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 If one regards a surface as a simply-continuous manifold of curves then the most general 

curvature problem will relate to doubly-continuous manifolds of curves, which one can call 

“families of curves.” Kummer’s theory of rectilinear systems of rays falls within the scope of the 

problem envisioned, in which the curves are replaced with straight lines, and furthermore Lamé’s 

theory of curvilinear coordinates, in which the three systems of surfaces that are implied by the 

analytical representation of a family of curves are assumed to intersect at right angles everywhere. 

In recent times, A. Voss has treated various general questions in regard to families of curves in his 

work on point-plane systems (Annalen, Bd. 16 and 23). 

 Above all, two viewpoints emerge in the curvature problem in question, which one can regard 

as the analogues of the curvature of a curve and that of a surface. The cross-section of a bundle of 

curves enters in place of a point on a curve, and the tangent bundle that belongs to the cross-section 

enters in place of the tangent, and it is to that tangent bundle that most of the concepts of the theory 

of rectilinear systems of rays finds immediate application. 

 The neighboring tangent to a curve tangent is replaced with the tangent bundle that belongs to 

a neighboring cross-section of a bundle of curves, which is why it will not be considered in what 

follows, since it initially comes down to the problem of discovering those curvature properties of 

a system of curves that remain preserved by a system of rays. 

 The following second viewpoint is to be emphasized: The ordinary theory of surfaces 

essentially consists of a theory of the curvature axes of the curves on a surface that go through a 

point, or in other words, the orthogonal trajectories of a normal system. If one extends that concept 

to the orthogonal trajectories of a family of curves then that will yield the proposed generalization 

with no difficulty. 

 In regard to the main analytic-geometric definitions, I must refer to my Untersuchungen zur 

allgemeinen Theorie der krummen Oberflächen und geradlinigen Strahlensysteme (Bonn, 1886), 

which I will cite by U, as before. 
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§ 1. – Notations. Tangent bundle. 

 

 A family of curves will be represented analytically when one expresses the rectangular 

coordinates u, v, w of a point in space by real continuous functions of three real mutually-

independent variables p, q, r. p and q shall be considered to be constant along any curve of the 

family, while r will be considered to be variable. We would like to call the totality of curves that 

belong to a system of values (p, q) and the neighboring systems of values (p + dp, q + dq) a bundle 

of curves. We fix our attention on a regular point (u, v, w) on a curve that belongs to a system of 

values (p, q). The tangent to the curve at that point has the direction cosines , ,  . The plane that 

is perpendicular to the ray (, , ) at the point (u, v, w), which is the normal plane to the curve 

that belongs to (p, q), shall be called a normal plane to the bundle of curves. It cuts out a “cross-

section” from the bundle of curves. The latter is then to be regarded as an infinitely-small planar 

region that is bounded by a closed line, which does not generally degenerate into a line segment. 

At each point of that planar region, the curve of the bundle that goes through it will possess a well-

defined tangent, and the totality of those tangents is called the tangent bundle that belongs to the 

point (u, v, w). A curve that does not belong to the family of curves shall be called a trajectory of 

the family when a curve of the family goes through each of its points, in general. If both tangents 

are always perpendicular to each other then the trajectory will be called an orthogonal trajectory 

of the family of curves. 

 With the use of the notations: 

 
2

u

p

 
 

 
 = a11 , 

u u

p q

 

 
 = a12 , 

u u

p r

 

 
 = a13 , 

2

u

q

 
 

 
 = a22 , 

 

u u

q r

 

 
 = a23 , 

2
u

r

 
 

 
 = a33 , 

we will get: 

 = 
33

u

r

a



 ,  = 
33

v

r

a



 ,  = 
33

w

r

a



 , 

 

in which 33a  will be assumed to be non-zero and possess the sign of w / r . (Cf., U, § 1) 

 The point (u + du, v + dv, w + dw) will belong to the cross-section of the bundle of curves in 

question that goes through the point (u, v, w) as long as: 

 

du  = 0 , 

i.e., one has: 

 

(1)      a13 dp + a23 dq + a33 dr = 0 . 
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 A trajectory of the family of curves will arise when two of the variables p, q, r can be regarded 

as functions of the third one at u, v, w . If equation (1) is fulfilled by that then one will be dealing 

with an orthogonal trajectory. 

 We shall understand the symbols u, v, w, , ,  to mean the differentials of u, …,  

that are defined under the condition (1), such that: 

 

 u = 13 23

33 33

a au u u u
dp dq

p r a q r a

      
− + −   

      
, 

 

  = 13 23

33 33

a a
dp dq

p r a q r a

         
− + −   

      
, 

in which we have set: 

 u = up dp + uq dq , 

  = p dp + q dq , 

 

to abbreviate. Moreover, we introduce the notations: 

 

 2( )pu = E , 
p qu u = F , 2( )qu = G , 

 

 2( )p =  , 
p q  =  , 2( )q =  , 

 

 
p pu = p

u

p





  = e11 , p qu = p

u

q





  = e12 , 

 

 q pu = q

u

p





  = e21 , q qu = q

u

q





  = e22 . 

 

The quantities E, G, , , E G – 2,   – 2 will be assumed to be non-zero. 

 I shall now link the tangent bundle in question with the concepts that Kummer put forth in his 

“allgemeine Theorie der geradlinigen Strahlensysteme” (J. reine und Angew. Math., Bd. 57). Let 

the abscissa of the point on the ray (, , ) that points away from the point (u, v, w) that meets the 

neighboring ray ( + ,  + ,  + ) at the shortest distance be r . That will then produce the 

equation: 

(2)  r = − 
2 2

11 12 21 22

2 2

( )

2

e dp e e dp dq e dq

dp dp dq dq

+ + +

 +  + 
. 

 

The maximum r1 and minimum r2 satisfy the equation: 
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(3)   (  – 2) r2 + [ e22 – (e12 + e21)  + e11 ] r + e11 e2 − 
2

12 22( )

4

e e+
 = 0 , 

 

whose roots (which are always real) are assumed to be distinct. The values t1 and t2 of the ratio 

/dq dp  that the values r1 (r2, resp.) yield are implied by the equation: 

 

(4)   [e11  − 12 21

4

e e+
] dp2 + [ e11 –  e22] dp dq + [ 12 21

4

e e+
−  e22] dq2 = 0 . 

 

The abscissas r1 and r2 of the focal points, which are imaginary under some circumstances, are the 

roots of the equation: 

 

(5)   (  – 2) r2 + [e11  + e22  − (e12 + e21) ] r + e11 e22 − e12 e21 = 0 , 

 

and the values t3 and t4 of the ratio dq / dp that belong to r3 and r4 follow from the relation: 

 

(6)  (e21  − e11 ) dp2 + [e22  + (e21 − e12)  − e11 ] dp dq + (e22  − e12 ) dq2 = 0 . 

 

The tangent bundle considered is called a normal bundle when the rays of the bundle are normal 

to one and the same surface. In that regard, it must be possible to determine r as a function of p 

and q in such a way that equation (1) always exists, i.e., the right-hand side of the equation: 

 

dr = − 13 23

33 33

a a
dp dq

a a
−  

 

must be a complete differential, which emerges from the relation: 

 
2 2

13 33
33 23 2 2

a au u u u
a a

p q r p r q

   
− −

     
   = 

2 2

23 33
33 13 2 2

a au u u u
a a

q p r q r p

   
− −

     
  . 

 

That says nothing more than the equation: 

e12 = e21 . 

Namely, one has: 

 p = 

2 2
33 33

33 33 2

132

33 33 33 33

1 1

2 2

au u au ua a
p r r p r r r a

a a a a

   − −
      −  , 
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 q = 

2 2
33 33

33 33 2

232

33 33 33 33

1 1

2 2

au u au ua a
p r r q r r r a

a a a a

   − −
      −  . 

Therefore: 

 e12 = 

2 2

33 33
33 23 33 232

132

33 33 33 33

1 1

2 2

au u au u
a a a a

q p r p q r r
a

a a a a

   
− −

      
−

 
, 

 

 e21 = 

2 2

33 33
33 23 33 132

232

33 33 33 33

1 1

2 2

au u au u
a a a a

p p r q p r r
a

a a a a

   
− −

      
−

 
. 

 

The direction cosines of the shortest distance that belongs to r = r1 shall be denoted by 1, 1, 1, 

while those of the one that belongs to r = r2 shall be denoted by 2, 2, 2 . It will then follow that: 

 

1 = 
1

2

p q

V

 + t
, 2 = 

1

1

p q

V

 + t
, 

 

in which V1 means the square root of  + 2 t1 + 2

1t  with the sign of p + q t1 , while V2 means 

the square root of  + 2 t2 + 2

2t  with the sign of p + q t2 . 

 The following equations exist between the quantities , 1, 2, … : 

 

 = 0 (1 2 − 1 2) ,   = 0 (1 2 − 1 2) ,  = 0 (1 2 − 1 2) ,  

 

in which 0 is taken to be equal to + 1 or – 1 according to whether 1 2 − 1 2 > 0 or < 0 , resp. 

 The plane that goes through the point (u, v, w), whose normal is (1, 1, 1) [(2, 2, 2), resp.], 

shall be called the principal plane of the tangent bundle that belongs to r1 [r2 , resp.]. 

 If one sets: 

 1 = 

2 212 21
11 2 2 22 2

2 1

( ) 2 ( )
2

e e
e dp dp dq e dq

+ 
+  + +  + +  

 

−

r r r

r r
, 

 2 = 

2 212 21
11 1 1 22 1

2 1

( ) 2 ( )
2

e e
e dp dp dq e dq

+ 
+  + +  + +  

 

−

r r r

r r
 

then one will have: 
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(7)   r = 1 1 2 2

1 2

 

 

+

+

r r
. 

 

 If one now introduces the angles  and  with the help of the equations (cf., U, §§ 14 and 3): 

 

 cos  = 
2 p 




, cos ( – ) = 

2 p 




, 

 sin  = 
1 p 




, sin ( – ) = 

1 p 




, 

 

in which   possesses the sign p and   has that of q , then 1 and 2 will be given as squares 

in the following form: 

 1 = 2[ cos cos ( ) ]dp dq   +  − , 

 2 = 2[ sin sin ( ) ]dp dq   +  − , 

 

such that a comparison of the two values of r in (2) and (7) implies the relations: 

 

(8)  

2 2

11 1 2

12 21 1 2

2 2

22 1 2

( cos sin ),

2 [ cos cos ( ) sin sin ( )],

[ cos ( ) sin ( )] .

e

e e

e

 

     

   

 = − +


+ = −   − + −
 = −  − + −


r r

r r

r r

 

 

Finally, let us point out the equations: 

 

 p =  (1 sin  + 2 cos ) , 

 

 q =  [1 sin ( − ) + 2 cos ( − ) , 

 

  1 =   
cos ( ) cos

sin sin
p q

  
 

 

−
−

 
, 

 

 2 = − 
sin ( ) sin

sin sin
p q

  
 

 

−
+

 
. 
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§ 2. – Representation of the differentials u, 2u , 1, 2 . Volume element. 

 

 When one applies the relations: 

 

  1 =  11 21

cos( ) cos

sin sin
e e

  

 

−
−

 
, 

 

  2 =  
12 22

cos( ) cos

sin sin
e e

  

 

−
−

 
, 

 

 3 = − 11 21

sin ( ) sin

sin sin
e e

  

 

−
+

 
, 

 

 4 = − 12 22

sin ( ) sin

sin sin
e e

  

 

−
+

 
, 

 

 S1 = 1 dp + 2 dq , S2 = 3 dp + 4 dq , 

 

one will get the linear system for u, v, w : 

 

u   = 0 ,      
1 u   = S1 , 2 u   = S2 , 

such that: 

 

(1)     u = 1 S1 + 2 S2 . 

 

F, 2F  shall always be understood to mean the first (second, resp.) differentials of a function F 

of the three variables p, q, r that are defined under the condition: 

 

a13 dp + a23 dq + a33 dr = 0 . 

It then follows that: 

 

 1 = 13 231 1 1 1

33 33

a a
dp dq

p r a q r a

         
− + −   

      
 = 1p dp + 1q dq , 

 

  2 = 13 232 2 2 2

33 33

a a
dp dq

p r a q r a

         
− + −   

      
 = 2p dp + 2q dq , 

as well as: 

 1p   = − 1 p   = −  sin  , 
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2 p   = − 

2 p   = −  cos  , 

 

 
1 2 p   = − 

2 1p  , 

 

 
1q    = − 

1 q    = −  sin ( − ) , 

 

 
2q   = − 

2 q   = −  cos ( − ) , 

 

 
1 2q   = − 

2 1q  . 

We now take: 

2 1p   = − U1 , 2 1q  = − U2 

 

and get from the foregoing that: 

 

 1p =  2 U1 –   sin  , 1q =  2 U2 –   sin ( − ) , 

 

 2p = − 1 U1 –   cos  , 2q = − 1 U2 –   cos ( − ) . 

 

 Now, if one sets: 

 U = U1 dp + U2 dq , 

 

 H1 =   cos  dp +  cos ( − ) dq , 

 

 H2 =   sin  dp +  sin ( − ) dq 

then that will give: 

 

(2) 1 = 2 U –  H2 ,  2 = − 1 U –  H1 . 

 

It now follows that: 

 
2u  = 1 ( S1 – S2 U) + 2 ( S2 + S1 U) −  (S1 H2 + S2 H1) . 

 

Here, we would like to denote the coefficients of 1, 2,  by V1, V2, V0 , such that we will have: 

 

(3)  
2u  =  V0 + 1 V1 + 2 V2 . 

 

 The representation (1) of the differentials u, v, w shall be applied to the expression for the 

spatial element. 
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 As is known, it has the form: 

u u u

p q r

v v v

p q r

w w w

p q r

  

  

  

  

  

  

dp dq dr . 

 

We would like to denote the reciprocal value of the determinant that appears here by  . The 

determinant itself can be written: 

33

p q

p q

p q

u u

v v a

w w







 , 

 

and with the use of the equations that (1) implies: 

 

up = 1 1 + 2 3 , uq = 1 2 + 2 4 , 

it will assume the form: 

0 (1 4 − 2 3) 33a , 

 

or from the defining equations for the quantities  : 

 

11 22 12 21
0 33

e e e e
a

Q


−

, 

in which we have set: 

Q =    sin  . 

 

 Therefore, from (5), § 1, one gets the following expression for the determinant in question: 

 

0 Q r3 r4 33a , 

and the following equation for  : 

 = 0

3 4 33Q a



r r
. 

 

If one is dealing with a ray system, so all of the curves of the family are straight lines, then u, v, w 

can be represented in the form: 

 

u = x + r  , v = y + r  , w = z + r  , 
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in which x, y, z (viz., the coordinates of the points on the surface) and , ,  (viz., the direction 

cosines of the rays of the system) depend upon only p and q . Hence, 33a  will be equal to 1. The 

factor 0 / Q does not change along a ray, and after one drops that factor, one will get Kummer’s 

density measure   = 1 / r3 r4 , which will coincide with the Gaussian curvature of a normal system 

for a surface r = const. when x, y, z is chosen such that dx  = 0 . 

 The area of a cross-section of a bundle of curves will be given by the absolute value of the 

expression: 

(1 4 − 2 3) dp dq = r3 r4 Q dp dq . 

 

As is known, the surface element of r = const. has the value 

2

v w v w

p q q p

    
− 

    
 dp dq at the 

point (u, v, w), which can be expressed by h −1 dp dq with the help of the first Lamé differential 

parameter: 

h = 

2 2 2
r r r

u v w

       
+ +     

       
. 

 

If one denotes the angle between the positive part of the tangent to the curve (p, q = const.) and 

the normal to the surface (r = const.) by  then one will have: 

 

dr

h
 = dr 33a  cos  ; 

 

i.e., dr / h is the projection of the element of that curve onto the normal that surface.  = 0 will 

imply the meaning of the quotient dr / h that Lamé gave. 

 

 

§ 3. – Curvature of the orthogonal trajectories of a family of curves. 

 

 We would like to understand cos , cos , cos  (cos l, cos m, cos n, resp., cos a, cos b, cos c, 

resp.) to mean the direction cosines of the tangent (binormal, resp., principal normal, resp.) of a 

space curve at a regular point (u, v, w). 

 One then gets: 

cos  = 
2 2 2

du

du dv dw+ +
, 

 

in which the square root, which shall be denoted briefly by ds, is determined such that cos  proves 

to be positive. (Cf., U, § 1) 

 Moreover, one will have: 
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cos l = 
2 2

2 2 2( )

dv d w dwd v

dv d w dwd v

−

−
, 

 

in which the square root, which will be called D, is determined in such a way that cos n will be 

positive. Finally, it emerges that: 

 

cos a =  (cos m cos  – cos n cos ) , 

 

where  equals + 1 or – 1 according to whether: 

 

cos l cos  – cos m cos  

 

is greater than zero or less than zero, respectively. 

 The center of curvature (i.e., the point of intersection of the principal normal with the projection 

of the neighboring principal normal onto the osculating plane) has the abscissa  relative to (u, v, 

w). What then arises is: 

 = 
2ds

D
 . 

 

 The expressions considered shall now be formed for an orthogonal trajectory to a family of 

curves, such that du 
2d u , … are replaced with u 2u , …, resp. 

 In that way, one gets: 

 

 cos  = 1 1 2 2

2 2

1 2

 +

+

S S

S S
, cos l = 1 2 2 1 2 1 1 2 0

0
2 2 2 2

1 2 2 1 1 2 0

( ) ( )

( ) ( )

V V V

V V V

  


− − −

− + +

S S S S

S S S S
, 

 

 ds = 
2 2

1 2+S S , D = 
2 2 2 2

1 2 2 1 1 2 0( ) ( )V V V− + +S S S S , 

 

where the roots are determined from the condition cos  > 0 (cos n > 0, resp.). 

 Furthermore: 

 cos a = 
2 2

2 1 1 2 1 2 2 1 1 2 0

2 2 2 2 2

1 2 2 1 1 2 0

( )( ) ( )

( ) ( )

V V V

V V V

  


− − + +

− + +

S S S S S S

S S S S
, 

 

  = 
( )

3
2 2

1 2

2 2 2 2 2

1 2 2 1 1 2 0( ) ( )V V V


+

− + +

S S

S S S S
. 

 

The curvature axis is perpendicular to the osculating plane at the center of curvature and is parallel 

to the binormal. We would like to denote the coordinates of the point at which that curvature axis 
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cuts the normal plane of the bundle of curves by u, v, w and likewise denote the direction cosines 

of the line that goes through (u, v, w) and (u, v, w) by cos  , cos  , cos  . It then follows that: 

 

 u – u  = 
2

1 2 1 2

ds

V V−S S
(2 S1 − 1 S2) , 

 

 cos   = 2 1 1 2

ds

 


−

S S

, 

 

in which ds has the previous meaning, and  is taken to be equal + 1 or – 1 in order to make cos 

positive. If we now take R to be the abscissa of the point (u, v, w) relative to the point (u, v, w) 

then we will have: 

R = 
3

1 2 1 2

ds

V V
 

−S S
. 

 

One can call R the geodetic radius of curvature of an orthogonal trajectory, and likewise, one can 

call an orthogonal trajectory whose coordinates satisfy the equation S1 V2 – S2 V1 = 0 a geodetic 

line. For such a thing, one can show that it yields the shortest connection between two sufficiently 

close points among all orthogonal trajectories, as well as that it will be described by a point upon 

which no forces act that is constrained to move on an orthogonal trajectory of a family of curves. 

 The abscissa of the point at which the curvature axis in question cuts the ray (, , ) shall be 

called h . That will then imply that: 

h = 
2

0

ds

V
. 

 

Since only the first differentials dp and dq enter into h, h will remain unchanged for all orthogonal 

trajectories with the same tangents, just as h possesses the meaning of the radius of curvature for 

the geodetic line with that tangent, since for S1 V2 – S2 V1 = 0 , one will have: 

 

cos a =  , D =  ds V0 , 

 

such that  will then go to h . One then finds the relationship between h and  that is expressed by 

Meusnier’s theorem for the radii of curvature of all planar sections of a surface that have the same 

tangent. 

 In order to discover the analogue of Euler’s theorem, we represent V0 as a quadratic form in 

S1 and S2 . If one introduces the values of dp and dq that are expressed by S1, S2 and the 

quantities  into the expressions for H1 and H2 then that will give: 
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 H1 = 1 4 3 2 2 1

1 4 2 3

[ cos cos ( )] [ cos cos ( )]         

   

 −  − −  −  −

−

S S
, 

 

 H2 = 1 4 3 2 2 1

1 4 2 3

[ sin sin ( )] [ sin sin ( )]         

   

 −  − −  −  −

−

S S
. 

 

When one applies the defining equations for the quantities  and equations (8), § 1, one will now 

get: 

 4   cos  − 3  cos ( – ) = 12 21

2

e e−
 = e0 , 

 2   cos  − 1  cos ( – ) = r0 Q , 

 4   sin  − 3  cos ( – ) = − r1 Q , 

 2   sin  − 1  sin ( – ) = 12 21

2

e e−
 = e0 . 

Therefore: 

H1 = 
0 1 2 2

3 4

e Q

Q





−S r S

r r
,  H2 = 

1 1 0 2

3 4

Q e

Q





− −r S S

r r
, 

and 

V0 = − (S1 H2 + S2 H1) = 
2 2

1 1 2 2

3 4

+r S r S

r r
, 

such that: 

h = 
2 2

1 2
3 4 2 2

1 1 2 2

+

+

S S
r r
r S r S

. 

 

 Therefore, the maximum h1 of h belongs to the tangent (2 , 2 , 2) and has the value h1 = 

3 4 2/ ,r r r  while the minimum h2 of h belongs to the tangent (1 , 1 , 1) and has the value 3 4 1/r r r

. If  is the angle between the positive parts of the tangents that are determined by u, v, w, and 

S2 = 0 then one will have (1): 

1

h
 = 

2 2

1 2

sin cos

h h

 
+ , 

 

which is an equation that has the form of Euler’s theorem. 

 
 (1) The existence of that relation, which A. Voss mentioned in Math. Ann., Bd. 23, pp. 70, was probably first 

pointed out by Hamilton. The endpoint of h that differs from the point (u, v, w) is precisely what Hamilton called 

“focus by projection.” (Trans. Roy. Irish Acad. v. XVI, Part I, Science, pp. 47)  
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 If r1 and r2 have opposite signs, so the point (u, v, w) lies between the limit points of the shortest 

distance, then there will exist two orthogonal trajectories that yield infinite values of h, which will 

then play the role of asymptotic lines. 

 If the tangent bundle in question is a normal bundle then one will have: 

 

e0 = 0 ,      r1 = r3 ,      r2 = r4 ,      H1 = − 1

1

S

r
,      H2 = − 1

2

S

r
,      h1 = r1 ,      h2 = r2 . 

 

One must still consider the generalization of the concept of “conjugate tangents to a surface” (1). 

Let the direction cosines of the line perpendicular to the curve tangents (, , ) and ( + ,  + 

,  + ) be cos , cos , cos , such that: 

 

cos  = 1 1 2 2

2 2

1 2

H H

H H

 −

+
, 

 

in which the root is determined in such a way that cos  will be positive. 

 A line that is laid through the point (u, v, w) and whose direction cosines are cos , cos , 

cos   might be called the tangent adjoint to the tangent (cos  cos , cos ). 

 If one expresses cos  in terms of H1 and H2 then one will have: 

 

cos  = 
1 0 1 2 2 2 1 1 0 2

2 2

0 1 2 2 1 1 0 2

( ) ( )

( ) ( )

e H Q H Q H e H

e H Q H Q H e H

 

 

 − − +

− + +

r r

r r
. 

 

If the values of H1 and H2 that belong to cos , cos , cos   are denoted by 1H   and 2H  , resp., 

then that will imply the further expression for cos  : 

 

cos   = 
1 0 1 2 2 2 1 1 0 2

2 2

0 1 2 2 1 1 0 2

( ) ( )

( ) ( )

e H Q H Q H e H

e H Q H Q H e H

 

 

    − − +

   − + +

r r

r r
. 

 

Let the tangent (cos  cos , cos  ) be adjoint to the tangent (cos  cos , cos  ) . It then 

follows that: 

cos   = 1 1 2 2

2 2

1 2

H H

H H

  −

 +
 = 

1 0 1 2 2 2 1 1 0 2

2 2

0 1 2 2 1 1 0 2

( ) ( )

( ) ( )

e H Q H Q H e H

e H Q H Q H e H

 

 

 − − +

+ −

+r r

+r r
. 

 

It then follows from this that when a tangent (2) is adjoint to a tangent (1), it is only when e0 = 0 

that one will also have that (1) is always adjoint to (2). (1) and (2) will then have the same 

relationship to each other that the conjugate tangents to a surface have. 

 
 (1) Cf., A. Voss, Math. Ann., Bd. 23, pp. 46.  
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 If we exclude the case of e0 = 0 then (1) will be adjoint to (2) when (1) coincide with one of 

the two tangents, which will imply the equation: 

 
2 2

1 1 2 2H H+r r  = 0 . 

 

They will be real only when r1 r2 is negative, and they thus prove to be the tangent to the two 

asymptotic lines of the family of curves that go through the point (u, v, w). The latter intersect 

those neighboring rays (,  + ) whose shortest distance falls in the normal plane to the bundle 

of curves. However, since one now has: 

 

cos  = cos ,  cos  = cos ,  cos  = cos , 

 

the tangents in question will be adjoint to each other. 

 The tangent (2) is perpendicular to (1) when the relation exists that (1): 

 
2 2

0 1 2( )e H H+  + (r1 – r2) Q H1 H2 = 0 , 

and since: 
2

0e  = (r3 r4 – r1 r2) 
2Q , 

 

it will decompose into the following one: 

 

2 e0 H2 + Q [r1 – r2 ± (r3 – r4)] H1 = 0 . 

 

The corresponding tangents (1) are therefore real only when the focal points of the bundle (, , 

) are real, and they will intersect the neighboring rays to the ray (, , ) that yield those two focal 

points. 

 Finally, (2) will coincide with (1 , 1 , 1) [(2 , 2 , 2), resp.] when H2 (H1, resp.) vanishes. 

(1) will then meet those neighboring rays to (, , ) that belong to the values r1 (r2, resp.) of r, 

i.e., to the boundary points of the shortest distance. 

 If the tangent (cos  cos , cos  ) defines the angles 1 and 2 with the tangents (1 , 1 , 

1) [(2 , 2 , 2), resp.] then: 

 

cos 1 = 1

2 2

1 2

H

H H+
,  cos 2 = 2

2 2

1 2

H

H H

−

+
, 

and one will have: 

  cos 1 = cos 2 
1 2 2 1

2 2

1 2

H H H H

H H

 −

+
, 

 
 (1) That is the equation for Voss’s “lines of curvature.” I have not retained that terminology because the curves in 

question do not need to always be real.  
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 −  cos 2 = cos 1 
1 2 2 1

2 2

1 2

H H H H

H H

 −

+
, 

so when one sets: 

1 2 2 1

2 2

1 2

H H H H

H H

 −

+
 − U = S , 

the following equation will arise: 

 

 cos  = S (1 cos 2 – 2 cos 1) . 

 

One sees from this that neighboring adjoint tangents intersect. Let the abscissa of the point of 

intersection relative to the point (u, v, w) by R . One then gets the relation: 

 

R  = 1 2 2 1

2 2

1 2

H H

S H H

+

+

S S
 = − 

2 2

1 1 2 2

2 2

3 4 1 2S H H

+

+

r S r S

r r
 = − 

2 2

1 2

2 2

1 2h S H H

+

  +

S S
 . 

 

Let it be pointed out that: 

H1 H2 – H2 H1 = 0 

 

is the differential equation for those orthogonal trajectories of the family of curves whose adjoint 

tangents define constant angles with the tangent (1 , 1 , 1) . Along such a trajectory, one will 

have: 

R  = 
2 2

1 2

2 2

1 2h U H H

+

  +

S S
, 

 

which is a value that will be denoted by R in what follows. 

 

 

§ 4. – Lines of curvature. 

 

 Those orthogonal trajectories to a family of curves that lie completely in principal planes (1) 

demand special attention. Such a curve, whose tangents possess the direction cosines 1 , 1 , 1 

(2 , 2 , 2 , resp.), shall be called the lines of curvature that belong to r2 (r1, resp.). The one that 

belongs to r1 will then imply the equation S1 = 0, while the one that belongs to r2 will imply the 

equation S2 = 0 . 

 We would like to understand an isogonal trajectory to the lines of curvature to mean an 

orthogonal trajectory of the family of curves whose tangents define constant angles with the 

tangents to the lines of curvature. The differential equation for those isogonal trajectories is then: 

 

 
 (1) They overlap with the curves that A. Voss first mentioned in Math. Ann., Bd. 23, pp. 70 in § 5. 
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S1 S2 − S2 S1 = 0 . 

 

In order to simplify what follows, it is useful to express the quantity U, which took the form of a 

linear form in dp and dq, in terms of S1 , S2 , as well as H1 , H2 . One gets: 

 

 U = 1 4 2 3 1 1 2 2 1 2

1 4 2 3

( ) ( )U U U U   

   

− − −

−

S S
, 

 

 U = 
1 2 1 1 2 2

1
[( sin ( ) sin ( cos( ) cos ]U U H U U H

Q

     −  − +  +  − −  , 

 

and one might set: 

U = u1 S1 + u2 S2 = 1 21 2Q H Q H

Q

 



−
. 

 We first take S1 = 0 . We will then have: 

 

cos  = 2 , ds = S2 , 

 

cos l = 

2
2

1
0

2

2

2

1

1

u
h

u
h






+

 
+  

 

, cos a = 

1 2

1
1

2

2

2

1

1

1

u
h

u
h

 



 −

 
+  

 

, 

 

 =  = 1
2

2

2

1

1

1
u

h



 
+  

 

,  = − 1,  R = R2 = 
2

1

u

−
, 

where: 

2

2

2

1

1
u

h

 
+  

 
 and 1 = ± 1 

 

are determined in such a way that cos n and cos c will prove to be positive. 

 If we next take S2 = 0 then it will follow that: 

 

cos  = 1 , ds = S1 , 
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cos l = 

2
1

2
0

2

2

1

2

1

u
h

u
h






−

 
+  

 

, cos a = 

2 1

2
2

2

2

1

2

1

1

u
h

u
h

 



 +

 
+  

 

, 

 

 =  = 2

2

2

1

2

1
u

h



 
+  

 

,  = 1,   R = R1 = 
1

1

u
, 

where: 

2

2

1

2

1
u

h

 
+  

 
 and 2 = ± 1 

 

are determined in such a way that cos n and cos c will take positive values. 

 Those formulas now imply that: 

 

U = 1 2

1 2R R
−

S S
,  U1 = 31

1 2R R


− ,  U2 = 2 4

1 2R R

 
− ,  

 

 = 1
2 2

2 1

1

1 1

R h



   
+   

   

,  = 2
2 2

1 2

1

1 1

R h



   
+   

   

 . 

 

Moreover, since the geodetic radius of curvature of an isogonal trajectory of the lines of curvature 

possesses the value: 

R = 
ds

U
  , 

 

if c1 and c2 mean the cosines of the angles that the tangents to the isogonal trajectories make with 

the tangents (1 , 1 , 1) [(2 , 2 , 2 ,), resp.] then this equation will follow: 

 

R = 
1 2

1 2

c c

R R

 

−

 . 

 

The quantities R1 and R2 find further employment as a result of the following argument: 

 The family of curves in question is intersected by all of the trajectories that go through the 

point (u, v, w) in a doubly-infinite manifold of points. Each point of that manifold corresponds to 

a system of values , , , 1 , 1 , 1 , 2 , 2 , 2 . If one now draws the radii to the unit sphere that 
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are parallel to the directions , ,  [1 , 1 , 1 , resp., 2 , 2 , 2 , resp.] then one will get the 

following values for the surface element of the sphere (, , ) [(1 , 1 , 1), resp., (2 , 2 , 2), 

resp.]: 

 2 −   dp dq , 

 

 ( )
2

2 2

1 1 1 1( ) ( )p q p q   −     dp dq , resp., 

 

 ( )
2

2 2

2 2 2 2( ) ( )p q p q   −     dp dq , resp., 

 

in which the roots are taken to be positive. 

 The first of these roots is equal to the absolute value of Q . As for the remaining ones, it 

follows that: 

 

 ( )
2

2 2

1 1 1 1( ) ( )p q p q   −     = 
2

1 2sin ( ) sinU U    − − 
 

  = 
1

2Q , 

 

 ( )
2

2 2

2 2 2 2( ) ( )p q p q   −    = 
2

1 2cos( ) cosU U    − − 
 

 = 
2

2Q , 

 

and when one applies the expressions that were found for U1 and U2 , the quantities 
1

Q , 
2

Q
will 

now take the values: 

 
1

Q  = 
10

1 2

Qe

R R


+
r

, 

 
2

Q
 = 

2 0

1 2

Q e

R R


−

r
. 

In the case of e0 = 0, one then gets: 

1
Q

Q





 = 1

2R

r
, 2

Q

Q





 = 2

2R

r
. 

 

In addition to the two points on the tangents (1 , 1 , 1) [(2 , 2 , 2), resp.] whose abscissas are 

R2 [R1, resp.], we get two more distinguished points from the values of R that were given at the 

end of § 3. Namely, H2 = 0 [H1 = 0, resp.] are the equations of the orthogonal trajectories of the 

family of curves whose adjoint tangents coincide with the tangents (1 , 1 , 1) [(2 , 2 , 2), resp.]. 

Thus, from § 3, the equations in question will yield a point on the tangent (1 , 1 , 1) whose 

abscissa is: 

R = R = 

1

1 Q

Q





r
, 
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and a point on the tangent (2 , 2 , 2) whose abscissa is: 

 

R = R = 

2

2 Q

Q





r
. 

 

Those relations then define the generalization of equations (2) and (4) that were presented in 

volume 31 of these Annalen on page pp. 87. 

 By a line of reasoning like the one that was pursued in loc. cit. for surfaces, we will see that R 

and R are the abscissas of the focal points of certain ray bundles. One of those bundles will arise 

when one imagines drawing the lines: 

 

(1 , 1 , 1) and (1 + 1, 1 + 1, 1 + + 1) 

 

that correspond to each of the points: 

 

(u, v, w) and (u + u, v + v, w + w) , 

 

resp. In order to find their main properties, we set: 

 
2

1p  = L1 , 1 2p q   = M1 , 
2

1q  = N1 , 

and 

1p pu  = e1 , 1p q   = f1 , 1q q   = 1f  , 1q qu  = g1 , 

 

moreover. In that way, one gets: 

 

e1 = 3 U1 , f1 = 4 U1 , 1f   = 3 U2 , g1 = 4 U2 . 

Since: 

1 1f f −  = 1 4 2 3

1R

   −
, 

 

one can be dealing with a normal bundle only when R1 is infinitely large, which will be excluded 

along with the vanishing of the quantity: 

 

L1 N1 −
2

1M  = 
1

2Q . 

 

The abscissa of one focal point will be zero, while that of the other will prove to be R, which is 

a quantity that coincides with R2 for e0 = 0. The equation that implies the abscissas 1
r  and 2

r  for 

the limit points of the shortest distance from the ray to its neighboring ray assumes the form: 
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r2 – R r − 
2 2

2

2

1

1

4

h

R

R
 = 0 , 

such that: 

1 2
 −r r  = 2 2 2

1 1

1 1
h

R h
 +R , 

i.e., one has: 

  = 2

1 2

h

 −

R

r r
, 

up to sign. 

 One gets the quantity R as the abscissa of the focal point that does not coincide with the point 

(u, v, w) for the ray bundle (u, v, w, 2 , 2 , 2) in an analogous way, and when one denotes the 

abscissas of the limit points of the shortest distance by 1
r  and 2

r , it will once more follow that: 

 

  = 1

1 2

h

 −

R

r r
, 

 

up to sign. The equations that were presented for   and  define the generalization of the theorem 

that was published in vol. 31 of these Annalen on pp. 92 as (4). 

 

 

§ 5. – The curves of the family are straight lines. 

 

 When the curves of the family considered are straight lines, the u, v, w can always be put into 

the form: 

u = x + r  , v = y + r  , w = z + r  , 

 

in which x, y, z, , ,  are functions of only p and q, and , ,  have the same meanings as before. 

If one calculates the abscissa r of the point on a ray of the surface (x, y, z) and employs the Kummer 

relations: 

e = 
x

p p

 

 
 ,  f = 

x

q p

 

 
 ,  f = 

x

p q

 

 
 ,  g = 

x

q q

 

 
  

 

then one will have: 

e11 = e + r , e12 = f + r , e21 = f + r , e22 = g + r  . 

 

If  denotes one of the numbers 1, 2, 3, 4 then one will further have: 

 

r = r – r , 
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when one denotes the abscissas of the limit points of the shortest distance by r1, r2 and the abscissas 

of the focal points by r3 , r4 . At the same: 

 

 e  = −  (r1 cos2  + r2 sin2 ) , 

 

 f + f = − 2   [r1 cos  cos ( – ) + r2 sin  sin ( – )] , 

 

  g  = −  [r1 cos2 ( – ) + r2 sin2 ( – )] . 

If one then sets: 

 s1 =  
cos( ) cos

sin sin
e f

  

 

−
−

 
, 

 

 s2 =  
cos( ) cos

sin sin
f g

  

 

−
−

 
, 

 

 s3 = − 
sin ( ) sin

sin sin
e f

  

 

−
+

 
, 

 

 s4 = − 
sin ( ) sin

sin sin
f g

  

 

−
+

 
 

then one will have: 

 1 = s1 + r   sin  , 2 = s2 + r   sin ( − ) , 

 

 3 = s3 + r   cos  , 4 = s4 + r   cos ( − ) , 

 

 S1 = s1 dp + s2 dq + r H2 , S2 = s3 dp + s4 dq + r H1 . 

 

One then gets the following expressions for the quantities R and R: 

 

R = 

1

2( )r r Q

Q





−
, R = 

2

1( )r r Q

Q





−
, 

 

such that the endpoints of the abscissas R and R define two straight lines that lie in the principal 

plane and go through the limit points of the shortest distance. Things are different with the 

quantities R1 and R2 . Namely, one then has: 

 

 
1

Q  = 
1

1 2

( )

2

r r Qf f

R R

−−
+ , 
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2

Q
 = 

2

1 2

( )

2

r r Q f f

R R

− −
− , 

 

such that when one considers the relations: 

 
2( )

4

f f −
 = 2Q  (r3 r4 – r1 r2) , r1 + r2 = r3 + r4 

one will get: 

 R1 = 

1 1

2

3 4

1

( )( )

( )
2

r r r r Q

f f
Q Q Q r r



  

− −

−
+ −

, 

 

 R2 = 

1 2

2

3 4

2

( )( )

( )
2

r r r r Q

f f
Q Q r r Q



  

− −

−
− −

. 

 

It follows from this that, except for the case of f = f, the endpoints of the abscissas R1 and R2 define 

two hyperbolas that lie in the principal plane, each of which intersects an asymptote at the point: 

 

r = 1 2

2

1( ) 2

2

Q f f Q Q r

Q Q

  

 

− +
 

or 

r = 1 2

1

22 ( )

2

Q Q r Q f f

Q Q

  

 

− −
 

resp., on the ray (x, h, z). 

 The expressions that were presented for the quantities  ,  ,  , 1 , 1 , 1 , 2 , 2 , 

2 must now be complete differentials. That implies nine relations that nonetheless reduce to 

three, as one easily sees: 

 
1

Q = − 
cos cos ( )

q p

      −
+

 
,   

 
2

Q = 
sin sin ( )

q p

      −
−

 
,   

(1)  Q
 = 1 2U U

q p

 
−

 
. 

When one considers the equations: 

 

  
1

Q = − 
1 2sin ( ) sinU U   − +  , 

  
2

Q = − 
1 2cos( ) cosU U   − +  , 
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the first two of the former relations will imply the formulas: 

 

  U1 = 

cos
( )

sin

q p

p


 



   
−

 −  
−

 
 , 

 

  U2 = 

cos

sin

p q

q






   
−

  
+

 
 , 

 

which are derived directly in U, pp. 73. 

 Finally, we consider the case of f = f, in which a normal system is present. It then follows that: 

 

 s1 = − 
2 sinr  , s2 = − 

2 sin ( )r   − , 

 s3 = − 
1 cosr  , s4 = − 

1 cos( )r   − , 

such that: 

 1 = 
1sin ( )r r  − , 2 = 

2sin ( )( )r r  − − , 

 3 = 
2cos ( )r r  − , 4 = 

1cos( )( )r r  − − . 

 

The surfaces r = const. now define a family of parallel surfaces. 

 The expressions: 

du = (1 1 + 2 3) dp + (1 2 + 2 4) dq , … 

 

that appear for an arbitrary surface of the family must be complete differentials here. In that way, 

three integrability conditions will come about, which nonetheless reduce to the following two: 

 

(2)     

2 1
4 1 3 2

3 4
2 1 1 2

,

.

U U
p q

U U
q p

 
 

 
 

 
− = −  


  − = −

  

 

 

If one denotes the determinant that appears here by – D then it will follow that: 

 

 − D U1 = − 32 1 4
1 1 3 3

p q q p

  
   

  
+ + −

   
, 

 

 − D U2 = − 32 1 4
2 2 4 4

p q q p

  
   

  
+ + −

   
. 



Lilienthal – On the curvature of families of curves. 25 

 

If one now takes: 

du2 + dv2 + dw2 = E dp2 + 2F d pdq + G dq2 

then one will have: 

D2 = E G – F2 

and: 

 − D U1 = 

2

4

arctan
1 1

2 2

E F G
D

q G p p






 
− −

  
, 

 

 − D U2 = − 

2

4

arctan
1 1

2 2

G F G F
D

p G q q q






  
− + −

   
, 

 

from which it is clear that equation (1) agrees with Liouville’s expression for the curvature. 

 Let it be further remarked that equations (2) are identical to the relations (9) that were presented 

in U, pp. 18, when r = 0 . 

 

 Bonn in February 1888. 

 

__________ 

 

 


