one has:

_ [ _a a, . a
Zazgl_Kl[h+£alj+K2(£a2 hzj'*'f[ P + Fﬁj’

and therefore:

ay a&+h) ad,+c) afsma (%—%j +e= Ii

Moreover:

£y a2 nZagaai +¢Y 8, 22 =a0 gy (@) + bz 60 (0) + 200 c)

1
:—azgo(a1)+azgo(a1)+z9—|_—.
Tl

Finally:
9 9 9
aiZaz—ail +hy az—a?j +6Y as2=a, Y8, 0(a)+a,Y 8 0/ Q).

da,g(a)=-00(m) + ;g (a)+ %
D a,0,(a)=— g (o) + 0102 () —i,

R,

a, Y a,0(a)+a,), a,g{a)=01 () —g () +

Py IB
s IS
el

Therefore:
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1 1 n
——+—— m+— =0
L L) R

will arise in place of equation (4). When IR/ vanishesm will be equal to zero, and
that will imply the theorem:

If a family of curves possesses two mutually-perpendicular far(ili¢ and (A,) of
asymptotic lines then the family;) will consist of geodetic lines of the fam{Ae), and
conversely.

Voss carried out the determination of those families of earfor which the two
families of curves coincide and are rectilinear in Mathn., Bd. 23, pp. 64.




