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 The most general arrangement by which any point of a space belongs to a well-
defined plane that goes through it is mediated by three functions pi of the variables x1, x2, 
x3 that assign the plane: 

∑ (Xi – xi) pi = 0 
 
to the point.  In the absence of a suitable name, such a system of planes shall be called a 
point-plane system, or briefly a P-E-system (†); I would have preferred the term “null 
system,” but that term is already generally employed for a special case of this association. 
 This association is the one by which the differential equation: 
 

∑ pi dxi = 0 
 

will assign an associated surface element.  It seems that up to now one has always been 
restricted to a closer examination of the case in which the pi satisfy the integrability 
condition.  The planes of the system are then the tangent planes to a simply-infinite 
family of surfaces, so they define a special P-E-system of the first kind whose geometric 
character I emphasized some time ago in a note (*).  In a more recent treatment of the 
general P-E-system, I realized that an entire series of properties whose understanding 
tends to form the domain of surface theory can be ascribed to such P-E-systems in a 
natural way.  Since it seems not uninteresting to me to give a more precise explanation of 
that point, which (to my knowledge) has attracted no attention up to now (** ), I might 
likewise be permitted to elaborate upon some of the viewpoints in my previous note, 
which were suggested only quite briefly and incidentally there, but define an essential 
moment for the present purpose. 
 At the same time, I have pursued the objective of giving a classification of the P-E-
systems.  Although it is based upon projective viewpoints, I have nonetheless preferred to 
avoid the use of projective coordinates.  Thus, I shall take this opportunity to refer to the 

                                                
 (†) Translator: From the German Punkt-Ebenensystem. 
 (*) These Annalen XVI, pp. 556, et seq. 
 (** ) One finds considerations of that kind in the paper by Kummer in Crelle’s Journal, Bd. 57, in regard 
to the theory of rectilinear ray systems. 
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next paper, in which the theory of algebraic surfaces and ray systems will be coupled 
with P-E-systems from the purely projective standpoint. 
 
 

§ 1. 
 

The projective association in P-E-systems. 
 

 If one can make the point x1, x2, x3 correspond to the plane: 
 

(1)  (X1 – x1) p1 + (X2 – x2) p2 + (X3 – x3) p3 = ∑ (Xi – xi) pi = 0,  i = 1, 2, 3, 
 
which goes through it, then the point: 
 

x1 + dx1, x2 + dx2, x3 + dx3, 
 
for which the pi will go to pi + dpi, will be assigned to the plane: 
 
(2) (X1 – x1 – dx1) (p1 + dp1) + (X2 – x2 – dx2) (p2 + dp2) + (X3 – x3 – dx3) (p3 + dp3) = 0. 
 
The two planes intersect in the lines: 
 

 ∑ (Xi – xi) pi  = 0, 
(3) 

 ∑ (Xi – xi) dpi = ∑ pi dxi . 
 
If one now advances the system itself in the plane (1) then one will have: 
 

(4) ∑ pi dxi = 0, 
 
and the two planes (3) intersect along a direction: 
 
 δx1, δx2, δx3, 
which satisfies the equations: 

 ∑   pi δxi  = 0, 

 ∑ dpi δxi = 0. 
 
Any direction for which the increment of the xi is denoted by d thus corresponds 
projectively to a direction δ.  One can next distinguish the case according to whether that 
projectivity is hyperbolic, parabolic, or elliptic.  In order to examine the characteristic 
association of neighboring planes of the system that follows from this more closely, one 
must determine the curves that are enveloped by the lines of intersection of plane that is 
assigned to a point of the plane (1) with the plane (1) itself. 
 In the vicinity of the point xi, they will be characterized by differential equations: 
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 dξ = a11 ξ + a12 η, 
 dη = a21 ξ + a22 η, 
 
for which the form of the integral curves in the neighborhood of the singular point ξ = η 
= 0 is known according to the behavior of the roots of the discriminant: 
 

11 12

21 22

a a

a a

λ
λ

−
−

 = 0. 

 
I will therefore not go into questions of this nature; only the case of the parabolic 
association – i.e., parabolic P-E-systems – will be examined more closely from now on. 
 The projective relationship can also be a special one, in which case, one will call the 
P-E-system special of the second kind. 
 In order to arrive at the condition for the special projectivity, one sets: 
 
  dx1, dx2, dx3 ; 
  δx1, δx2, δx3 
equal to the values: 
 ξ1 + 1λ ξ ′ , ξ2 + 2λ ξ ′ , ξ3 + 3λ ξ ′ ; 
 ξ1 + 1µ ξ ′ , ξ2 + 2µ ξ ′ , ξ3 + 3µ ξ ′ , 

 
resp., which are proportional to them, and for which one must have: 
 

∑ pi ξi = i ip ξ ′∑  = 0. 

The bilinear relationship: 
(5)    A λ µ + B λ + C µ + D = 0 
 
for the λ, µ will then arise, in which: 

 A = i
i k

k

p

x
ξ ξ ∂′ ′

∂∑ , 

 B = i
i k

k

p

x
ξ ξ ∂′

∂∑ , 

 C = i
i k

k

p

x
ξ ξ ∂′

∂∑ , 

 D = i
i k

k

p

x
ξ ξ ∂

∂∑ , 

 
whose determinant AD – BC must vanish. 
 The advance in the arbitrary direction λ will then continually correspond to the 
direction µ = − D / C, while the particular direction λ = − B / A = − D / C is assigned to 
that arbitrary direction. 
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 However, the determinant AD – BC will come about, up to a factor, when one 
multiplies the determinant: 

(6)     ∆ = 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3 0

p p p p

p p p p

p p p p

p p p

, 

 
in which one sets pik = ∂pi / ∂xk , by the product of the two determinants: 
 

1 2 3

1 2 3

1 2 3

ξ ξ ξ
ξ ξ ξ
α α α

′ ′ ′ , 
1 2 3

1 2 3

1 2 3

ξ ξ ξ
ξ ξ ξ
α α α

′ ′ ′
′ ′ ′

, 

 
in which the αi , iα ′  mean arbitrary quantities.  Therefore, ∆ = 0 is the condition for of 

special projectivity.  However, ∆ will be, in turn, and up to a factor, the functional 
determinant of: 

1p

v
, 2p

v
, 3p

v
 

when one sets: 
v = i ip x∑ . 

 
 The identical vanishing of ∆ then expresses the idea that the planes of the P-E-system 
whose coordinates are: 

ui = ip

v
 

 
envelops a surface whose equation can be defined in inhomogeneous, Hessian, plane 
coordinates by perhaps: 

F (u1, u2, u3) = 0. 
 
Here, all of the surface elements envelop only one surface – viz., the order surface of the 
special P-E-system of the second kind – while they will envelop a family of ∞1 surfaces 
for special P-E-systems of the first kind.  One must then emphasize the sub-case in which 
the order surface is a curve (developable, resp.), but I will not go further into these 
particular classes of P-E-systems. 
 The directions that go to themselves under the projective association are of particular 
importance.  They are characterized by the fact that the associated plane of the system 
will rotate around the direction line in question for them, while in any other case they 
will wander around the plane that corresponds to projectively.  Therefore, those 
directions might be called the principal tangents of the system.  They are determined by 
the equations: 

 ∑ pi dxi = 0, 



Voss – On the general theory of point-plane systems. 5 

(7) 

 ∑ dpi dxi = ∑ pik dxi dxk = 0, 
or by: 
 µ dx1 = p2 dp3 – p3 dp2 , 
(8) µ dx2 = p3 dp1 – p1 dp3 , 
 µ dx3 = p1 dp2 – p2 dp1 , 
 

in conjunction with ∑ pi dxi = 0.  The elimination of the dx will lead to the quadratic 
equation: 
(9) µ2 – µ G – ∆ = 0, 
 
which I gave already, in which G represents the left-hand side of the integrability 
condition: 

p1 (p23 – p32) + p2 (p31 – p31) + p3 (p12 – p21) = 0. 
 

 Equations (7) can be solved in different ways, moreover, which I will discuss 
especially here, since the direct derivation of (9) would seem less elegant otherwise.  If 
one replaces dxi with ξi, to abbreviate, then: 
 

pik + pki = 2qik = 2qki , 
moreover, and one will have: 

∑ pi ξi = 0, 
(10) 

 ϕ = ∑ ξi ξk qik = 0, 
 
instead of (7).  One will then find the ratios of the ξi from the equations: 
 
 λ ξ1 = ξ2ϕ 3 − ξ 3ϕ 2 , 
 λ ξ2 = ξ3ϕ 1 − ξ 1ϕ 3 , 
 λ ξ3 = ξ1ϕ 2 − ξ 2ϕ 1 , 
 

in which one has set 
1

2 i

ϕ
ξ

∂
∂

 = ϕ i , and λ2 is equal to the determinant of the qik that are 

edged by the pi, which one will get immediately when one multiplies the i th horizontal 
and vertical rows of that determinant by ξi, and then reduces it directly in a known way 
by an application of (10). 
 By contrast, if one would like to establish the pik then one could write ϕ in two ways: 
 
 ϕ = 1 1 2 2 3 3i i i i i ip p pξ ξ ξ ξ ξ ξ+ +∑ ∑ ∑  

  = 1 1 2 2 3 3i i i i i ip p pξ ξ ξ ξ ξ ξ+ +∑ ∑ ∑ . 

 If one now sets: 
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ψk (x) = ∑ pki xi ,  χk (x) = ∑ pik xi 
 

then by the same process that led to (8) will give two quadratic equations with the roots 
λ1, λ2 ; ρ1, ρ2, which correspond to the same system ξi, ηi, in such a way that: 
 
 ξ1λ1 = p2 ψ 3 ξ − p3 ψ 2 ξ, η1λ 2 = p2 ψ 3 η − p3 ψ 2 η, 
 ξ2λ1 = p3 ψ 1 ξ − p1 ψ 3 ξ, η2λ 2 = p3 ψ 1 η − p1 ψ 3 η, 
 ξ3λ1 = p1 ψ 2 ξ − p2 ψ 1 ξ, η3λ 2 = p1 ψ 2 η − p2 ψ 1 η, 
 
 ξ1ρ1 = p2 χ 3 ξ − p3 χ 2 ξ, η1ρ 2 = p2 χ 3 η − p3 χ 2 η, 
 ξ2ρ1 = p3 χ 1 ξ − p1 χ 3 ξ, η2ρ 2 = p3 χ 1 η − p1 χ 3 η, 
 ξ3ρ1 = p1 χ 2 ξ − p2 χ 1 ξ, η3ρ 2 = p1 χ 2 η − p2 χ 1 η. 
 
 The roots ρ, λ have a very simple connection to each other.  In order to find it, one 
forms, e.g., 2 2 2

1 2 3ξ ξ ξ+ + , and multiplies the result: 

 

λ ( 2 2 2
1 2 3ξ ξ ξ+ + ) = 

1 2 3

1 2 3

1 2 3

p p p

ξ ξ ξ

ψ ψ ψ
 

by the determinant: 

1 2 3

1 2 3

1 2 3p p p

ξ ξ ξ
η η η , 

 
whose value is 2 2 2

1 2 3p p p+ + , when one assumes that the ratios of the ξ, η are determined 

in such a way that: 
  p1 = ξ2 η3 – η2 ξ3 , 
 p2 = ξ3 η1 – η3 ξ1 , 
 p3 = ξ1 η2 – η1 ξ2 . 
One will then get: 

 λ1 = − ∑ ηi pik ξk , 

 λ2 =    ∑ ξi pik ηk , 

 ρ1 = − ∑ ηi pki ξk , 

 ρ2 =    ∑ ξi pki ηk , 
and therefore: 

λ1 + ρ2 = 0 = λ2 + ρ1 , 

λ1 + λ2 = ∑ (pik – pki) (ξi ηk − ξk ηi) = G. 
 
 Finally, by means of the aforementioned conversion of ∆, one will get: 
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λ1ρ1 = − λ1ρ2 = − ρ1ρ2 = ∆ 
 
directly, in which the λ, ρ are determined from the quadratic equation: 
 

x2 ∓  xG – ∆ = 0, 
 
in which the upper sign belongs to λ.  The integrability condition G = 0 is now, at the 
same time, the condition for the involution of the projective association.  B = C is then the 
requisite notation for the latter, or: 
 

2 3 3 2 23 32 3 1 1 3 31 13 1 2 2 1 12 21( )( ) ( )( ) ( )( )p p p p p pξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ′ ′ ′ ′ ′ ′− − + − − + − −  = 0, 

 
so, by means of the relations: 
 

p1 : p2 : p3 = 3 1 1ξ ξ ξ ξ′ ′− : 3 1 1ξ ξ ξ ξ′ ′− : 1 2 2ξ ξ ξ ξ′ ′− , 

 
one will convert it into G = 0. 
 Curves whose tangents are all defined by the directions of advance in the associated 
planes shall be called curves in P-E-systems.  The curves that have direction lines that 
correspond to themselves must then be referred to as curves with principle tangents.  As 
one recognizes immediately, they have the property that their osculating planes coincide 
with the planes of the system.  One then has the following theorem: 
 
 The planes of a P-E-system can be described as the osculating planes of a system of 
curves in two different ways, in which two associated planes will go through any point of 
space. 
 
 The principle tangents will coincide when the discriminant of (10), viz.: 
 

∆′ = 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3 0

q q q p

q q q p

q q q p

p p p

, 

 
vanishes.  It is, at the same time, the discriminant of (9), such that the relation: 
 
(11) 4∆′ = G2 + 4∆ 
will be true. 
 
 The surface ∆′ = 0 is called the focal surface of the ray system of the principle tangent 
curves, and ∆ = 0 is the inflection surface of the P-E-system.  It will then follow from 
(11) that: 
 



Voss – On the general theory of point-plane systems. 8 

 The focal surface and the inflection surface of the system contact each other at any of 
their common points.  
 
 The focal surface always has a certain number of nodes.  A first group of them is 
characterized by the fact that all of the first sub-determinants of ∆′ will vanish for them, 
or that the equations: 

pik + pki = ai pk + ak pi 
 
are true, in which the ai are arbitrary quantities.  At such a location, any direction of 
advance will be a principal tangent direction in the associated plane.  If the stated 
conditions are fulfilled at that place then one will have the identity: 
 

(12)    ∑ ξi ξk pik = ∑ ξi pi ∑ ξi ai . 
 
In order to recognize the circumstances under which it can be fulfilled, I set: 
 

pi = X qi , 
 
in which X might be a function of the xi .  One will then have: 
 

∑ ξi ξk qik = ∑ξi qi 
log

i
i

X
a

x

 ∂′ − ∂ 
= ∑ξi qi ∑ξi bi . 

 
 Since one can dispose of X arbitrarily, one can also convert the arbitrary constants b1, 
b2, b3 into zero.  However, that means that the q1, q2, q3 must be independent of x1, x2, x3 
if an equation of the form (12) is to exist at all.  Moreover, it emerges from this that one 
must set the ai equal to zero in equation (12).  However, one will then have the equations: 

pik + pki = 0, 
whose integrals are: 
 p1 = a1 + b2 x3 – b3 x2 , 
 p2 = a2 + b3 x1 – b1 x3 , 
 p3 = a3 + b1 x2 – b2 x1 . 
 
One then finds the single “planar” P-E-system in which all curves of the system are 
principal tangent curves, namely, the linear complex.  Moreover, it can also be 
recognized from the fact that when equation (12) is valid, a plane pencil of rectilinear 
principal tangents must emanate from every point of space. 
 A second group of double points is found at the places where the pi vanish 
simultaneously; a point of that kind will also be a node of the inflection surface.  The 
association will be completely undetermined here, and all lines that belong to a certain 
second-degree cone will be principal tangents. 
 For rectilinear ray systems, the focal surfaces will have their rays for double tangents.  
In the curve system of the principal tangent curves, this relationship to focal surfaces is 
no longer found to exist.  The direction of the principal tangent at a point of it is then 
determined by the system of linear equations: 
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 ξ1 q11 + ξ2 q12 + ξ3 q13 + λ p1 = 0, 
  ξ1 q21 + ξ2 q22 + ξ3 q23 + λ p2 = 0, 
 ξ1 q31 + ξ2 q32 + ξ3 q33 + λ p3 = 0, 
 ξ1 p1 + ξ2 p2 + ξ3 p3  = 0, 
 
from which, it will follow that: 
 

∑ ξi ξk qik = ∑ ξi ξk pik  = 0. 
 
 By means of this, the equation of the tangent planes to the focal surface will assume 
the following form: 
 

( )
( )
( )
( )

11 12 13 1 1 11 2 12 3 13

21 22 23 2 1 21 2 22 3 23

31 32 33 3 1 31 2 32 3 33

1 2 3 1 1 2 2 3 3

i i i i i i i i

i i i i i i i i

i i i i i i i i

i i i i i i

q q q y p y q y q y q

q q q y p y q y q y q

q q q y p y q y q y q

p p p y q y q y q

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

− + +

− + +

− + +

+ +

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

∑ ∑ ∑

 = 0 

 
when one replaces the running coordinates with Xi − xi yi , as one recognizes immediately 
by means of simple determinant reductions, or, when the determinant of qik does not 
vanish, as one might assume (*): 
 

( )1 1 2 2 3 3k i k i i k i i k iy q y q y qξ ξ ξ ξ+ +∑ ∑ ∑ ∑  = 0. 

 
The plane can therefore include the direction ξi only when: 
 

∑ ξi ξk ξl qikl = 0. 
 
However, in the next paragraph, it will be shown that in this way one can express the idea 
that two immediately-following tangents to the principal tangent curve must coincide at 
such a location, or that the principal tangent must be stationary.  It will now emerge from 
this that: 
 
 The principal tangent curves have vertices at the points of the focal surface, since 
they can advance to real points on only one side of them.  It is only at the points of the 
focal surface at which inflections of these curves are actually present that the focal 
surface will contact them.  In particular, if the principal tangent curves are rectilinear 
then they must contact the focal surface as often as they meet it at associated points. 
 

                                                
 (*) If that determinant vanishes everywhere then ∆′ will be a square; i.e., the focal surface will be 
counted twice, and one cannot naturally speak of contact then. 
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 The curve along which the focal surface is contacted by the principal tangent will not 
itself contact the latter, in general.  If that happens to be true then it will, at the same time, 
be a singular principal tangent curve.  In particular, if this can occur at all points of the 
focal surface then there will exist ∞1 singular curves of that kind − e.g., when the one 
family of principal tangent curves is rectilinear.  Finally, in the special case of rectilinear 
ray systems, the tangent to the singular principal tangent curves will generate the tangents 
to the Kummer developables. 
 

§ 2. 
 

The special P-E-system of the second kind and the inflection surfaces. 
 

 At every point, one finds a certain direction ξi for which the associated plane of the 
system remains parallel to its initial position.  It will be determined by the equations: 
 

 ∑ ξi p1i = λ p1 , 

(1) ∑ ξi p2i = λ p2 , 

 ∑ ξi p3i = λ p3 . 
 

The vanishing of the determinant ∆ or the existence of equations (1), along with ∑ ξi pi = 
0, will then express the idea that a direction exists in the associated plane along which the 
plane of the systems stays stationary.  As one sees, such a plane is, at the same time, the 
inflection contact plane of the corresponding principal tangent curve.  The inflection 
points of the latter will then lie on the inflection surface.  Here, as well, the principal 
tangents will not contact the inflection surface; moreover, that will happen only along a 
curve that is cut by the surface: 
 

(2) 

2
1

11 12 13

2
2

21 22 23

2
3

31 32 33

1 2 3 0

i k
i k

i k
i k

i k
i k

p
p p p

x x

p
p p p

x x

p
p p p

x x

p p p

ξ ξ

ξ ξ

ξ ξ

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∑

∑

∑

 = 0 

 
along the inflection surface in the event that one replaces the ξi in (2) with their values in 
(1).  In particular, that curve can, at the same time, be a principal tangent curve, so there 
will then exist a non-singular principal tangent curve in the system, and if equation (2) is 
fulfilled at all points of ∆ = 0 then a family of ∞1 planar principal tangent curves will be 
present.  However, it is assumed in this that the principal tangent curves have well-
defined osculating planes,  If they are rectilinear then they will generate a family of 
(singular) enveloping curves on the inflection surface under the stated assumptions; this 
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happens, in particular, when the pi are linear functions of the xi, so equation (2) will exist 
to begin with. 
 I shall now consider the case in which ∆ vanishes identically – i.e., all planes of the 
system envelop the order surface F.  There will then exist a doubly-infinite family of 
planar principal tangent curves; in every tangent plane of F there will lie a planar 
principal tangent curve that is composed of the points for which the ratios of the pi 
remain constant (*). 
 Namely, let the equation of the plane associated with the point xi be: 
 

∑ Xi pi = v, v = ∑ xi pi 
and let: 

31 2, ,
pp p

F
v v v

 
 
 

 = 0 = F (u1, u2, u3) 

 
be the equation of the order surface. 
 One now chooses the point 0

ix  in the plane such that: 

 
0
i ix p∑ = v, 

and at the same time, one has: 
0
1
0
2

p

p
 = 1

2

p

p
, 

in which one will have: 
00 0
31 2

0 0 0, ,
pp p

F
v v v

 
 
 

= 0. 

If one then sets: 
0
3 3
0
2 2

p p

p p
−  = 

2

1

p
 

then one will have: 

 
0
1
0

p

v
 = 1

0
3

p

v x λ+
, 

 
0
2
0

p

v
 = 2

0
3

p

v x λ+
, 

 
0
3
0

p

v
 = 3

0
3

p

v x

λ
λ

+
+

. 

Thus: 

31 2
0 0 0
3 3 3

, ,
pp p

F
v x v x v xλ λ λ
 
 + + + 

 = 0. 

 

                                                
 (*) There are ∞2 principal tangent curves, which split into two families.  In the case in the text above, 
one of the families will be planar. 
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 If one now imagines that 0ix  is sufficiently close to xi then this equation will have 

only the root λ = 0.  However, that shows that it will also follow from: 
 

0
1
0
2

p

p
 = 1

2

p

p
 

that: 
0
3
0
2

p

p
 = 3

2

p

p
, 

 
and therefore the equation of planar principal tangent curve will arise: 
 

p1 : p2 : p3 = 0
1p : 0

2p  : 0
3p . 

 
Let such a curve be denoted by C, so all points of it will correspond to the plane of C as 
the associated one.  In order for any point xi of it to determine the other principal tangent 
direction, one considers the equations: 
 

 p1ρ = 11 1 21 2 31 3
1 2 3

F F F
p x p x p x

u u u
ρ ρ ρ

    ∂ ∂ ∂− + − + −    ∂ ∂ ∂     
 

 p2ρ = 12 1 22 2 32 3
1 2 3

F F F
p x p x p x

u u u
ρ ρ ρ

    ∂ ∂ ∂− + − + −    ∂ ∂ ∂     
 

 p3ρ = 13 1 23 2 33 3
1 2 3

F F F
p x p x p x

u u u
ρ ρ ρ

    ∂ ∂ ∂− + − + −    ∂ ∂ ∂     
 

 0 = 1 1 2 2 3 3
1 2 3

F F F
p x p x p x

u u u
ρ ρ ρ

    ∂ ∂ ∂− + − + −    ∂ ∂ ∂     
, 

 
in which one has set: 

v ρ = i
i

F
p

u

∂
∂∑ . 

 
One will get the same thing by differentiating the identity F(u1, u2, u3) = 0 with respect to 
the xi . 
 One then has, e.g.,: 
 

11 21 31
1 2 3

F F F
p p p

u u u

∂ ∂ ∂+ +
∂ ∂ ∂

 = 31 2

1 1 2 3

pp pv F F F

x v u v u v u

 ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 
, 

 
and thus, the first of the stated equations, when one sets: 
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1

v

x

∂
∂

 = p1 + x1 p11 + x2 p21 + x3 p31 . 

 

If one also writes ξi for 
i

F

u

∂
∂

 – ρ xi , to abbreviate, then one will recognize that the 

equations: 

 ∑ pi ξi  = 0, 

 ∑ pik ξi ξk = 0 
 
will be fulfilled; i.e., that the direction of the principal tangent will be determined by ξi .  

As one sees, however, it is the connecting line of the point xi with the point 
i

F

u

∂
∂

, in 

which the associated plane of xi will contact the order surface F.  It will then follow that: 
 
 The second family of the principal tangent curves of the special P-E-systems of the 
second kind will be defined by complex curves of the tangent complex of the order 
surface, and all points of C will be principal tangents that go through a fixed point S that 
lies in the plane of C that is the contact point of that plane with the order surface.  
Furthermore, the contact points of the tangents to the curve C that are drawn from S will 
then belong to the (doubly-counted) focal surface 4∆′ = G2 = 0. 
 
 The curve C will not include the point S, in general, since that will be the case when S 
also belongs to the focal surface, which would emerge immediately from the theorems 
that were stated above.  The curve of intersection of the order surface with the focal 
surface in this case will then be a singular strip of the differential equation that is linked 
with the association of the P-E-system. 
 If, e.g., F(u1, u2, u3) = 0 comes about as a result of the linear equation: 
 

a1 u1 + a2 u2 + a3 u3 = 1 
then the identity: 

∑ pi ai − ∑ pi xi = 0 
 
will exist between the pi .  The principal tangent curves of the second kind have the 
differential equations: 

dx1 : dx2 : dx3 = a1 – x1 : a2 – x2 : a3 – x3 ; 
 

i.e., they define the ray bundle through the representative point a1, a2, a3 of the order 
surface. 
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§ 3. 
 

Rectlinear principal tangent curves. 
 

 At the point xi, one considers the associated plane: 
 

∑ (Xi – xi) pi = 0 
 
and chooses the direction ξi in it in such a way that: 
 

(1)      ∑ ξi pi = 0. 
 
The plane that belongs to the point xi + λξi has the equation: 
 

(2)   ∑ (Xi – xi – λξi) 
2

2i ik k ikl k lp p p
λλ ξ ξ ξ 

+ + + 
 

∑ ∑ ⋯ = 0, 

 
in which the higher differential quotients are denoted by the indices k, l.  In order for the 
plane (2) that is associated with an infinitely-close point to go through the point xi, the 
factor of λ2 must vanish for Xi = xi .  That will give the condition for the principal tangent 
direction.  If the factor of λ3 also vanishes then that principal tangent will be stationary.  
For the latter case, it is necessary that equations (1) must be true and that: 
 

 ∑ ξi ξk pik = 0, 
(3) 

 ∑ ξi ξk ξl pikl = 0. 
 
There is then a surface whose points are associated with principal tangents, in general, 
and on it, a curve (isolated points, resp.) at which that singularity is raised by one or two 
orders.  A closer examination of these cases would correspond completely to the known 
questions that concern tangents that contact surface at multiple points (*). 
 
 The identical vanishing of the resultants of (1), (3) is the condition for the principal 
tangents of the one family to define a rectilinear system of rays.  In that case, which one 
can refer to as a skew P-E-system, the planes associated them with ∞2 plane pencils; that 
requires no further investigation. 
 It might now be assumed that the principal tangent directions coincide at every 
location.  The P-E-system will then have no focal surface, so it is parabolic, and likewise 
an analogue of the developable surface, in the event that the integrability condition is 
fulfilled.  I will show that in this case, the entire system of principal tangents curves is 
rectilinear, so the parabolic P-E-system consists of ∞2 plane pencils whose planes define 
an extraordinary self-conjugate system. 

                                                
 (*) I refer to my following paper for these questions.  
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 As a result of the identical vanishing of ∆′, there are, in fact, functions ξi, λ that 
satisfy the system: 

 ∑ ξi q1i + λ p1 = 0, 
 

 ∑ ξi q2i + λ p2 = 0, 
(4) 

 ∑ ξi q3i + λ p3 = 0, 
 

 ∑ ξi pi  = 0 
 
identically, and the direction of the principal tangent is determined by the associated 
ratios of the ξi, and thus, for every point.  If one now differentiates equations (4) then 
what will come about is: 
 

 ∑ ξi dq1i + ∑ q1i dξi + λ dp1 + p1 dλ = 0, 
 

 ∑ ξi dq2i + ∑ q2i dξi + λ dp2 + p2 dλ = 0, 
(5) 

 ∑ ξi dq3i + ∑ q3i dξi + λ dp3 + p3 dλ = 0, 
 

 ∑ ξi dpi + ∑ pi dξi = 0, 
 
and indeed these relations will be true for arbitrary values of the dxi .  If one now sets the 
latter proportional to the ξi – so dxi = dh ξi – then, from (4), one will have: 
 

∑ ξi dpi = 0, 
and from (5): 

∑ pi dξi = 0. 
 
If one further multiplies the first three equations in (5) by the ξi, and the last one by λ and 
adds them then one will get: 

(7)      ∑ ξi ξk dqik = 0. 
 
However, that equation is, as a direct development will show immediately, identical with 
the second one in (3).  That then says that there exists a system of rectilinear principal 
tangent curves.  In fact, one can now also set the differentials of the ξi proportional to the 
ξi themselves.  For dξi = ξi dk, equations (5) then reduce to the following ones: 
 

dh ki k
i

dq dp

dh dh
ξ λ + 

 
∑  + (dλ – λ dk) pk = 0,  k = 1, 2, 3, 
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which one can satisfy with suitable values of the dh, dk, since the relation (7) exists 
between them, from which, it can be shown that the differentials of the ξi will remain 
continually proportional to these quantities themselves as long as one proceeds in the 
direction ξi itself. 
 Before I go into a more precise analytical characterization of the parabolic P-E-
systems, I would like to add some further remarks, which, at the same time, give a new 
proof of the theorem that was stated just now. 
 The theorem that was proved in § 1 that any P-E-system is endowed with a system of 
principal tangent curves whose osculating planes are the planes of the system can be 
expressed in yet another way.  The directions of the principal tangents are, in general, 
coupled by an irreducible quadratic equation.  If it were reducible then both curve 
systems would decompose into two more.  This will always be the case then when one 
system of curves is given arbitrarily, such that any point in space is uniquely assigned a 
curve in a certain domain.  The osculating planes of that curve will then define a P-E-
system whose one family of principal tangent curves is given immediately.  One then has 
the general theorem: 
 
 Any curve system of stated kind corresponds to a conjugate system that likewise has 
the osculating planes of the original one for its osculating planes. 
 
 This relation is, in general, a reciprocal one; i.e., the one system is the conjugate to 
the other one.  An exception then appears only when the conjugate system is rectilinear.  
That is the case, e.g. – in order to not mention other examples – for the osculating planes 
of a system of common helices with the same axis for which the osculating planes always 
go through the points of the curves on the perpendiculars to the axis, so the conjugate 
curve system consists of just those normals. 
 The question now arises: Under what circumstances can a curve system be conjugate 
to itself?  However, from the previous study, the theorem must be true: 
 
 The only self-conjugate curve systems are represented by the rays of certain rays 
systems. 
 
 Here, I shall give a direct proof of this theorem that seems to be worthy of interest, 
due to its generality. 
 A curve system of the stated kind will be represented by the differential equations: 
 

idx

dt
= pi , 

 
in which the pi are functions of the coordinates xi of the point M.  The osculating plane of 
the curve that goes through the point M has the equation: 
 

∑ (Xi – xi) Ai = 0, 
in which: 
 A1 = p2 P3 – p3 P2 , 
 A2 = p3 P1 – p1 P3 , 
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 A3 = p1 P2 – p2 P1 , 
 
in which equations, the Pi mean the second differential quotients: 
 

2

2
id x

dt
 = Pi = i

k
k

p
p

x

∂
∂∑ . 

 
In order to find the direction of the curve of the conjugate system that goes through the 
point M, one must solve the equations: 
 

 ∑ ξi Ai = 0, 
(8) 

 ∑ ξi ξk Aik = 0, 
in which one again sets: 

Aik = i

k

A

x

∂
∂

. 

 For that, one sets: 
ξi = α pi + γ Pi . 

One will then obtain: 

( ) i
i i

j

A
p P

x
α β ∂+

∂∑ = − α 
1 2 3

1 2 3

31 2

j j j

p p p

P P P

pp p

x x x

∂∂ ∂
∂ ∂ ∂

 – β 
1 2 3

1 2 3

31 2

j j j

p p p

P P P

PP P

x x x

∂∂ ∂
∂ ∂ ∂

. 

 
If one multiplies these relations by α pj + β Pj and sums over j then the second of the 
conditions in (8) will come about: 
 

 αβ 
1 2 3

1 2 3

31 2
j j j

j j j

p p p

P P P

pp p
P P P

x x x

∂∂ ∂
∂ ∂ ∂∑ ∑ ∑

  

 

 + αβ 
1 2 3

1 2 3

31 2
j j j

j j j

p p p

P P P

PP P
p p p

x x x

∂∂ ∂
∂ ∂ ∂∑ ∑ ∑
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 + β 2 
1 2 3

1 2 3

31 2
j j j

j j j

p p p

P P P

PP P
P P P

x x x

∂∂ ∂
∂ ∂ ∂∑ ∑ ∑

 = 0. 

 
As one would expect, one will get the root β = 0 here, in one case, so the desired 
direction will be given by: 

(9)     − 
β
α

 = 
N

S
, 

 
in which N means the sum of the two coefficients of αβ, and S means the sum of the 
coefficients of β 2.  Now, should the direction thus-found again coincide with the original 
one, N must vanish.  Since the examination of the differential equations does not seem 
simple, I prefer to resolve this question in the following way: 
 The condition for the direction pi to be the only one that satisfies equations (8) when 
one replaces the ξi with it comes from the fact that a straight line contacts a conic section, 
i.e., it comes from the system: 
 

31 1 2 1
1 2 3

1 2 1 3 1

2
AA A A A

p p p
x x x x x

   ∂∂ ∂ ∂ ∂+ + + +  ∂ ∂ ∂ ∂ ∂   
 = λ A1, etc. 

or 

 1

1

i
i i

i

AA
p p

x x

∂∂ +
∂ ∂∑  = λ A1, 

 2

2

i
i i

i

AA
p p

x x

∂∂ +
∂ ∂∑  = λ A2, 

 3

3

i
i i

i

A A
p p

x x

∂ ∂+
∂ ∂∑  = λ A3 . 

 
However, by forming the differential quotients of these, one will get the equations: 
 
 p2 M3 − p3 M2 = λ (p2 P3 − p3 P2) + S1, 
(10) p3 M1 − p1 M3 = λ (p3 P1 − p1 P3) + S2, 
 p1 M2 − p2 M1 = λ (p1 P2 − p2 P1) + S3, 
in which one has set: 

Si = 
1 2 3

1 2 3

31 2

i i i

p p p

P P P

pp p

x x x

∂∂ ∂
∂ ∂ ∂

, Mi = i
k

k

P
p

x

∂
∂∑ . 
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One obtains the identity: 

∑ pi Si = 0 
 
from these equations by multiplying them by pi and adding them, while multiplying by Pi 
will give: 

(11)  
1 2 3

1 2 3

1 2 3

P P P

p p p

M M M

 = P2 M3 – P3 M2, Ni = i
k

k

p
P

x

∂
∂∑ , 

 
and thus, the condition S = 0.  I now differentiate the equations (10) in such a way that 
the operation: 

δ = k
k

p
x

∂
∂∑  

 
is performed.  pi then goes to Pi, Pi to Mi, and one then gets from the first of them: 
 

P2 M3 – P3 M2 + p2 δM3 – p3 δM2 = λ (P2 M3 – P3 M2) + δλ (p2 P3 – p3 P2) 
 

+ 
1 2 3

1 2 3

22 2
31 1

1 1 1
l l l

l l l

p p p

P P P

pp p
p p p

x x x x x x

∂∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑

. 

 
If one multiplies these equations by the pi and again adds them then that will give: 
 

(12)  
1 2 3

1 2 3

1 2 3

P P P

p p p

M M M

 = 
1 2 3

1 2 3

22 2
31 1

i l i l i l
i l i l i l

p p p

P P P

pp p
p p p p p p

x x x x x x

∂∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑

. 

However, one now has: 
2

2
id x

dt
 = i

k
k

P
p

x

∂
∂∑ = Mi , 

or, more thoroughly: 
2

2
id x

dt
 = 

2
i i k

k l l
k l k l

p p p
p p p

x x x x

∂ ∂ ∂+
∂ ∂ ∂ ∂∑ ∑ , 

and further: 
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i
k

k

p
P

x

∂
∂∑ = k i

l
l k

p p
p

x x

∂ ∂
∂ ∂∑ , 

so: 
2

i
k l

k l

p
p p

x x

∂
∂ ∂∑ = 

2

2
id x

dt
− i

k
k

p
P

x

∂
∂∑  = Mi − i

k
k

p
P

x

∂
∂∑ . 

 
If one substitutes this in (12) then that will give: 
 

1 2 3

1 2 3

1 2 3

p p p

P P P

N N N

 = 0, 

and from (11): 

1 2 3

1 2 3

1 2 3

p p p

P P P

M M M

 = 0. 

 
 This last determinant is, however, that of the first, second, and third differential 
quotients of the xi; the curves of the system must then all be plane curves.  In this case, 
however, all of their osculating planes will define a special P-E-system of the second 
kind.  Now, since a curve that is enveloped by principal tangents lies in any plane, and 
the direction of the second principal tangent always runs from the curve point to the 
contact point of its plane with the order surface that is associated with the system, the 
directions of the two principal tangents can coincide only when the curves of the system 
are themselves straight lines.  However, the question that was posed before is then 
answered by that. 
 

§ 4. 
 

The determination of all parabolic P-E-systems. 
 
 In what follows, we shall deal with the problem of specifying all P-E-systems with 
coincident principal tangent directions.  Since it emerges from the investigation in the 
previous paragraph that the principal tangent curves define a rectilinear ray system, the 
partial differential equation ∆′ = 0, upon whose integration the solution to the question 
rests, can lead to a linear partial differential equation with one unknown whose 
integration can be performed.  Although it would presumably not be difficult to integrate 
the equation ∆′ = 0 in a purely analytical way, it still seems to me that the geometric 
analysis that we shall make should have some interest. 
 One now considers: 
 f (a, b, x – az, y – bz)  = 0, 
(1) 
 ϕ (a, b, x – az, y – bz) = 0 
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to be the equations of a ray system, or, when one sets: 
 
(2)    x – az = p, y – bz = q, 
 
f(a, b, p, q) = 0, ϕ(a, b, p, q) = 0.  For given values of a, b, and the ones that belong to p, 
q, according to (1), the respective ray of the system will then be the intersection of the 
two planes (2).  Conversely, if one thinks of a, b as functions of x, y, z that are determined 
from (1) and then differentiates the identity relations (1) with respect to these variables 
then that will give: 
 

 
f f a f f b f

z z
a p x b q x p

   ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 = 0, 

 

(3) 
f f a f f b f

z z
a p y b q y q

   ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 = 0, 

 

 
f f a f f b f f

z z a b
a p z b q z p q

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
= 0, 

 
along with analogous equations for ϕ.  If one multiplies them by the a, b, 1 then that will 
give: 

f f a a a
z a b

a p x y z

  ∂ ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂ ∂  
+ 

f f b b b
z a b

b q x y z

  ∂ ∂ ∂ ∂ ∂− + +  ∂ ∂ ∂ ∂ ∂  
= 0, 

(4) 
a a a

z a b
a p x y z

ϕ ϕ   ∂ ∂ ∂ ∂ ∂− + +   ∂ ∂ ∂ ∂ ∂   
+

b b b
z a b

b q x y z

ϕ ϕ   ∂ ∂ ∂ ∂ ∂− + +   ∂ ∂ ∂ ∂ ∂   
= 0. 

 
 However, since the determinant: 
 

Γ = 
f f f f

z z z z
b p b q b q b p

ϕ ϕ ϕ ϕ     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − − −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

 
does not vanish identically, it will then follow that: 
 

 
a a a

a b
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 

(5) 

 
b b b

a b
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0. 

 
 Moreover, the equation of the plane that goes through the point x, y, z is: 
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(X – x) A + (Y – y) B + (Z – z) C = 0. 
 

In order for this to contain the ray: 
 X – aZ = x – az, 
 Y – bZ = y – bz 
completely, one must have: 

Aa + Bb + C = 0. 
 

Therefore, one will have the following expressions for the three functions pi of the P-E-
system: 
 p1 = A, 
 p2 = B, 
 p3 = − (Aa + Bb), 
 
in which the a, b satisfy the partial differential equations (5), while the A and B can still 
be arbitrary functions of the a, b, p, q, x, y, z (*).  One must now ascertain the determinant 
∆′, which might be assumed to take the form: 
 

(6)   ∆′ ≡ 

11 12 21 13 31 1

12 21 22 23 32 2

13 31 23 32 33 3

1 2 3

2

2

2

0

p p p p p p

p p p p p p

p p p p p p

p p p

+ +
+ +
+ +

 . 

 
The following equations are necessary for this to be true, which are obtained easily upon 
considering the identities (5): 
 

 a p11 + b p12 + p13 = 
A A A

a b
x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
 = β1 , 

(6)[sic] 

 a p21 + b p22 + p23 = 
B B B

a b
x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
 = β2 . 

 
 The differential quotients in brackets on the right-hand side are understood to mean 
that one only partially differentiates with respect to x, y, z whenever these quantities enter 
explicitly into them or into the p, q. One likewise finds that: 
 

(7) − (a p31 + b p32 + p33) = a 
A A A

a b
x y z

  ∂ ∂ ∂   + +     ∂ ∂ ∂     
 

  + b 
B B B

a b
x y z

  ∂ ∂ ∂   + +     ∂ ∂ ∂     
 = β3 . 

                                                
 (*) The representation of all skew P-E-systems will be given in that way.  
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In addition, let: 

 a p11 + b p21 + p31 = − 
a b

A B
x x

∂ ∂ + ∂ ∂ 
 = α1 , 

(8) a p12 + b p22 + p32 = − 
a b

A B
y y

 ∂ ∂+ ∂ ∂ 
 = α2 , 

 a p13 + b p23 + p33 = − 
a b

A B
z z

∂ ∂ + ∂ ∂ 
 = α3 , 

 
in which the following relations exist between α, β: 
 
 a β1 + b β2 + β3 = 0, 
(9) 
 a α1 + b α2 + α3 = 0. 
 
 One now multiplies the first two vertical rows of the determinant ∆′ by a, b and then 
adds them to the third one; that row will then have the following elements: 
 
 α1 + β1, 
 α2 + β2, 
 α3 + β3, 
 0. 
 
 If one now proceeds similarly with the horizontal rows then, with the help of the 
relations (7), (8), (9), one will obtain the following value for ∆′: 
 

∆′ ≡ 

11 12 21 1 1

12 21 22 2 2

1 1 2 2

2

2

0 0

0 0

p p p A

p p p B

A B

α β
α β

α β α β

+ +
+ +
+ +

 = [(α1 + β1) B – (α2 + β2) A]2. 

 
 From the fact that the expression ∆′ is a square, it will follow that the rays of the 
system do not contact the focal surface in general, which must usually be the case from § 
1.  Understandably, this cannot happen either, since all rays are already double tangents 
of their real Kummer focal surface.  The equation for ∆′ now reduces to the linear partial 
differential equation: 
 

A B A B A B
a B A b B A B A

x x y y z z

     ∂ ∂  ∂ ∂ ∂ ∂       − + − + −            ∂ ∂ ∂ ∂ ∂ ∂             
−

2 2a b b a
AB B A

x y x y

 ∂ ∂ ∂ ∂− − + ∂ ∂ ∂ ∂ 
 = 0. 

 
 If one then sets A / B = tan µ then the following equation will arise: 
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(10) 
b a

a b
x y z y x

µ µ µ   ∂ ∂ ∂ ∂ ∂   + + + −      ∂ ∂ ∂ ∂ ∂      
sin µ cos µ − 2 2cos sin

b a

x y
µ µ∂ ∂+

∂ ∂
 = 0. 

 
 Finally, one can also set: 
 

a b
x y z

µ µ µ ∂ ∂ ∂   + +    ∂ ∂ ∂    
 = a b

x y z

µ µ µ∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
in which the differentiations in the differential quotients on the right-hand side are 
performed only when the x, y, z appear in µ explicitly, since as long as the p, q enter into 
µ explicitly, no contribution will be made to the three differential quotients, in the 
aggregate.  Moreover, since it follows from (3) that: 
 

 Γ b

x

∂
∂

 = 
f f

p a a p

ϕ ϕ∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 = − h2 , 

 Γ a

y

∂
∂

 = 
f f

b q q b

ϕ ϕ∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 =     h1 , 

 Γ 
b a

y y

 ∂ ∂− ∂ ∂ 
 = 

f f f f

q a p b q a p b

ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 = 2h3 , 

 
the a, b, p, q can be regarded as constants in the differential equation (10), and of the 
variables x, y, z, only z will enter into the quadratic form Γ explicitly.  If one then sets: 
 

2 2
3 1 22 cos sin sin cos

d

h h h

µ
µ µ µ µ+ +

 = dλ 

 
then one will be dealing with the integration of: 
 

(11)    
1

a b
x y z

λ λ λ∂ ∂ ∂+ + +
∂ ∂ ∂ Γ

 = 0. 

 
 However, one then has to integrate the system: 
 

dx : dy : dz : dλ = a : b : 1 : − 
1

Γ
, 

whose integrals are: 
 x – a z = c1 , 
 y – b z = c2 , 

 
z

dλ∂ + Γ 
∫  = c3 . 

 
 If one denotes the coefficients of the quadratic form: 
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Γ = 2f f f f
z

a b a b p q p q

ϕ ϕ ϕ ϕ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
− z 

f f f f

a b a b p b a q

ϕ ϕ ϕ ϕ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

 
by k2, k1, 2k3 and sets tan µ = A / B = ζ then one will have: 
 

2 2
2 3 1 2 3 12 2

dz d

k k z k z h h h

ζ
ζ ζ

+
+ + + +∫ ∫  = c3 . 

 
 A direct calculation now shows that both forms in the integrals have the same 
discriminants; i.e., that: 

2
3k − k1 k2 = 2

3h − h1 h2 = ω. 

 
Now, since when ∆ = b2 – ac, one will have: 
 

22

dz

a bz cz+ +∫ = 
1

log
2

b cz

b cz

 + − ∆ 
 

∆ + + ∆  
 

 
to begin with, one will get: 
 

r = 3 1 3 1

3 1 3 1

k k z h h

k k z h h

ω ζ ω
ω ζ ω

+ − + −
⋅

+ + + +
 = const., 

 
in place of the third integral. 
 The general integral of (11) will then become: 
 
(12)     r = F (p, q, a, b), 
 
in which F means an arbitrary function of the arguments.  Now, ζ determines the location 
of the point z along the plane that is associated with the ray a, b.  From the fact that the 
relationship between z and ζ is a bilinear one, which would emerge from the form of (12), 
the following theorem will come about: 
 
 The planes of the parabolic P-E-systems are associated projectively with the points 
along the rectilinear principal tangent curves (*). 
 
 The projective relationship takes on an especially simple form for the rays for which 
ω = 0, and the sum of two reciprocal linear entire functions in z (ζ, resp.) will appear in 
place of the logarithm.  Now, Γ = 0 is the equation of the Kummer focal surface of the 
ray system, as long as one substitutes the a, b, p, q as functions of the x, y, z.  By contrast, 
the equation Γ = 0 will determine the two focal points at which the associated ray will 

                                                
 (*) I hereby recall the analogous property that is true for skew surfaces.  
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contact that focal surfaces when one fixes a, b along that ray (*).  One likewise sees from 
this that the ray will be a principal tangent to that surface when ω = 0. 
 Finally, I would like to point a special solution of the equation ∆′ = 0.  The equation f 
= 0 is, as is known, the expression for a ray complex.  Every point of space through 
which a ray of the system goes will be associated with a plane by it, namely, the 
tangential plane to the complex cone that belongs to that point along that ray.  The 
equation of that tangential plane is: 
 

(X – x) 
f f

z
a p

 ∂ ∂− ∂ ∂ 
 + (Y – y) 

f f
z

b p

 ∂ ∂− ∂ ∂ 
 − (Z – z) 

f f f f
z b z a

b q a p

    ∂ ∂ ∂ ∂− + −    ∂ ∂ ∂ ∂    
 = 0. 

 
 If one now sets: 

 A = 
f f

z
a p

∂ ∂−
∂ ∂

, 

 B = 
f f

z
b p

∂ ∂−
∂ ∂

 

then one will have: 

 − (α1 + β1) = 
f a b

A B
p x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

 − (α2 + β2) = 
f a b

A B
q y y

∂ ∂ ∂+ +
∂ ∂ ∂

= 0. 

 
With that, the condition ∆′ = 0 will be satisfied everywhere. 
 
 One will thus obtain a parabolic P-E-system when one associates the points P of the 
line l in a ray system that defines the intersection of two arbitrary complexes with the 
respective tangential planes at the point P of the associated complex cone of f along the 
line l. 

                                                
 (*) If one would like to prove that all rays of the system contact that focal surface then it would be 
simplest to regard x, y, z as functions of a, b and assume that f, ϕ have the forms: 
 

q – f (a, b) = 0, p − ϕ (a, b) = 0. 
Γ = 0 then takes on the form: 

f f
z z

a b a b

ϕ ϕ∂ ∂ ∂ ∂
+ + −

∂ ∂ ∂ ∂
  
  
  

= 0, 

and one has: 
 dx = z da + a dz + dϕ, 
 dy = z db + b dz + df . 
 If one now chooses z such that: 
 z da + dϕ = 0, 
 z db + df  = 0, 
 
which is possible, since Γ = 0, then one will have dx : dy = a : b, with which, we have proved that the ray 
contacts the focal surface at both focal points. 
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 Finally, if one examines the determinant ∆ for an arbitrary skew P-E-system then one 
will easily find that it decomposes into two factors: 
 

∆ = 
a b a b A A A B B B

B A B A A B B a b A a b
x x y y x y z x y z

        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − + + + − + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          
 

 
 The basis for this is easy to see.  When the second factor is set to zero, the ratio A / B 
will yield a value that depends upon only a, b, p, q, but is constant along that ray.  Its 
vanishing will then relate to the point at which the associated plane stays stationary along 
the ray.  By contrast, the first factor refers to rays for which the planes that belong to 
neighboring rays will coincide; that can happen only when that plane is itself the focal 
plane of the Kummer focal surface of the ray system. 
 
 

§ 5. 
 

Curvature and lines of curvature of P-E-systems. 
 

 If one advances the plane that is associated with the point xi infinitely little then the 
direction of advance dxi / ds will define an angle with the normal to the plane: 
 

∑ (xi – ξi) (pi + dpi) = 0 
whose cosine is: 

(1)      
2 2 2
1 2 3

i idx dp

ds p p p+ +
∑ . 

 
That value measures the magnitude of the normal curvature of the plane of the system 
along the respective direction.  One will obtain the mutually-perpendicular directions of 
the principal curvatures from this, and they will simultaneously bisect the angle that is 
defined by the principal tangents.  Any P-E-system is then associated with a system of 
curves that intersect perpendicularly everywhere, whose tangents are the principal 
curvature directions.  The values of the normal curvatures are coupled to those of the 
principal curvatures by a relation that is entirely analogous to one of Euler’s.  In 
particular, the curvature can also be constant in all directions at any location, which is the 
case for, e.g., the system: 
 p1 = a1 + b3 x2 – b2 x3 + k x1 , 
  p2 = a2 + b1 x3 – b3 x1 + k x2 , 
 p3 = a3 + b2 x1 – b1 x2 + k x3 . 
 
 On the other hand, one can ask about the curves along which these normals to the 
planes of the system define a developable, or along which the associated planes rotate 
around a direction that is perpendicular to the tangent to the curve.  They shall be referred 
to as lines of curvature.  If one sets: 
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N = 2 2 2
1 2 3p p p+ +  

then the differential of: 

xi + 
N

λ
pi 

 
must vanish.  Since obviously one must set dλ = 0, one will get the conditions: 
 

dxi + 
N

λ
dpi + λ pi d

1

N
= 0. 

 
 Accordingly, the differential equations of the lines of curvature will be: 
 

(2)    
1 2 3

1 2 3

1 2 3

dx dx dx

p p p

dp dp dp

 = 0, ∑ pi dxi = 0, 

 
while the two associated radii of curvature λ1, λ2 will be determined from the quadratic 
equation: 

(3)     

11 12 13 1

21 11 23 2

31 32 11 3

1 2 3 0

p p p p

p p p p

p p p p

p p p p

µ
µ

µ

+
+

+
 = 0, 

 
whose roots µ1, µ2 are related to λ1, λ2 by: 
 

1

µ
 = 

N

λ
. 

 
 Moreover, one can also assume that N = 1, as I did in my previous note (*).  I have 
preserved the terminology “lines of curvature” for the aforementioned curves, since the 
following theorem will justify its validity, as one will recognize immediately from the 
differential equation (2) (the definition of the curves, resp.): 
 
 If two P-E-systems intersect in a line of curvature that is common to both of them then 
they will intersect along it at a constant angle, 
and in particular: 
 
 If a line of curvature is planar, but not rectilinear then the normals to the system 
along it will define a constant angle with their plane, 
 

                                                
 (*) Loc. cit., pp. 557.  
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and finally: 
 
 If two P-E-system intersect at constant angle along a curve that is a line of curvature 
for one of them then it will also be a line of curvature for the other one. 
 
 The directions ξi of the lines of curvature are, as one sees, determined from the 
equations: 
 ξ1 (µ + p11) +  ξ2 p12 +  ξ2 p13  = ρ p1 , 
 
 ξ1 p21 + ξ2 (µ + p22) +  ξ3 p23  = ρ p2 , 
(4) 
 ξ1 p31 +  ξ2 p32 + ξ3 (µ + p33) = ρ p3 , 
 
  ξ1 p1 +  ξ2 p2 +  ξ2 p3  = 0. 
 
 If one denotes the values of the ξ that are associated with the roots µ1, µ2 by ξ′ and ξ″, 
resp., then that will give: 
 

 (µ1 − µ2) ∑ i iξ ξ′ ′′  = hG, 

 h2 N 2 = 1 − ∑ 2( )i iξ ξ′ ′′ . 

 
 If one then calls the angle between the lines of curvature ω then one will have: 
 

cot ω = 
1 2( )

G

Nµ µ−
. 

 
 The lines of curvature can then be mutually perpendicular only if the integrability 
condition G = 0 is fulfilled. 
 
 Along with the lines of curvature, one can consider the system of curves that intersect 
them at right angles.  Their directions iη ′ , iη ′′  are given by the relations: 

 
 η1 (p11 + µ) +  η2 p21 +  η2 p31  = σ p1 , 
 η1 p12 + η2 (p22 + µ) +  η3 p32  = σ p2 , 
 η1 p13 +  η2 p23 + η3 (p33 + µ)  = σ p3 , 
  η1 p1 +  η2 p2 +  η2 p3  = 0. 
 
 Finally, one will also get the principal tangents with the help of the directions of the 
lines of curvature.  Namely, should: 
 

ξi = i iξ α ξ′ ′′+  

 
be the direction of a principal tangent then since: 



Voss – On the general theory of point-plane systems. 30 

 ∑ ξi pki = ρ1 pk – µ1 kξ ′  + α (ρ2 pk – p2 kξ ′′ ), 

 ∑ ξi ξk pki = − µ1
2 2 2

2 1 2( )i i i iξ µ α ξ α µ µ ξ ξ′ ′′ ′ ′′− − +∑ ∑ ∑ , 

 
one will get the following quadratic equation for the determination of α: 
 

µ1 + µ2 α2 – α (µ1 + µ2) k = 0, 
when one sets (*): 

i iξ ξ′ ′′∑  = k, 2
iξ ′∑ = 2

iξ ′′∑ = 1. 

 
 It emerges from the latter equation for α that: 
 
 The lines of curvature will bisect the angle that is defined by the directions of 
principal tangents only when either k = 0 − i.e., the P-E-system is integrable – or µ1 + µ2 
= 0 – i.e., when the sum of the two radii of curvature that are associated with the 
direction of the lines of curvature is equal to zero.  In that latter case, which represents 
the analogue of the minimal surface, if the principal tangents are also perpendicular to 
each other then one will have a = ± 1.  In particular, the lines of curvature can also 
coincide at any location.  I shall thus content myself by proving their existence for a very 
simple P-E-system, since the integration of the partial differential equation that arises 
when one sets the discriminant of (3) equal to zero does not seem to take a simple form.  
If one sets: 

p1 = x1,  p2 = x2,  p3 = X,  
 
in which X might be an arbitrary functions of x1, x2, x3 (** ), then one will obtain the 
equations: 
 ξ1 (µ + 1) = λ x1, 
 ξ2 (µ + 1) = λ x2, 

1 2 3
1 2 3

X X X

x x x
ξ ξ ξ µ

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
 = λ X, 

ξ1 x1 + ξ2 x2 + ξ3 X = 0 
 
for the determination of the directions of the lines of curvature. 
 One then has either µ = − 1, λ = 0.  If one then replaces ξi with dxi then one will have: 
 

dX = dx3 , 
x1 dx1 + x2 dx2 + X dx3 = 0, 

so: 
X – x3 = c, 

2 2 2
1 2 3 32x x x cx+ + +  = C1 . 

                                                
 (*) This assumption is admissible as long as not one of the directions of the lines of curvature meets the 
imaginary circle.  In that case, however, they will, at the same time, be principal tangents. 
 (** ) This P-E-system define the analogue of a family of surfaces of rotation with a common axis.  As one 
sees, all normals to the planes of the system will meet the x3-axis. 
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 The lines of curvature of the one kind are then spherical, so they will be cut out from 
a system of spheres from the family of surfaces X − x3 = c. 
 By contrast, one has the expression for the other root µ: 
 

µ = 

2 2 2
1 2 1 2

1 2 3
2 2 2
1 2

( )
X X X

X x x x x X
x x x

x x X

 ∂ ∂ ∂+ − + − ∂ ∂ ∂ 
+ +

. 

 
 Now, in order for the double root µ = − 1 to appear, X must satisfy the partial 
differential equation: 

2 2
1 2

1 2
1 2 3

1
x xX X X

x x
x x x X

  +∂ ∂ ∂+ − − ∂ ∂ ∂ 
 = 0, 

whose general integral is: 

f (X – x3, 1

2

x

x
, 2 2

1 2x x+ + X 2) = 0, 

 
in which f means an arbitrary function of the argument.  With that, all systems of the 
designated kind with coincident lines of curvature will be found. 
 If one demands that the other root µ must have the constant value a to begin with then 
one will get the differential equation: 
 

2 2
1 2 1 2

1 2 3

( )
X X X

X x x x x a
x x x

  ∂ ∂ ∂+ − + +  ∂ ∂ ∂   
 − X2 (1 + a) = 0, 

 
which is to be integrated for an arbitrary function: 
 

f (p, q, r) = 0, 
in the event that one sets: 
 

p = 1

2

x

x
, q = 

2 2 2
1 2

2 2 1
1 2( )a

X x x

x x +

+ +
+

, r = x3 + s, s = 
1

1

2 a

dt

q t t+ −∫ , t = 2 2
1 2x x+ . 

 
 However, when one sets: 

 u1 = 1
2 2
1 2 3

x

x x x X+ +
, 

 u2 = 2
2 2
1 2 3

x

x x x X+ +
, 

 u3 = 
2 2
1 2 3

X

x x x X+ +
, 

 
this equation will be converted into: 
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2
31

32 2
2 1 2

, ,
uu

f u
u u u

 
 + 

 = 0 

or 
F (u1, u2, u3) = 0, 

 
which depends upon merely u1, u2, u3 . 
 The P-E-system is then special of the second kind, as one would expect, moreover.  
By contrast, for a = + 1, one will get a system that possesses equal and opposite principal 
curvature radii at every location. 
 Finally, should the radius of curvature for the second system of lines of curvature be a 
constant that is equal to a then one will have to integrate the equation: 
 

0 = 
( )3

2 2 2
2 2 1 2

21 2
1 2

1 2 3

1X x xx xX X X
x x X

x x X x a X

 + + +∂ ∂ ∂+ − − + ∂ ∂ ∂  
 

, 

 
which can be accomplished in any case, in general. 
 One obtains the following particular system from the differential equations (2) of the 
lines of curvature immediately.  Namely, if one sets: 
 
 T = 2 2 2

1 2 3p p p+ +  = 0, 

 ∑ pi dxi = 0 
 
then equations (2) will be fulfilled.  The curves of the system that are described on the 
surface T = 0 will then define a system of ∞1 lines of curvature.  If one then sets: 
 
 2

idx∑  = 0, 

 ∑ pi dxi = 0 

 ∑ dpi dxi = 0 
 
then equations (2) will again be fulfilled.  However, the ratios of the dx determine the 
principal tangents, which meet the imaginary circle.  One then sees the existence of ∞1 
principal tangent curves, which are, at the same time, lines of curvature.  In particular, 
there is a system for which all principal tangent curves of the one kind are lines of 
curvature; one obtains the partial differential equation that the pi must then satisfy by 
eliminating the dxi from the foregoing three equations, etc. (*). 
 Finally, I shall emphasize a case in which the equations of the lines of curvature can 
be ascertained immediately.  Namely, if: 
 

                                                
 (*) Both systems of principal tangents can, at the same time, be lines of curvature; that will be the case, 
e.g., for the system with constant curvature that mentioned on page 27. 
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pi = αi f + xi , 
 

where f means an arbitrary function of the x1, x2, x3, then the differential equations of the 
lines of curvature will be: 

f  ∑αi dxi + ∑xi dxi = 0, 
(4) 

df 
1 2 3

1 2 3

1 2 3

x x x

dx dx dx

α α α  = 0. 

 
 The one family of it is then f = c, from which, it follows that: 
 

2cαx + (x2 + y2 + z2) = c1 . 
 

 These are then spherical curves, which will be cut out of a family of spheres by a 
family of surfaces f = c.  On the other hand, if one sets: 
 

 ∑αi λi = 0, 

 ∑λi xi = 0 
 
then the determinant in (4) will vanish, and one will have to integrate the first of 

equations (4) in conjunction with ∑λi xi = 0.  These curves of curvature will then be 
planar; their planes will all go through the coordinate origin.  Now, if f has the form: 
 

k 2 2 2
1 2 3( )x x x+ +  + ax + b = 0 

 
then the two system of lines of curvature will be planar, so the ones of the first kind will 
be cut out of the spheres f = const. by the planes (2cαx – c1) k + c – (αx + b) = 0.  Since 
any line in the plane is a line of curvature, one will then have an example of three P-E-
systems (two of which are, admittedly, of a special nature) that intersect reciprocally in 
lines of curvature, and therefore everywhere at constant angles along them. 
 
 

§ 6. 
 

On a linear P-E-system. 
 

 If one sets the pi equal to entire linear functions of the xi, so: 
 

(1)    pi = ∑ aik xk + ai4, i, k = 1, 2, 3, 
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then since the second differential quotients of the pi vanish in general, all principal 
tangent curves will be rectilinear, and they will define a second-order ray system whose 
lines are cut out by the planes: 

∑ (Xi – αi) pi = 0 
 
from the lines of intersection of the conic section at infinity: 
 

(2)      ∑ aik x1 xk = 0 
 
that go through the point x.  This system defines the analogue of the generators of the 
pencil of second-order surfaces into which it will, in turn, go when the pi satisfy the 
integrability condition; i.e., when the aik = aki .  It is obvious that the projective 
association of the tangent planes of a second-degree surface with their contact points 
along a generator will then remain the same for the points of a ray and its associated 
plane. 
 If no linear relation with constant coefficients exists between the pi then one can 
choose the coordinate origin in such a way that the ai1 vanish – i.e., the system is referred 
to its center.  That might be assumed in what follows, as long as it will lead to no 
contradiction.  One will easily deduce the properties of the system for which the center 
lies at infinity. 
 The focal surface of the system is a second-degree conic surface whose vertex is the 
exceptional point that is situated at the coordinate origin, for which the pi vanish.  
However, the inflection surface is also such a cone whose equation is given by (2).  Both 
cones contact along two lines, along which the plane that is associated with the point 
simultaneously coincides with the common tangent planes to that cone; all generators of 
the inflection are, at the same time, principal tangent curves.  The ray system of the latter 
is also of class two, since only two lines of that system can be found in any plane in 
general.  Now, one can find infinitely many rays in any tangent plane of the inflection 
surface that all go through the contact point at infinity on it.  The focal surface can vanish 
identically only when all sub-determinants of the aik + aki are zero; i.e., when the 
equations are valid: 
 
 a11 = 2

1α , a22 = 2
2α  a33 = 2

3α , 

 a12 = α1α2 + a3, a23 = α2 α3 + a1, a13 = α1α3 − a2 , 
 a21 = α2α1 − a3, a32 = α3 α2 − a1, a31 = α3α1 + a2 , 
 
from which, one will get: 
 p1 = a1 αx + a3 x2 – a2 x3 , 
 p2 = a2 αx + a1 x3 – a3 x1 , 
 p3 = a3 αx + a2 x1 – a1 x2 ; 
 
i.e., it will give a ray system of class and order one that is defined by the lines of 
intersection of the line at infinity: 

αx = 0 
and the lines x1 : x2 : x3 = a1 : a2 : a3 . 
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 In order to bring the general case of the pi into a simple form, one sets: 
 
 a12 – a21 = 2a3 , 
 a31 – a13 = 2a2 , 
 a23 – a32 = 2a1 , 
 aik + aki = 2αik = 2αki , 

 ψ = ∑αik xi xk . 
 One will then have: 

 p1 = 
1

1

2 x

ψ∂
∂

 + a3 x2 – a2 x3 , 

 p2 = 
2

1

2 x

ψ∂
∂

 + a1 x3 – a3 x1 , 

 p3 = 
3

1

2 x

ψ∂
∂

 + a2 x1 – a1 x2 , 

and 

(3) ∑ pi dxi = 1
2 dψ + 

1 2 3

1 2 3

1 2 3

dx dx dx

x x x

a a a

. 

 
 If one now transform the form ψ to its principal axes then that will give: 
 

ψ = 2
i iyλ∑ , 

 
and upon multiplying by the determinant of the transformation, which might have the 
value + 1, one will get: 

∑ pi dxi = 1
2 dψ + 

1 2 3

1 2 3

1 2 3

dy dy dy

y y y

b b b

. 

 
 One can then always bring the pi into the form: 
 
 p1 = λ1 x1 + a3 x2 – a2 x3 + c1, 
(4) p2 = λ2 x2 + a1 x3 – a3 x1 + c2, 
 p3 = λ3 x3 + a2 x1 – a1 x2 + c3, 
 
in which the constants can be dropped as long as the center is at a finite point.  Moreover, 
the equation of the focal surface will be: 
 

(5)   
2
i

i

p

λ∑ = 0 = ( ) ( )22 2 2 2
1 2 3 1 1 2 2 3 3( )i i i i ix a a a a xλ λ λ λ λ λ λ λ+ + +∑ ∑ , 
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which is the inflection surface: 
2

i ixλ∑ = 0. 

 
 Since the focal surface will be contacted by all principal tangents, there will exist a 
family of singular principal tangent curves; it will be generated by the Kummer 
developable of the ray system.  The equations of these curves can be derived easily.  A 
point xi of the focal surface will then correspond to the direction of the principal tangent 
dx1, dx2, dx3 : 
 λ1 dx1 = dµ p1 , 
 λ2 dx2 = dµ p2 , 
(6) λ3 dx3 = dµ p3 , 

 ∑ pi dxi  = 0. 
 
 Upon multiplying the first three equations by a1, a2, a3 (x1, x2, x3, resp.), since: 
 

 ∑ ai pi  = ∑ ai λi xi + ∑ ai ci , 

 ∑ xi pi  = ∑ λi
2
ix    + ∑ xi ci , 

(7) 

 
d

dµ
∑ λi ai xi  = ∑ λi ai xi + ∑ ai ci , 

 
1

2

d

dµ
∑ λi

2
ix  = ∑ λi 2

ix    + ∑ xi ci . 

 
 One will obtain the equation for the focal surface from this by a suitable choice of 
integration constants; in particular, one will get equation (5) when the ci are equal to zero.  
The last of equations (6) will then seem superfluous.  If one then multiplies the first three 
of (6) by the factors k1, k2, k3 and sets: 
 
 λ1 k1 + a2 k3 – a3 k2 = ω λ1 k1 , 
 λ2 k2 + a3 k1 – a1 k3 = ω λ2 k2 , 
 λ3 k3 + a1 k2 – a2 k1 = ω λ3 k3 , 
 
from which, it will follow that: 

3 2

3 1

2 1

1

1

1

a a

a a

a a

ω
ω

ω

− −
− −

− −
 = 0, 

 
then one will get two other roots ω1, ω2, in addition to the root ω = 1, which will yield 
two relations of the form: 

 log i i i

d
k x

d
λ

µ
′∑  = ω1 , 
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 log i i i

d
k x

d
λ

µ
′′∑  = ω2 , 

 
from which, one will immediately infer the missing integral: 
 

( ) 2

i i ik x
ω

λ ′∑  = const. ( ) 1

i i ik x
ω

λ ′′∑ . 

 
By contrast, when an identity of the form: 
 

∑ ai pi = 1 
 
exists between the pi , one will have, with no further analysis: 
 

d

dµ
∑ λi ai xi = 1, 

 
which is an equation that will provide the system of curves in conjunction with the first of 
(7) and that of the focal surface. 
 The method of integration that was developed for the second-degree surfaces no 
longer seems justified for the integration of the equations of the lines of curvature.  Lines 
of curvature are curves of the system that are described on the cone: 
 

2
ip∑  = 0. 

 
A second system will be defined by the four planar pencils of rays of principal tangents 
whose centers lie at the points of intersection of the inflection surface with the imaginary 
circle.  In addition, that easily implies the existence of three systems of lines of curvature 
that lie in three planes that go through the center.  Namely, if one sets: 
 
 α1λ1 + a2 α3 – a3 α2 = ρ α1 , 
 α2λ2 + a3 α1 – a1 α3 = ρ α2 , 
 α3λ3 + a1 α2 – a2 α1 = ρ α3  
 
then, by means of the cubic equation: 
 

1 3 2

3 2 1

2 1 3

a a

a a

a a

λ λ
λ λ

λ λ

− −
− −

− −
 = 0, 

 
that will provide three systems of quantities αi, which might be denoted by αi, βi, γi, that 
correspond to the roots ρ1, ρ2, ρ3, resp.  If one now multiplies the equation: 
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1 2 3

1 2 3

1 2 3

p p p

dp dp dp

dx dx dx

 = 0 

by the determinant: 

1 2 3

1 2 3

1 2 3

dx dx dx

p p p

α α α
 

 
and the corresponding one in which one replaces the αi with βi and γi then the relations: 
 

 dX1 = ρ1 
1

d

Sρ −
T

, 

(8) dX2 = ρ2 
2

d

Sρ −
T

, 

 dX3 = ρ3 
3

d

Sρ −
T

 

 
will come about, in which one sets: 
 

X1 = log ∑αi xi, X2 = log ∑βi xi, X3 = log ∑γi xi, 
 

T = log 2 2 2
1 2 3p p p+ + , S = 

2

2

i i

i

dx

dx

λ∑
∑

. 

 
That will yield the equations: 
 

∑αi xi = 0, ∑βi xi = 0, ∑γi xi = 0 
 

as particular integrals, from which, in conjunction with ∑ pi dxi = 0, one can easily find 
the curves of curvature that lie in these planes. 
 A general integral is given only in the special case for which one of the roots ρ is 

equal to zero.  From (5), the equation of the focal surface will then reduce to ∑αi xi λi = 
0, and a family of lines of curvature will be planar.  I have not yet arrived at the 
integration of equations (8) in a symmetric form.  Moreover, the second-order differential 
equation with constant coefficients will follow from them: 
 

1 2 3

1 1 2 2 3 3

1 2 3

dX dX dX

dX dX dX

ρ ρ ρ
ρ ρ ρ  = 0, 
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while the linear equation ∑ pi dxi = 0 will be transformed into: 
 

∑ Pi dXi = 0. 
 
The desired curves of curvature will then be mapped onto the curves of the latter P-E-
system, whose tangents meet a fixed conic section at infinity. 
 
 Dresden, 8 June 1883. 
 

________ 
 


