On the invariant theory of systems of PFAFF equations

By E. Von Weber in Munich

Translated by D. H. Delphenich

1. - If a system of PFAFF equations:

$$
\begin{equation*}
\nabla_{s} \equiv d x_{m+s}-\sum_{i=1}^{m} a_{s i} d x_{i}=0 \quad(s=1, \ldots, n-m) \tag{1}
\end{equation*}
$$

in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is given, and if $d x_{1}, d x_{2}, \ldots, d x_{n}\left(\delta x_{1}, \delta x_{2}, \ldots, \delta x_{n}\right.$, resp.) are two independent systems of variations for the x then from a remark of Engel (${ }^{1}$), the system of equations:

$$
\begin{align*}
& d x_{m+s}=\sum_{i=1}^{m} a_{s i} d x_{i}, \quad \delta x_{m+s}=\sum_{i=1}^{m} a_{s i} \delta x_{i}, \tag{2}\\
& \sum_{i=1}^{m}\left(d a_{s i} \delta x_{i}-\delta a_{s i} d x_{i}\right)=0 \quad(s=1, \ldots, n-m) \tag{3}
\end{align*}
$$

will be invariantly coupled with the system (1). Equations (3), which we would like to refer to briefly as the bilinear covariants of the system (1), will reduce to the form:

$$
\begin{equation*}
\sum_{k=1}^{m} \sum_{i=1}^{m} a_{i k s} d x_{i} \delta x_{k}=0 \quad(s=1, \ldots, n-m) \tag{4}
\end{equation*}
$$

by means of (2). In this, one has:

$$
\begin{equation*}
a_{i k s} \equiv-a_{k i s} \equiv A_{i} a_{s k}-A_{k} a_{s i}, \tag{5}
\end{equation*}
$$

when one sets:

$$
\begin{equation*}
A_{i} f \equiv \frac{\partial f}{\partial x_{i}}+\sum_{s=1}^{n-m} a_{s i} \frac{\partial f}{\partial x_{m+s}} \quad(i=1, \ldots, m), \tag{6}
\end{equation*}
$$

to abbreviate. The rank $\left({ }^{2}\right) K$ that the matrix:

[^0]\[

$$
\begin{equation*}
\left\|\sum_{k=1}^{m} a_{i k s} \lambda_{k}\right\| \quad(i=1, \ldots, m, s=1, \ldots, n-m) \tag{7}
\end{equation*}
$$

\]

possesses for arbitrary values of the x_{1}, \ldots, x_{n}, and the quantity λ is consequently an invariant of the system of equations (1). In what follows, we will refer to the number K as the character of the system (1). If $K=0$ - i.e., all $a_{i k s}$ vanish - then the system (1) will be integrable without restriction, and when one introduces suitable new variables, it will take on the form:

$$
d y_{1}=0, \quad d y_{2}=0, \quad \ldots, \quad d y_{n-m}=0
$$

The number $n-m$ of equations (1) is therefore the only further invariant of the system (1). The study of the next-higher case $K=1$ defines the subject of the present article.
2. - We start with a consideration that is valid for any arbitrary Pfaff system (1). Because of (6), the most general infinitesimal transformation:

$$
\begin{equation*}
X f \equiv \sum_{i=1}^{n} \xi_{i} \frac{\partial f}{\partial x_{i}} \tag{8}
\end{equation*}
$$

that satisfies the conditions:

$$
\begin{equation*}
\xi_{m+s} \equiv \sum_{i=1}^{m} a_{s i} \xi_{i} \quad(s=1, \ldots, n-m) \tag{9}
\end{equation*}
$$

will have the form:

$$
\begin{equation*}
\sum_{i=1}^{m} \xi_{i} A_{i} f, \tag{10}
\end{equation*}
$$

in which the ξ_{i} mean arbitrary functions of the x. From Engel (${ }^{1}$), the family of infinitesimal transformation is invariantly coupled with the system (1). We would next like to determine those transformations $X f$ of the family (10) that take the system of equations (1) to itself $\left({ }^{2}\right)$; i.e., that satisfy the identities:

$$
\begin{equation*}
X \nabla_{s} \equiv 0 \quad(s=1, \ldots, n-m) \tag{11}
\end{equation*}
$$

by means of (1). Since the left-hand side of (11) can be written in the form:

$$
d \xi_{m+s}-\sum_{i=1}^{m} a_{s i} d \xi_{i}-\sum_{i=1}^{m} X a_{s i} \cdot d x_{i} \equiv d\left(\xi_{m+s}-\sum_{i=1}^{m} a_{s i} \xi_{i}\right)+\sum_{i=1}^{m}\left(d a_{s i} \cdot \xi_{i}-X a_{s i} \cdot d x_{i}\right),
$$

the conditions (11) will go to the following ones:

[^1]\[

$$
\begin{equation*}
\sum_{k=1}^{m} \xi_{k} a_{i k s}=0 \quad(i=1, \ldots, m ; s=1, \ldots, n-m) \tag{12}
\end{equation*}
$$

\]

by means of (1) and (9). Hence, $m-h$ is the rank of the matrix:

$$
\begin{array}{||cccccccccc||}
0 & a_{121} & \cdots & a_{1 m 1} & 0 & a_{122} & \cdots & a_{1 m 2} & 0 & \cdots \tag{13}\\
a_{211} & 0 & \cdots & a_{2 m 1} & a_{212} & 0 & \cdots & a_{2 m 2} & a_{213} & \cdots \\
\cdots & \cdots \\
a_{m 11} & a_{m 21} & \cdots & 0 & a_{m 12} & a_{m 21} & \cdots & 0 & a_{m 13} & \cdots
\end{array} \|
$$

iff there exist h linearly-independent transformations:

$$
\begin{equation*}
X_{1} f, X_{2} f, \ldots, X_{h} f \tag{14}
\end{equation*}
$$

of the family (10) that take the system of equations (1) to itself. Engel showed that the equations:

$$
\begin{equation*}
X_{1} f=0, \quad X_{2} f=0, \ldots, \quad X_{h} f=0 \tag{15}
\end{equation*}
$$

define a complete system $\left({ }^{1}\right)$. That assertion can also be verified in this way $\left({ }^{2}\right)$: If:

$$
X_{i} f=\sum_{l=1}^{n} \xi_{i l} \frac{\partial f}{\partial x_{l}}, \quad X_{k} f=\sum_{l=1}^{n} \xi_{k l} \frac{\partial f}{\partial x_{l}}
$$

are two infinitesimal transformations of the family (10) that take the system (1) to itself then that will also be true for the transformation $\left(X_{i} X_{k}\right)$. In order to show that ($X_{i} X_{k}$) again belongs to the family:

$$
\begin{equation*}
\lambda_{1} X_{1} f+\lambda_{2} X_{2} f+\ldots+\lambda_{h} X_{h} f \tag{16}
\end{equation*}
$$

it will suffice to prove that $\left(X_{i} X_{k}\right)$ is included in (10). One now has:

$$
\begin{aligned}
\left(X_{i} X_{k}\right) & \equiv\left(\sum_{l=1}^{m} \xi_{i l} A_{l} f, \sum_{l=1}^{m} \xi_{k l} A_{l} f\right) \\
& \equiv \sum_{k=1}^{m} \sum_{l=1}^{m}\left(\xi_{i l} A_{l} \xi_{k j} \cdot A_{j} f-\xi_{k l} A_{l} \xi_{i j} \cdot A_{j} f\right)+\sum_{j, l=1}^{m} \xi_{i j} \xi_{k l}\left(A_{j} A_{l}\right) \\
& \equiv \sum_{j=1}^{m} A_{j} f\left[\xi_{i l} A_{l} \xi_{k j}-\xi_{k l} A_{l} \xi_{i j}\right]+\sum_{j, l=1}^{m} \xi_{i j} \xi_{k l}\left(A_{j} A_{l}\right) .
\end{aligned}
$$

[^2]However, since one has:

$$
\begin{equation*}
\left(A_{j} A_{l}\right) \equiv \sum_{s=1}^{n-m} a_{j l s} \frac{\partial f}{\partial x_{m+s}} \tag{17}
\end{equation*}
$$

identically, the second term in the expression for ($X_{i} X_{k}$) will vanish identically, due to (12), which was to be shown.

If we assume, to fix ideas, that equations (15) are soluble for $\frac{\partial f}{\partial x_{m-h+1}}, \ldots, \frac{\partial f}{\partial x_{m}}$ then the $n-h$ solutions $y_{1}, y_{2}, \ldots, y_{n-h}$ of the system (15) will be mutually-independent with respect to $x_{1}, \ldots, x_{m-h}, x_{m+1}, \ldots, x_{n}$. If we write:

$$
\begin{equation*}
y_{n-h+k}=x_{n-h+k} \quad(k=1,2, \ldots, h) \tag{18}
\end{equation*}
$$

then we can introduce the y as new variables in place of the x, which will make the family (16) take on the form:

$$
\begin{equation*}
\sum_{k=1}^{h} \sigma_{n-h-k} \frac{\partial f}{\partial y_{n-h+k}} \tag{19}
\end{equation*}
$$

in which one understands the σ to mean arbitrary functions of y_{1}, \ldots, y_{n}. If the system (1) now goes to:

$$
\begin{equation*}
\sum_{i=1}^{n} \beta_{s i} d y_{i} \quad(s=1, \ldots, n-m) \tag{20}
\end{equation*}
$$

under our transformation of variables and the most general transformation (8) of the family (10) goes to:

$$
\sum_{i=1}^{h} \eta_{i}\left(y_{1}, \ldots, y_{n}\right) \frac{\partial f}{\partial y_{i}}
$$

then one must have:

$$
\begin{equation*}
\sum_{i=1}^{n} \beta_{s i} \eta_{i} \equiv 0 \quad(s=1, \ldots, n-m) \tag{21}
\end{equation*}
$$

since the relations (9) express an invariant relationship between the infinitesimal transformation (8) and the system (1). However, since the infinitesimal transformation (19) belongs to the family (10) for any arbitrary form of the σ, equations (21) must be fulfilled for:

$$
\eta_{i} \equiv 0 \quad(i=1, \ldots, n-h), \quad \eta_{k} \equiv \sigma_{k} \quad(k=n-h+1, \ldots, n)
$$

i.e., the coefficients of the differentials of the variables in the system (20) must all vanish. The $\beta_{s i}$ can depend upon only y_{1}, \ldots, y_{n-h}, since equations (20) admit all transformations (19), moreover. Conversely, if the system (20) possesses that property then it will admit all transformations (19); i.e., equations (12) have h and only h systems of solutions. That then implies the:

Theorem I:

In order for a Pfaff system (1) to be reducible to a system of equations in $n-h$ variables (and no less) by introducing new variables, it is necessary and sufficient that the matrix (13) must possess the rank $n-h$.
3. - From now on, we introduce the assumption that the system (1) has character one. Now, since not all bilinear covariants vanish identically, to fix ideas, we can assume that the first of the covariants (4) is not zero. One will then have identities of the form:

$$
\begin{equation*}
a_{i k s} \equiv \mu_{s} a_{i k 1} \quad(s=2, \ldots, n-m, i, k=1, \ldots, m) \tag{22}
\end{equation*}
$$

(which are always fulfilled in the case $m=2$). Equations (12) reduce to the following ones:

$$
\begin{equation*}
\sum_{i=k}^{m} \xi_{k} a_{i k 1}=0 \quad(i=1,2, \ldots, m) \tag{23}
\end{equation*}
$$

Hence, if $2 v$ is the rank of the skew-symmetric matrix:

$$
\begin{equation*}
\left\|a_{i k 1}\right\| \quad(i, k=1, \ldots, m) \tag{24}
\end{equation*}
$$

then corresponding to the system of $m-2 v$ independent solutions of equations (23):

$$
\begin{equation*}
\xi_{1}^{(k)}, \boldsymbol{\xi}_{2}^{(k)}, \ldots, \boldsymbol{\xi}_{m}^{(k)}, \quad(k=1,2, \ldots, m-2 v) \tag{25}
\end{equation*}
$$

there will be an ($m-2 v$)-parameter family of infinitesimal transformations that is invariantly coupled with (1), namely:

$$
\begin{equation*}
\rho_{1} X^{(1)} \cdot f+\rho_{2} X^{(2)} \cdot f+\ldots+\rho_{m-2 v} X^{(m-2 v)} \cdot f, \tag{26}
\end{equation*}
$$

which will take the system (1) to itself and will be contained in the family (10). In this, one sets:

$$
X^{(k)} f \equiv \sum_{i=1}^{n} \xi_{i}^{(k)} \frac{\partial f}{\partial x_{i}},
$$

and the $\xi_{m+s}^{(k)}$ will be included in the quantities (25) by means of the relations (9). We briefly refer to the number $2 v$ as the rank of the system (1).
4. - If one introduces the solutions:

$$
\begin{equation*}
y_{1}, y_{2}, \ldots, y_{n-m+2 v} \tag{27}
\end{equation*}
$$

of the complete system:

$$
\begin{equation*}
X^{(1)} f=0, \quad X^{(2)} f=0, \quad \ldots, \quad X^{(m-2 v)} f=0 \tag{28}
\end{equation*}
$$

as new variables in equations (1) then those equations will reduce to a system of $n-m$ equations in the variables (27) that we will think of as being solved in the form:

$$
\begin{equation*}
d y_{2 v+s}=\sum_{i=1}^{2 v} \beta_{s i}\left(y_{1}, \ldots, y_{n-m+2 v}\right) d y_{i} \quad(s=1,2, \ldots, n-m) . \tag{29}
\end{equation*}
$$

The bilinear covariants of (29) naturally reduce by means of (29) to a single one; i.e., if one sets:

$$
\begin{aligned}
& B_{i} f \equiv \frac{\partial f}{\partial y_{i}}+\sum_{i=1}^{n-m} \beta_{s i} \frac{\partial f}{\partial y_{2 v+s}} \quad(i=1,2, \ldots, 2 v), \\
& B_{k} \beta_{s i}-B_{i} \beta_{s k} \equiv b_{i k s}
\end{aligned}
$$

then one will have:

$$
b_{i k s} \equiv \rho_{s} b_{i k 1} \quad(s=2, \ldots, n-m ; i, k=1, \ldots, 2 v),
$$

and the rank of the system (29), which agrees with that of the matrix:

$$
\begin{equation*}
\left\|b_{i k 1}\right\| \quad(i, k=1,2, \ldots, 2 v), \tag{30}
\end{equation*}
$$

will be $2 v$. If one sets:

$$
\begin{equation*}
y_{1}=c_{1} \tag{31}
\end{equation*}
$$

in (29), in which c_{1} means an arbitrary constant, then one will get a Pfaff system in $n-m$ $+2 v-1$ variables of character one that has rank $2 v-2$. In fact, the rank of the matrix:

$$
\left\|b_{i k 1}\left(c_{1}, y_{2}, \ldots, y_{n-m+2 v}\right)\right\| \quad(i, k=1,2, \ldots, 2 v),
$$

cannot be $>2 v-2$, since it is skew-symmetric and of odd order, but it also cannot be < $2 v-2$ as long as c_{1} remains arbitrary, since otherwise the determinant (30) would have rank $<2 v$.

The function y_{1} in this is an arbitrary solution of the complete system (28) (in the case of $m=2 n$, it will be an arbitrary function of x) that is subject to only the one constraint that the relation $d y_{1}=0$ must not impair the linear independence of equations (1); i.e., y_{1} cannot be a common solution of the equations:

$$
\begin{equation*}
A_{1} f=0, \quad A_{2} f=0, \quad \ldots, \quad A_{m} f=0 \tag{32}
\end{equation*}
$$

The possible integrals of (32) are naturally included among those of (28).
The invariance of the rank $2 v$ now implies the following:

Theorem II:

If the Pfaff system (1) has character one and rank $2 v$, and one further expresses one of the variables x - say, x_{1} - in terms of the x_{2}, \ldots, x_{n} and the arbitrary constant c_{1} by means of the relation (31), in which y_{1} is an arbitrary solution of the system (28) that is independent of the integrals of the system (32), but an arbitrary function of the x_{i} in the case $m=2 v$, and one substitutes the value thus-obtained in the system (1) then it will be converted into a system (1') with $n-1$ variables that has character one and rank $2 v-2$.
5. - We can once more apply the same process to the system (1'). We first form the $m-2 v+1$-parameter complete system in the $n-1$ variables x_{2}, \ldots, x_{n} that belongs to (1^{\prime}) and is analogous to equations (28). Let $y_{2}^{(1)}$ be an arbitrary solution of it that satisfies the condition that y_{1} did before, and naturally depends upon c_{1}, in addition to x_{2}, \ldots, x_{n}. If we then eliminate the variable x_{2} from (1^{\prime}) by means of the relation $y_{2}^{(1)}=c_{2}$ then we will obtain a system ($1^{\prime \prime}$) that consists of $n-m$ equations in $n-2$ variables and has rank $2 v-$ 4. We can then once more reduce it to a system ($1^{\prime \prime \prime}$) of rank $2 v-6$ by a relation $y_{3}^{(1)}=$ c_{3}, etc. After the $v^{\text {th }}$ step, we will arrive at a system $\left(1^{(\nu)}\right)$ in $n-v$ variables that has rank zero; i.e., it is integrable without restriction and can take the form:

$$
d \varphi_{s}\left(c_{1}, c_{2}, \ldots, x_{v+1}, \ldots, x_{n}\right)=0 \quad(s=1, \ldots, n-m) .
$$

The equations:

$$
\begin{equation*}
y_{1}=c_{1}, y_{2}^{(1)}=c_{2}, \ldots, y_{v}^{(v-1)}=c_{v}, \quad \varphi_{s}=c_{s+v} \quad(s=1,2, \ldots, n-m) \tag{33}
\end{equation*}
$$

will then define an integral equivalent to (1) for arbitrary values of the c_{i}; i.e., equations (1) will be a consequence of the relations:

$$
d y_{1}=0, \quad d y_{2}^{(1)}=0, \quad \ldots, \quad d y_{v}^{(\nu-1)}=0, \quad d \varphi_{s}=0
$$

If one then understands $y_{i}\left(y_{v+s}\right.$, resp.) to mean those functions of x_{1}, \ldots, x_{n} that arise from $y_{i}^{(i-1)}\left(\varphi_{s}\right.$, resp.) when one eliminates the c_{i} from them in succession by means of equations (33) then the system (1) can obviously be brought into the following reduced form:

$$
\begin{equation*}
d y_{V+s}=\sum_{i=1}^{v} \eta_{s i} d y_{i} \quad(s=1,2, \ldots, n-m) \tag{34}
\end{equation*}
$$

in which the functions $\eta_{i s}$ of the variables x can be calculated by means of linear equations by comparing the two systems (1) and (34) as soon as the $y_{1}, y_{2}, \ldots, y_{v}, y_{v+1}$, \ldots, y_{v+n-m} are known. In order to exhibit that reduced form, one must ascertain an integral of:
an $m-2 v$-parameter complete system in n variables,

```
" " " " n-2v+1- " ",
```

\qquad

$$
" \quad " \quad " \quad " n-v+1 \quad \text { ", }
$$

and finally, all integrals of an $(m-v)$-parameter complete system in $n-v$ variables. The orders of the operators that are necessary for this are equal to:

$$
n-m+2 n, \quad n-m+2 n-2, \quad \ldots, \quad n-m+2, \quad n-m, n-m-1, \ldots, 3,2,1,
$$

resp., when one uses the Lie-Mayer method.
6. - The two cases $v>1$ and $v=1$ exhibit a completely different behavior in the further treatment of the reduced form (34). Namely, one has the:

Theorem III:

A system of $n-m$ Pfaff equations whose character is one and whose rank is $2 v>2$ always possesses $n-m-1$ independent integrable combinations.

Since one has:

$$
\begin{equation*}
\left(A_{i} A_{k}\right) \equiv a_{i k 1} \cdot B f \quad(i, k=1, \ldots, m) \tag{35}
\end{equation*}
$$

identically due to (17) and (22), in which one sets:

$$
\begin{equation*}
B f \equiv \frac{\partial f}{\partial x_{m+1}}+\sum_{s=2}^{n-m} \mu_{s} \frac{\partial f}{\partial x_{m+s}}, \tag{36}
\end{equation*}
$$

clearly our theorem can also be expressed:
If one forms all equations:

$$
\begin{equation*}
\left(A_{i} A_{k}\right)=0 \tag{37}
\end{equation*}
$$

from a system of linear partial differential equations (32) and obtains just one new equation:

$$
\begin{equation*}
B f=0 \tag{38}
\end{equation*}
$$

then equations (32), (38) will represent a complete system, assuming that the rank of the matrix (24) is greater than two.

Since the assumption that was just made will break down in the case of $m=2$, we can assume that $m \geq 3$. If i, k, l are any three indices in the sequence $1, \ldots, m$ then one will have the Jacobi identity:

$$
\begin{equation*}
\left(\left(A_{i} A_{k}\right) A_{l}\right)+\left(\left(A_{k} A_{l}\right) A_{i}\right)+\left(\left(A_{l} A_{i}\right) A_{j}\right) \equiv 0, \tag{39}
\end{equation*}
$$

or, from (35):

$$
\left(a_{i k 1} B f, A_{l}\right)+\left(a_{k l 1} B f, A_{i}\right)+\left(a_{l i 1} B f, A_{k}\right) \equiv 0,
$$

so:

$$
\begin{equation*}
a_{i k 1}\left(B, A_{l}\right)+a_{k l 1}\left(B, A_{i}\right)+a_{l i 1}\left(B, A_{k}\right) \equiv B f \cdot\left(A_{l} a_{i k 1}+A_{i} a_{k l 1}+A_{k} a_{l i 1}\right) \tag{40}
\end{equation*}
$$

However, one has:

$$
\left(\left(A_{i} A_{k}\right) A_{l}\right) \equiv\left(\sum_{s=1}^{n-m} a_{i k s} \frac{\partial f}{\partial x_{m+s}}, A_{l}\right)
$$

identically, so if one replaces the other two terms in (39) with corresponding expressions then it will follow from evaluating the bracket symbols that the expression:

$$
\begin{aligned}
& \sum_{s=1}^{n-m}\left[A_{i} a_{i k s}-\sum_{r=1}^{n-m} a_{i k r} \frac{\partial a_{s l}}{\partial x_{m+r}}\right] \frac{\partial f}{\partial x_{m+s}} \\
+ & \sum_{s=1}^{n-m}\left[A_{i} a_{i k s}-\sum_{r=1}^{n-m} a_{k l r} \frac{\partial a_{s i}}{\partial x_{m+r}}\right] \frac{\partial f}{\partial x_{m+s}} \\
+ & \sum_{s=1}^{n-m}\left[A_{k} a_{l i s}-\sum_{r=1}^{n-m} a_{l i k} \frac{\partial a_{s k}}{\partial x_{m+r}}\right] \frac{\partial f}{\partial x_{m+s}}
\end{aligned}
$$

will vanish identically. In particular, when one recalls (22) and (36), the identical vanishing of the coefficients of $\frac{\partial f}{\partial x_{m+1}}$ will imply that:

$$
A_{i} a_{i k 1}+A_{i} a_{k l 1}+A_{k} a_{l i 1} \equiv a_{i k 1} B a_{1 l}+a_{k l 1} B a_{1 i}+a_{l i 1} B a_{1 k},
$$

so the identity (40) can be written:

$$
\begin{equation*}
\Phi_{0 i} a_{k l 1}+\Phi_{0 k} a_{k l 1}+\Phi_{0 l} a_{l i 1} \equiv 0 \quad(i, k, l=1,2, \ldots, m) \tag{41}
\end{equation*}
$$

when one sets:

$$
\begin{equation*}
\Phi_{0 l} \equiv-\Phi_{0 l} \equiv\left(B A_{l}\right)-B f \cdot B a_{1 l}, \tag{42}
\end{equation*}
$$

to abbreviate. All of the four-rowed principal sub-determinants in the skew-symmetric ($m+1$)-rowed determinant:

$$
\left|\begin{array}{ccccc}
0 & \Phi_{01} & \Phi_{02} & \cdots & \Phi_{0 m} \tag{43}\\
\Phi_{10} & 0 & a_{121} & \cdots & a_{1 m 1} \\
\Phi_{20} & a_{211} & 0 & \cdots & a_{2 m 1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\Phi_{m 0} & a_{m 11} & a_{m 21} & \cdots & 0
\end{array}\right|
$$

that include elements of the first row and column will vanish then. From known theorems on skew-symmetric matrices, either absolutely all four-rowed principal subdeterminants of (43) will vanish - i.e., the rank of the matrix (24) will be two - or all $\Phi_{0 i}$ will be identically zero; i.e., one will have:

$$
\begin{equation*}
\left(B A_{i}\right)=B f \cdot B a_{1 i} \quad(i=1,2, \ldots, m) \tag{44}
\end{equation*}
$$

which was to be proved.
7. - Since equations (32), (38) always defines a complete system in the case $v>1$, the equations:

$$
\begin{equation*}
\nabla_{s}-m_{s} \nabla_{1}=0 \quad(s=2,3, \ldots, n-m) \tag{45}
\end{equation*}
$$

will represent a system that is integrable without restriction. Let:

$$
\begin{equation*}
z_{2 v+2}=c_{1}, \quad z_{2 v+3}=c_{2}, \quad \ldots, \quad z_{2 v+n-m}=c_{n-m-1} \tag{46}
\end{equation*}
$$

be the integral equations of (45). Their left-hand sides will then be mutually-independent with respect to $x_{m+2}, x_{m+3}, \ldots, x_{n}$. If one eliminates the latter from the system (1) by means of (46) then it will be converted into a single Pfaff equation:

$$
\begin{equation*}
d x_{m+1}=\sum_{i=1}^{m} \beta_{i}\left(x_{1}, x_{2}, \ldots, x_{m+1}, c_{1}, c_{2}, \ldots, c_{n-m-1}\right) d x_{i} \tag{47}
\end{equation*}
$$

Now, that can be brought into the normal form:

$$
\begin{equation*}
d \varphi_{2 v+1}=\varphi_{v+1} d \varphi_{1}+\varphi_{v+2} d \varphi_{2}+\ldots+\varphi_{2 v} d \varphi_{\nu} \tag{48}
\end{equation*}
$$

in which the φ means $2 v+1$ independent functions of x_{1}, \ldots, x_{m+1}. If one lets z_{k} denote what φ_{k} becomes when one replaces the c_{i} with their values in (46) then the system of equations (1) will take the normal form:

$$
\left\{\begin{array}{l}
\text { a) } d z_{2 v+1}=z_{v+1} d z_{1}+z_{v+2} d z_{2}+z_{2 v} d z_{v} \tag{49}\\
\text { b) } d z_{2 v+2}=0, \quad d z_{2 v+3}=0, \quad \cdots \quad d z_{2 v+n-m}=0
\end{array}\right.
$$

which will make the functions:

$$
\begin{equation*}
z_{1}, z_{2}, \ldots, z_{n-m+2} \tag{50}
\end{equation*}
$$

mutually independent. The fact that the Pfaff equation (47) can, in fact, be brought into the normal form (48) already follows from the fact that any other assumption on the number of terms in the right-hand side of (49a) would be incompatible with the rank $2 v$ of the system (1). One will then have the:

Theorem IV:

A system of Pfaff equations with character one possesses no other invariants besides the number $n-m$ of equations and the rank $2 v$ in the case where $2 v>2$.

If one considers the functions (50) and any other $m-2 v$ variables z_{i} to be new independent variables then the system (28) will take the form:

$$
\frac{\partial f}{\partial z_{n-m+2 v+s}}=0 \quad(s=1,2, \ldots, m-2 v) .
$$

The functions (50) are then the solution to the system (28). As in no. 5, one can choose z_{1} to be an integral of equations (28) that is independent of the solutions (46) of the complete system (32), (38). The further reduction follows just as it did in no. 5. However, if one determines the common integral (46) of the system (32), (38) in advance then, as is known from the theory of the Pfaff problem, the determination of z_{1}, z_{2}, \ldots, $z_{v}, z_{2 v+1}$, will generally require:

$$
2 v+1,2 v-1, \ldots, 5,3,1
$$

operations, respectively, which represents a simplification in comparison to the method in no. 5.
8. - When written in terms of the independent variables z_{1}, \ldots, z_{n}, the family (10) will take the following form:

$$
\sum_{h=1}^{\nu} \sigma_{h}\left(\frac{\partial f}{\partial z_{h}}+z_{v+h} \frac{\partial f}{\partial z_{2 v+1}}\right)+\sum_{h=v+1}^{2 v} \tau_{h} \frac{\partial f}{\partial z_{v+k}}+\sum_{k=n-m+2 v+1}^{n} \omega_{h} \frac{\partial f}{\partial z_{k}},
$$

in which the σ, τ, ω mean arbitrary functions of all z_{i}. That family includes the following one:

$$
\begin{equation*}
\tau_{1} \frac{\partial f}{\partial z_{v+1}}+\sum_{k=n-m+2 v+1}^{n} \omega_{k} \frac{\partial f}{\partial z_{k}} . \tag{51}
\end{equation*}
$$

The infinitesimal transformations of that family are the only ones that will change the left-hand side of a Pfaff equation that is obtained from (49) by linear combination into an expression of the form $\lambda d z_{1}$ by means of (49). The complete system:

$$
\begin{equation*}
\frac{\partial f}{\partial z_{v+1}}=0, \quad \frac{\partial f}{\partial z_{k}}=0 \quad(k=n-m+2 v+1, \ldots, n) \tag{52}
\end{equation*}
$$

possesses the integrals:

$$
\begin{equation*}
z_{1}, z_{2}, \ldots, z_{v}, z_{v+2}, z_{v+3}, \ldots, z_{2 v+n-m} . \tag{53}
\end{equation*}
$$

If we then wish to determine the most general infinitesimal transformation (8) of the family (10) that fulfills the $n-m$ identities:

$$
\begin{equation*}
X \nabla_{s} \equiv \sigma_{s} d z_{1} \quad(s=1,2, \ldots, n-m) \tag{54}
\end{equation*}
$$

by means of (1) then due to the invariance of the stated properties of $X f$, we must obtain an expression for the most general transformation of the family (51) and the complete system (52) in the original variables x_{1}, \ldots, x_{n}. Similarly to what was done in no. 2, the linear equations:

$$
\begin{equation*}
\sum_{k=1}^{m} \xi_{k} a_{i k 1}=\sigma_{1} A_{i} z_{1} \quad(i=1, \ldots, m) \tag{55}
\end{equation*}
$$

will follow from the conditions (54), and one will have:

$$
\begin{equation*}
\sigma_{s} \equiv \mu_{s} \sigma_{1} \quad(s=2,3, \ldots, n-m) \tag{56}
\end{equation*}
$$

in which the μ_{s} are defined by (22). Since z_{1} satisfies the system (28), by assumption, one will have the identities:

$$
\sum_{i} \xi_{i}^{(k)} A_{i} z_{1} \equiv 0 \quad(i=1,2, \ldots, m-2 v)
$$

It follows immediately from this that the rank of the matrix that belongs to the system of equations (55) is $2 v$. Those equations then possess $m-2 v+1$ linearly-independent systems of solutions, namely, the $m-2 v$ systems (25) that correspond to the assumption $\sigma_{1} \equiv 0$, and another one:

$$
\begin{equation*}
\xi_{1}^{(m-2 v+1)}, \ldots, \xi_{m}^{(m-2 v+1)}, \sigma_{1} \quad\left(\sigma_{1} \not \equiv 0\right) \tag{57}
\end{equation*}
$$

The equations:

$$
\begin{equation*}
0=X^{(k)} f \equiv \sum_{i=1}^{n} \xi_{i}^{(k)} \frac{\partial f}{\partial x_{i}} \quad(k=1,2, \ldots, m-2 v+1) \tag{58}
\end{equation*}
$$

then represent the complete system with the integrals (53). If z_{2} is an arbitrary solution of it that is independent of z_{1} and the functions (46) then the rank of the matrix that belongs to the system of equations:

$$
\sum_{k=1}^{m} \xi_{k} a_{i k 1}=\tau_{1} A_{i} z_{1}+\tau_{2} A_{i} z_{2} \quad(i=1, \ldots, m)
$$

will be, in turn, $2 v$. Those equations will then possess $m-2 v+2$ linearly-independent solutions, namely, the system (25), for which the τ_{1} and τ_{2} vanish, and furthermore, (57), in which $\tau_{1}=\sigma_{1}, \tau_{2} \equiv 0$, and finally, another one for which $\tau_{2} \not \equiv 0$. One will then get the complete system:

$$
X^{(k)} f=0 \quad(k=1,2, \ldots, m-2 v+2)
$$

which has the functions $z_{1}, \ldots, z_{v}, z_{v+3}, z_{n-m+2}$. The proofs of those assertions then follows by analogy with the previous ones from the existence of a family of transformations that change any arbitrary combination of equations (49) into an expression of the form $\lambda_{1} d z_{1}+\lambda_{2} d z_{2}$. In general, then will imply the following: If the functions $z_{1}, \ldots, z_{r}(r \leq v)$ are determined from the normal form (49) then the equations:

$$
\sum_{k=1}^{m} \xi_{k} a_{i k 1}=\omega_{1} A_{i} z_{1}+\omega_{2} A_{i} z_{2}+\ldots+\omega_{r} A_{i} z_{r}
$$

will possess $m-2 v+r$ independent systems of solutions. If $\xi_{1}^{(k)}, \ldots, \xi_{m}^{(k)}$ are the associated system of values for ξ_{i} then the complete system:

$$
\sum_{i=1}^{n} \xi_{i}^{(k)} \frac{\partial f}{\partial x_{n}} \equiv X^{(k)} f=0 \quad(k=1,2, \ldots, m-2 v+r)
$$

[in which the $\xi_{m+s}^{(k)}$ are ascertained from (9)] will have the solutions $z_{1}, z_{2}, \ldots, z_{v}, z_{v+r+1}$, $z_{v+r+2}, \ldots, z_{n-m+2 v}$, and the function $z_{r+1}\left(z_{2 r+1}\right.$, resp., in the case $\left.r=v\right)$ will be a solution of it that is independent of z_{1}, \ldots, z_{n}, and the functions (46). That process, which allows one to exhibit the successive complete systems that serve to determine the $z_{1}, \ldots, z_{r}, z_{2 v+1}$ explicitly, is, as one sees, nothing but a modification of the known Frobenius method for exhibiting the normal form of one Pfaff equation.
9. - We now turn to a consideration of the case $v=1$. From no. 5, we next get a reduced form for the system (1) here:

$$
\begin{equation*}
d y_{s+1}-\varphi_{s} d y_{1}=0 \quad(s=1,2, \ldots, n-m) \tag{59}
\end{equation*}
$$

in which the functions $y_{1}, y_{2}, \ldots, y_{n-m+1}$ are independent of each other, so one can introduce $m-1$ other arbitrary variables:

$$
\begin{equation*}
y_{n \rightarrow m+2}, y_{n-m+3}, \ldots, y_{n} \tag{60}
\end{equation*}
$$

along with them in place of the x as new variables. Due to (59), the bilinear covariant will then assume the form:

$$
\sum_{i=1}^{m-1} \frac{\partial \varphi_{s}}{\partial y_{n-m+i+1}}\left(d y_{n-m+i+1} \delta y_{1}-\delta y_{n-m+i+1} d y_{1}\right)=0 .
$$

Since that should reduce to just one independent one, one must have:

$$
\frac{\partial \varphi_{s}}{\partial y_{n-m+i+1}}=\rho_{s} \frac{\partial \varphi_{1}}{\partial y_{n-m+i+1}} \quad(i=1,2, \ldots, m-1 ; s=2, \ldots, n-m)
$$

Hence, the functions φ_{s} will reduce to just one independent one with respect to the variables (6), which we would like to denote by y_{n-m+2}; the system (1) can then be brought into the form:

$$
\left\{\begin{array}{l}
d y_{2}-y_{n-m+2} d y_{1}=0 \tag{61}\\
d y_{2+s}-\varphi_{s}\left(y_{1}, y_{2}, \ldots, y_{n-m+2}\right) d y_{1}=0 \quad(s=1,2, \ldots, n-m-1) .
\end{array}\right.
$$

If equations (1) possess integrable combinations then one can make just as many functions φ_{s} vanish.

The functions y_{1}, \ldots, y_{n-m+2} are the solutions of the complete system (28). One will obtain the complete system that possesses only the integrals $y_{1}, y_{2}, \ldots, y_{n-m+1}$ in the form (58) as above. One sets $v=1$ in it, and the quantities $\xi_{1}^{(k)}, \ldots, \xi_{m}^{(k)}$ will be the system of solutions of the equations (55) when one replaces z_{1} with y_{1} on the right.
10. - We now address the question: Under what conditions will the system (1) possess the normal form:

$$
\left\{\begin{array}{l}
\text { a) } d z_{2}=0, \quad d z_{3}=0, \quad \cdots \quad d z_{r+1}=0, \tag{62}\\
\text { b) } d z_{r+2}-z_{r+3} d z_{1}=0, \quad d z_{r+3}-z_{r+4} d z_{1}=0, \quad \cdots \quad d z_{n-m+1}-z_{n-m+2} d z_{1}=0,
\end{array}\right.
$$

in which the functions:

$$
\begin{equation*}
z_{1}, z_{2}, \ldots, z_{n-m+2} \tag{63}
\end{equation*}
$$

are independent of each other?

It is self-explanatory that only one Pfaff system with character one, rank two, and having r integrable combinations can possess such a normal form, and that the functions (63) are the integrals of the complete system (28).

Should the normal form (62) exist then, above all, it must be possible for the system of equations (1) to be reducible to the following form:

$$
\left\{\begin{array}{l}
\text { a) } d z_{n-m+1}-z_{n-m+1} d z_{1}=0 \tag{64}\\
\text { b) } \quad \nabla_{s}^{\prime} \equiv d z_{s}-\psi_{s} d z_{1}=0, \quad(s=2,3, \ldots, n-m),
\end{array}\right.
$$

in which the quantities (63) are independent functions of x, and the ψ_{s} depend upon only the variables:

$$
\begin{equation*}
z_{1}, z_{2}, \ldots, z_{n-m}, z_{n-m+1} \tag{65}
\end{equation*}
$$

but not upon z_{n-m+2}. If we introduce the functions (63) and any other $m-2$ variables z_{n-m+3}, \ldots, z_{n} as new independent variables then the family of infinitesimal transformations that were denoted by (10) will take the form:

$$
\sigma\left(\frac{\partial f}{\partial z_{1}}+z_{n-m+2} \frac{\partial f}{\partial z_{n-m+1}}+\sum_{s=2}^{n-m} \psi_{s} \frac{\partial f}{\partial z_{s}}\right)+\tau \frac{\partial f}{\partial z_{n-m+2}}+\sum_{i=n-m+3}^{n} \tau_{i} \frac{\partial f}{\partial z_{i}},
$$

in which the σ, τ mean arbitrary functions of z_{1}, \ldots, z_{n}. The following one is included in that family:

$$
\begin{equation*}
\tau \frac{\partial f}{\partial z_{n-m+2}}+\sum_{i=n-m+3}^{n} \tau_{i} \frac{\partial f}{\partial z_{i}} \tag{66}
\end{equation*}
$$

An arbitrary infinitesimal transformation of that family leaves any linear combination of the equations (64.b) unchanged by means of just those equations, while it will change an arbitrary combination of equations (64.a), (64.b) by an expression of the form $\sigma d z_{1}$ by means of the system ($64 . \mathrm{a}, \mathrm{b}$). In order to get necessary conditions for the existence of a reduced form (64), we must observe when there exists an $m-1$-parameter family among the transformations (10) whose transformations change each equation $\nabla_{s}=0$ by an expression $\sigma_{s} d z_{1}$ by means of (1), and at the same time leave a system of $n-m-1$ Pfaff equations that is contained in (1) invariant.

Should an infinitesimal transformation (8) that satisfies the conditions (9) fulfill the identities:

$$
\begin{equation*}
X \nabla_{s} \equiv \sigma_{s} d z_{1} \quad(s=1,2, \ldots, n-m) \tag{67}
\end{equation*}
$$

because of (1) then one will get the relations (55) and (56), as in no. 8. Now, σ_{1} cannot vanish, in general, since otherwise $X f$ would leave the system (1) invariant, so it would belong to the family (26). Now, if $X f$ satisfies the relations (67), in which $\sigma_{1} \not \equiv 0$, then the system of equations:

$$
\begin{equation*}
\nabla_{s}^{\prime}=\nabla_{s}-\mu_{s} \nabla_{1}=0 \quad(s=2,3, \ldots, n-m) \tag{68}
\end{equation*}
$$

will remain invariant under the transformation $X f$ by means of (1); i.e., one will have the identities:

$$
X\left(\nabla_{s}-\mu_{s} \nabla_{1}\right) \equiv 0 \quad[\text { by means of }(1)],
$$

and there will obviously be no other $n-m-1$-parameter Pfaff system in (1) that has that property. If a reduced form (64) exists at all then the system of equations (64.b) must be equivalent to the system (68). The latter system is invariantly coupled with the given equations (1), since it has the form:

$$
d x_{m+s}-\mu_{s} d x_{m+1}-\sum_{i=1}^{m}\left(a_{s i}-\mu_{s} a_{1 i}\right) d x_{i}=0 \quad(s=2, \ldots, n-m),
$$

and the adjoint system of linear partial differential equations will then consist of the equations:

$$
\begin{equation*}
A_{1} f=0, \quad A_{2} f=0, \quad \ldots, \quad A_{m} f=0, \quad B f=0, \tag{69}
\end{equation*}
$$

but since those equations are equivalent to the set of relations:

$$
A_{i} f=0, \quad\left(A_{i} A_{k}\right)=0 \quad(i, k=1, \ldots, m),
$$

our statement will follow immediately from the theorem of Engel $\left({ }^{1}\right)$ that the system (70) is invariantly coupled with the system of equations $A_{i} f=0$.

We would like to call equations (68) the derived system of (1).
11. - The elimination of the ξ_{i} from (55) then shows that z_{1} must be an integral of the system (28). If that is the case then equations (55) will possess $m-1$ independent systems of solutions. We must now observe whether and how z_{1} can be determined such that the $m-1$ infinitesimal transformations $X f$ of the Pfaff system (68) that one obtains from (55) are left invariant not only by means of (1), but even by means of (68) alone. To that end, we must next write out the conditions for the system (68) to admit $m-1$ infinitesimal transformations of the family (10) at all.

If we write:

$$
\begin{gathered}
b_{s, m+1} \equiv \mu_{s}, \quad b_{s i} \equiv a_{s i}-\mu_{s} a_{1 i} \quad(s=2,3, n-m) \\
B f \equiv B_{m+1} f \equiv \frac{\partial f}{\partial x_{m+1}}+\sum_{s=1}^{n-m} \mu_{s} \frac{\partial f}{\partial x_{m+s}},
\end{gathered}
$$

[^3]\[

$$
\begin{aligned}
& B_{i} f \equiv B_{i} f-a_{1 i} B_{m+1} f \equiv \frac{\partial f}{\partial x_{i}}+\sum_{s=1}^{n-m}\left(a_{s i}-\mu_{s} a_{1 i}\right) \frac{\partial f}{\partial x_{m+s}}, \\
& b_{i k s} \equiv B_{i} b_{s k}-B_{k} b_{s i} \quad(i, k=1,2, \ldots, m+1)
\end{aligned}
$$
\]

then we will have:

$$
\begin{align*}
b_{m+1, i, s} & =B_{m+1} a_{s i}-\mu_{s} B_{m+1} a_{1 i}-A_{i} \mu_{s}, \tag{71}\\
b_{i k s} & \equiv-b_{k i s} \equiv a_{1 k} b_{m+1, i, s}-a_{1 i} b_{m+1, k, s} \tag{72}
\end{align*} \quad(i, k=1,2, \ldots, m)
$$

identically, due to (22).
From no. 2, we now write the conditions for the system (68) to admit the infinitesimal transformation (8) as follows:

$$
\sum_{k=1}^{m+1} \xi_{k} b_{i k s}=0 \quad(s=2, \ldots, n-m ; i=1, \ldots, m+1)
$$

or if one recalls (72) and (9):

$$
\begin{align*}
a_{1 i} \cdot \sum_{k=1}^{m} \xi_{k} b_{m+1, k, s} & =0 \\
\sum_{k=1}^{m} \xi_{k} b_{m+1, k, s} & =0
\end{align*}(i=1, \ldots, m ; s=1, \ldots, n-m), ~(s=2, \ldots, n-m) .
$$

If all $b_{m+1, k, s}$ vanish identically then the derived system (68) will be integrable without restriction, and we will get the normal form (49) for the system (1) by means of the method of no. 7, in which one sets $v=1$; we can then ignore that case. Now, since equations (73) should possess $m-1$ independent systems of solutions, by assumption, they must all be equivalent to one of them - say, the first one; i.e., one must have:

$$
\begin{equation*}
b_{m+1, k, s} \equiv \mu_{s}^{\prime} b_{m+1, k, 2} \quad(s=3,4, \ldots, n-k ; k=1, \ldots, m) \tag{74}
\end{equation*}
$$

As a result of this, due to (72), all $b_{i k s}$ (the quantities $b_{i k s}$, resp.) will be proportional; i.e., the derived system (68) has character one. Conversely, if that is the case then the conditions (74) will be fulfilled.

We have then obtained as a necessary condition for the existence of a reduced form (64) that the derived system (68) of the equations (1) must, in turn, have character one, or in other words, that the equations:

$$
\left(A_{1} B\right)=0, \quad\left(A_{2} B\right)=0, \quad \ldots, \quad\left(A_{m} B\right)=0
$$

must, in turn, yield one and only one equation by means of (69).
In fact, due to (71), that will be expressed by the conditions (74).
12. - We would like to further assume that the derived system fulfills that condition. Its rank is obviously two then, and it will admit all transformations of the ($m-1$)parameter family:

$$
\begin{equation*}
\rho_{1} X^{(1)} f+\ldots+\rho_{m-1} X^{(m-1)} f, \tag{75}
\end{equation*}
$$

in which we have set:

$$
X^{(m-1)} f=\sum_{i=1}^{n} \xi_{i}^{(k)} \frac{\partial f}{\partial x_{i}},
$$

and the $\xi_{1}^{(k)}, \ldots, \xi_{m}^{(k)}$ mean the system of solutions to the linear equation:

$$
\begin{equation*}
\sum_{k=1}^{m} \xi_{k} b_{m+1, k, 2}=0 . \tag{76}
\end{equation*}
$$

Among those solutions, one also finds the $m-2$ systems (25). In order to show that, it will suffice to prove that the relation (76) is a consequence of equations (23). Now, since one has:

$$
\Phi_{0 l} \equiv \sum_{s=2}^{n-m} b_{m+1, l, s} \frac{\partial f}{\partial x_{m+s}}
$$

identically, when one recalls (71) and (42), and since the rank of the matrix (43), as well as the matrix (24) is equal to two, moreover, one will have, from known theorems, the following table for it:
which will immediately go to the matrix of the system of equations (23), (76) when one replaces f with x_{m+2} in it; (76) will then be a consequence of (23), and we can then identify the first $m-2$ terms in (75) with (26).

Now, if $X f$ is an arbitrary infinitesimal transformation of the family (75) for which $\rho_{m-1} \not \equiv 0$ then one can determine a function z_{1} such that the relations (55) are fulfilled. In fact, due to the fact that $\rho_{m-1} \not \equiv 0$, one will also have $\rho_{1} \not \equiv 0$, so ξ_{1}, \ldots, ξ_{m} will be a system of solutions of (55) that is linearly independent of the $m-2$ systems of values (25). The elimination of σ_{1} will then yield $m-1$ conditions for z_{1} that can be written in the form:

$$
\sum_{i=1}^{m} \xi_{i} A_{i} z_{1}=0, \quad \sum_{i=1}^{m} \xi_{i}^{(k)} A_{i} z_{1}=0 \quad(k=1,2, \ldots, m-2)
$$

as one will see when one multiplies equations (55), first by ξ_{1}, \ldots, ξ_{m}, and then by $\xi_{1}^{(k)}$, $\ldots, \boldsymbol{\xi}_{m}^{(k)}$, and adds them each time. The function z_{1} is then an integral of the system:

$$
\begin{equation*}
X^{(1)} f=0, \quad X^{(2)} f=0, \quad \ldots, \quad X^{(m-1)} f=0 \tag{77}
\end{equation*}
$$

which is complete, from no. 2.
13. - If one introduces the integrals $z_{1}, z_{2}, \ldots, z_{m-n+1}$ of the system (77) as new variables, along with other variables z_{m-n+2}, \ldots, z_{n}, then that will convert the derived system (68) into equations of the form:

$$
\sum_{i=1}^{n-m+1} \beta_{s i}\left(z_{1}, \ldots, z_{n-m+1}\right) d z_{i}=0 \quad(s=1,2, \ldots, n-m-1) .
$$

If one brings that into the reduced form (64.b), from no. 5, then the still-remaining equation $\nabla_{1}=0$ will take on the form:

$$
d z_{n-m+1}-\psi d z_{1}=0
$$

due to (64.b).
After introducing the z_{i}, the differentials $d z_{n-m+2}, \ldots, d z_{n}$ cannot actually appear in equations (1) any more, since the family (75) that is contained in (10) will now assume the form:

$$
\sigma_{1} \frac{\partial f}{\partial z_{n-m+2}}+\cdots+\sigma_{m-1} \frac{\partial f}{\partial z_{n}} .
$$

Obviously, the function ψ does not depend upon just z_{1}, \ldots, z_{n-m+1}, since otherwise the system (1) would be integrable without restriction; we can then write z_{n-m+2}, instead of y, and have the:

Theorem V:

In order for a Pfaff system (1) of character one and rank two to possess a reduced form (64), it is necessary and sufficient that its derived system (68) must, in turn, have character one (or zero).
14. - We now denote the given system (1) by S, its derived system by S^{\prime}, and assume that S^{\prime} has character one, so it will again possess a derived system $S^{\prime \prime}$, about which, we make the same assumption, etc., until we arrive at a system $S^{(n-m-r-1)}$ whose derived
system has character zero; i.e., it is integrable without restriction. Therefore, from no. 7, $S^{(n-m-r-1)}$, which then consists of $r+1$ equations, can then take on the normal form:

$$
\begin{equation*}
d z_{2}=0, \quad d z_{3}=0, \ldots, \quad d z_{r+1}=0, \quad d z_{r+2}-z_{r+3} d z_{1}=0 \tag{78}
\end{equation*}
$$

From no. 13, the system $S^{(n-m-r-2)}$ will then arise from (78) by appending a relation of the form:

$$
d z_{r+3}-z_{r+4} d z_{1}=0,
$$

and likewise $S^{(n-m-r-3)}$ will arise by appending an equation:

$$
d z_{r+4}-z_{r+5} d z_{1}=0,
$$

etc. The assumptions that were made about the successive systems $S, S^{\prime}, S^{\prime \prime}, S^{\prime \prime \prime}, \ldots$ will then be sufficient for the existence of a normal form (62), and as one sees immediately, also necessary. We then have the:

Theorem VI:

A Pfaff system (1) with character one and rank two will have a normal form (62) iff the relations:

$$
\left(B A_{1}\right)=0, \quad\left(B A_{2}\right)=0, \quad \ldots, \quad\left(B A_{m}\right)=0
$$

yield one and only one new equation $B f=0$ by means of (32), (38), so when the equations:

$$
\left(B^{\prime} B\right)=0, \quad\left(B^{\prime} A_{i}\right)=0 \quad(i=1,2, \ldots, m)
$$

likewise reduce to only one new equation $B^{\prime \prime} f=0$ by means of the foregoing, etc., until one arrives at an equation $B^{(n-m-r-1)} f=0$ that defines a complete system along with the foregoing one.

The fact that these conditions express an invariant property of the system (1) follows immediately from the theorem of Engel that was cited in no. $\mathbf{1 0}$.

As one sees, the number $n-m$ of equations and the number r of integrable combinations are the only invariants of a Pfaff system of that kind.

From no. 7, exhibiting the normal form for the system S will require:

$$
r, r-1, \ldots, 3,2,1 ; 3,1
$$

operations, resp., which are required to exhibit the normal form (78) for the system $S^{(n-m-r-1)}$, but no others, in addition.
15. - A normal form (62) always exists in the case of a system (1) of character one and rank two that consists of two equations, so in particular, for any arbitrary two-
parameter Pfaff system in four variables, which Engel has shown already (${ }^{1}$). In order for a system of three equations in five variables that is not integrable without restriction:

$$
d x_{2+s}=a_{s 1} d x_{1}+a_{s 2} d x_{2} \quad(s=1,2,3)
$$

to possess one of three normal forms:

$$
\begin{array}{lll}
d z_{2}=0, & d z_{3}=0, & d z_{4}-z_{5} d z_{1}=0, \\
d z_{2}=0, & d z_{3}-z_{4} d z_{1}=0, & d z_{4}-z_{5} d z_{1}=0, \tag{79}\\
d z_{2}-z_{3} d z_{1}=0, & d z_{3}-z_{4} d z_{1}=0, & d z_{4}-z_{5} d z_{1}=0,
\end{array}
$$

it is necessary and sufficient for the identities (74) to exist, so when one sets $n=5, m=2$ in them. Upon eliminating μ_{3}^{\prime}, one will then get a condition:

$$
0 \equiv\left|\begin{array}{ll}
B a_{21}-\mu_{2} B a_{11}-A_{1} \mu_{2} & B a_{31}-\mu_{3} B a_{11}-A_{1} \mu_{3} \\
B a_{22}-\mu_{2} B a_{12}-A_{2} \mu_{2} & B a_{32}-\mu_{3} B a_{12}-A_{2} \mu_{3}
\end{array}\right|,
$$

in which one sets:

$$
\begin{gathered}
A_{i} f \equiv \frac{\partial f}{\partial x_{i}}+\sum_{s=1}^{3} a_{s i} \frac{\partial f}{\partial x_{2+s}}, \\
A_{1} a_{s 2}-A_{2} a_{s 1} \equiv \mu_{s}\left(A_{1} a_{12}-A_{2} a_{11}\right) \quad(s=2,3), \\
B f \equiv \frac{\partial f}{\partial x_{3}}+\mu_{2} \frac{\partial f}{\partial x_{4}}+\mu_{3} \frac{\partial f}{\partial x_{5}} .
\end{gathered}
$$

Among the Pfaff systems of character one for which $m=3$, one will find many special cases that are important for the theory of partial differential equations with two independent variables. For instance, if one consider the three-parameter system in six variables x, y, z, p, q, r :

$$
\begin{align*}
& d z=p d x+q d y, \\
& d p=r d x+s d y \tag{80}\\
& d q=s d x+t d y
\end{align*}
$$

in which s and t are defined by two equations of the form:

$$
\begin{equation*}
s=\varphi(x, y, z, p, q, r), \quad t=\psi(x, y, z, p, q, r) \tag{81}
\end{equation*}
$$

[^4]then the conditions for (80) to have character one will then express the idea that the two partial differential equations (81) define a system in involution. The system (80) will then possess one and only one normal form (79) when the two functions φ and ψ are completely linear in r; i.e., when the five-fold infinitude of common second-order characteristic strips of the two equations (81) always contain a simple infinitude of firstorder strips of them $\left({ }^{1}\right)$.

Munich, in May 1898.

[^5]
[^0]: $\left({ }^{1}\right)$ These Berichte (1890), pp. 207.
 $\left(^{2}\right)$ That is, the order of the highest minor that does not vanish identically.

[^1]: (${ }^{1}$) These Berichte (1889), pp. 158, et seq.
 $\left(^{2}\right)$ Ibidem, pp. 160, et seq.

[^2]: ${ }^{1}{ }^{1}$) Loc. cit., pp. 165, Theorem 3.
 $\left(^{2}\right) \quad$ Cf., the analogous proof for a Pfaff equation by Engel, these Berichte (1896), pp. 418.

[^3]: ${ }^{1}$) These Berichte (1889), pp. 165.

[^4]: (${ }^{1}$) These Berichte (1889), pp. 175.

[^5]: (${ }^{1}$) I have explained the meaning of the bilinear covariant for the theory of partial differential equations in two independent variables in the papers "Ueber simultane partielle Differentialgleichungen II O. mit 3 variabeln," Sitz. math.-phil. Classe der kön. bayer. Akad. Wiss 25 (1895), pp. 101 and "Ueber gewisse Systeme PFAFF'scher Gleichungen," ibidem, pp. 432.

