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A generalization of the quantization conditions
for the purpose of wave mechanics
By Gregor Wentzelin Munich
(Received on 18 June 1926)

Translated by D. H. Delphenich

A method shall be developed in this note for solving tilgereialue problem ofchrédingers “wave
mechanics” by successive approximations, starting froenlithiting case of classical mechanics (the
previous quantum theory, resp.). In many cases, thag¢ssaf approximation can be arranged so that it
truncates off after a few steps. Applications ofHtgtom and Stark effect) are found at the end of the
article.

8 1. The Riccati equation that belongs to the wave equation.Let a problem in
Schrodingers wave equation with one degree of freedd)tbé given:

A

v+ ‘y=0, (1)
p° = 2m[E - V(X)]. (2)
It is known that with the substitution:
271 i
p=en ", 3)

(1) will yield an equivalenRiccati differential equation:

%yfpz—yz- 4
Vil

In the limiting case ofi = 0, this will go to an algebraic equation, andaict, with:

___ds
IILr:rgy—y—&, ©))

it will representHamilton’s differential equation of classical mechanics:

() E. Schradinger, Ann. Phys. (Leipzigy9 (1926), 489, especially pp. 510.
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dS 2 2 2
—— | = Yo=p" (6)
( dx 0

Now sincey’enters into the differential equation (4) only with temall” coefficient
h / 2, that suggests the possibility of rigorously solving the equatith y presented
as a power series in tRtanck quantumh:

y= Z[%j y, . @

Starting with the classical solution = + p, one will then get a recursion formula that
reads:

Yoa ¥ D Va Yooa = O (8)
a=0
One then computes, in succession:
__ Y% __%itY
2Y, 2Y,

In that way, one will arrive at two unique partisukolutions to the differential equation
(4) that go continuously to the (positive or negatimechanical impulse fdr = 0 (as
long asyp # 0). The general integral can be constructed ftom a known way; all
integrals besides the two in (7) degeneratéhfer0. h = 0 is an essential singular point
for them.) In regard to possible thoughts coneeyrihe existence of the two solutions
(7) (the convergence of the developmenh,imesp.), let it be pointed out that we require
the solutions (7) only in the neighborhood of thegslar points of the differential
equation, where they yield at least asymptotic t&mis of (4) (in the form of semi-
convergent power series).

§ 2. Establishing the eigenvalueg). — Now, withSchrédinger, let us especially
look for the eigenfunctiongk of the wave equation — i.e., the entire transcetale
solutions that satisfy certain boundary conditidaesEy be the associated “eigenvalue” of
the energy constai Corresponding to (3), set:

—eh LU 1
=e , y 27 v, (10)

The boundary conditions consist of demanding that integral¢x should remain
bounded (vanish, resp.) at the singular pointdhefdifferential equations. If we select

() 1 have reworked the text in § 2 along with the editohwlite use of written communications By
Fuesthat contributed very greatly to the explanation of theegtions.
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such a singular location then we will get two particslalutions of the wave equation in
its neighborhood when we substitute in (3) the two @aler solutions (7) of the Riccati
equation that were derived above for However, as one easily recognizes from the
recursion formulas (8), (9), they will be pure imaginfmyrealx (*), and in fact, one of
them will be positive imaginary, while the other on#l se negative imaginary. If one
movesx along the real axis to the boundary point then onéd@two functions (3) will
become zero exponentially, while the other one widdmee infinite exponentially. The
former is obviously the desired eigenfunction (in the etfesit such a thing even exists),
so all other solutions that one obtains from linear lwaations of the two particular
solutions will likewise become infinite exponentiallyn that way, we can control the
behavior of the eigenfunction sufficiently at the singutaations of the differential
equation.

The question is now, “Under what conditions can thetems ¢ that satisfy the
boundary conditions at the singular points be assaciateh each other as analytic
continuations of one and the same entire, transcealdieimiction?” It is easy to give a
necessary condition for that. It is known that aiggefunction can be characterized by
the number of its nodes (zero loci), and indeed from knteorems (“oscillation
theorem”), those nodes all lie in an accessible region However, the functiog, /¢,

has a simple pole of residuerRat each of these nodal locations. If one then tdhkes
integral | y dx along a closed path around the region in which all efrthdes of the
oscillation lie then from (10), one will get the valuetioat integral from the number of
nodes multiplied by

<j>ydx= kh (k = whole number = number of nodes). (11)

From Cauchy's theorem, this equation is also true when one displdlce path of
integration, and instead of it encircling the nodal locue makes it encircle the
remaining poles oy that are the singular points of the differential equrati However,
from the above, in their vicinityy is likewise given by one of the solutions (7), (8), and
the integration can be performed directlfhe sum of the residues of these solutions at
the singular points must then be a whole-numbertiphlof h. That condition will
suffice to establish the eigenvalig of the energy constant. Naturally, a corresponding
integral relation (11) is also true for non-eigenfunctignshen their number of nodes is
finite, but with a different integrang It is only for eigenfunctions thgtcoincides with
the distinguished solution to thRiccati equation that is calculated from (7), (8) at the
two singular points, such that one can also write:

00

Z(%) <ﬁyv dx=k [h, (12)

v=0

instead of (11).

() yo==pis then pure imaginary outside of the domain of the idalsgath.
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Sinceyo = + p (%), in the limiting caseh = 0, this condition is nothing but the
Sommerfeld quantization prescriptior)¢

¢ pdx=kh.

Furthermore, equation (12) teaches us that the “quantizatiadition,” as well as the
residue method th&8ommerfeld employed to evaluate it will preserve its meaning in
wave mechanics when only the mechanical impplgereplaced with the distinguished
solution of the Riccati equation. The series developrfi?) permits a determination of
the eigenvalues in successive approximations; moreover,ng prablems (cf., 8 5, 6),
that development will truncate in such a way thatrifperous solution of the eigenvalue
problem is attained by a finite number of approximations.

8 3. The connection with the eigenvalue problem for matrices- In an earlier
paper {), | gave a solution of the eigenvalue problem fdeisenberds matrix
mechanics, which likewise arose from an extensid®oohmerfelds method of residues.
SinceSchrodinger (*) andPauli (°) have established the complete identity of the matrix
problem, on the one hand, and the wave problem, on the, cihcloser connection
between those two solutions of the eigenvalue problem mwingibusly exist. The
disclosure of that connection is to be desired, iniqdar, due to the fact that the
mathematical foundation of the matrix method was ¥leryed at the time®.

First, let us make a more formal remark. If one dom® the variablex, y, p that
were used in 8 1 to analogous matrigey, p then the Riccati differential equation (4)
will read:

() The integral around the domain of the zero locug/ @ the counterpart tSommerfelds integral
around the branch cut of the double-valued functi@r = p, which characterizes the domain of the
classical path. ASchrédinger emphasized, the oscillation process then takes plaetydn the domain
of the classical path. One can also see from our farif®) that, in fact, all nodes lie in that region (or
entirely in its vicinity) when one substitutes thetidiguished solutiory (7); it is, in fact, pure imaginary
outside the classical path regiqef € 0), so it will follow thaty will die away on both sides of it, and
indeed monotonically and with no zero points. By comtsais complex inside the path region, such that
the real part ofyx will oscillate there like a type of cosine, but witheenating amplitudes and wave
lengths; the meaning of the “phase integral” as a nuwifiaeodes will then become intuitively clear in that
way. In the case for which (classically) two maulal paths are possible for a given endegfy.e., two
branch cuts in the accessible domain), the amplitudeaflation will die off in the regiorbetweertwo
paths just as strongly as on one side, such that inbfatht oscillation processes are basically realized
simultaneously, but one of the two will be realized amith vanishingly small amplitude (in particular, in
the limiting case oh = 0). Moreover, from our current way of seeing things,rmethod of residues is also
applicable to that case, which was not the case ipri#ngous quantum theory, since that phase integral
was extended around ordyeof the branch cuts at the time.

() In a letter,W. Pauli made me aware of the fact that in the limiting caselassical mechanicgy
will come back to itself under a circuit around the loranut ofy, (cf., the previous remark) if and only if
the modulus of periodicity of the action functiaﬁgﬂy0 dx) is a whole-number multiple ¢f. That remark,

which Pauli, in turn, attributed t®. Klein, was one of the starting points for my investigation.
() G. Wentzel Zeit. Phys37 (1926), 80.
() E. Schrédinger, Ann. Phys. (Leipzigy9 (1926), 734.
() In a written communication.
() G. Wentzel loc. cit; cf., in particular, footnote 1, pp. 83.
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h
—y' =p®-y~ (13)
271

Now, in matrix mechanics, one has the commutationguantization — relation:

N m=px-x o, (14)
27

and as a result, for the functigr=y (x), one will have:
h —,
=0 =ply-ylp. (15)
27

However, equation (13) then goes to:

(y +p)ly -p) = 0;
this will be satisfied by:

y ==%p, y =p°, y' =0. (16)

y andp are then identical as matrices.
One can prove this identity more rigorously when ondsstaith theSchrodinger-
Pauli construction of the matrices from the eigenfunctigrs It gives:

+00

0 =[x @ dx, (P = [ @) dx. (17)

—00

From the “completeness relation” for the eigenfuncigi:
jf gdx =) J'fz//kdx['[ gy, dx,
k

one easily provesy, firstly, that the quantities (17) multiply like mates, secondly, that
the commutation relation (14) is fulfilled, and thirdiligat the energy matrix is a diagonal
matrix (i.e., temporally constant), and that its eleteare identical with the eigenvalues
Ex . However, as a result of the first of thoseestants, the matrix that belongsyt¢as a
function of onlyx) will be equal to:

Y = ijk ¥, dx.

If one replaces thé" eigenfunction in this with the corresponding solution in
particular, then according to the definitions (10) and (1 Wil become simply:

() When one identifies (g, resp.) withx ¢ (¢, resp.) as required.
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V) = %J.l/’k @ dx = P, (18)
7

which was to be proved.

In 8§ 2, it was shown that the sum of the residugsrafist be equal tb[h, while in
the previous method, the sum of the residues of thexatnias set equal td ¢ a) h.
Both methods will obviously become identicd) (vhen one sets the previously-
undetermined constart = 0. Therefore, the absolute normalization of the quant
numbers is also established, which was left open in nligeeprocess.

8 4. Generalization to several degrees of freedom.The process that was given in
8 1 of successive approximations to quantum mechanics stdromg classical
mechanics can always be carried out for separable sydteenformulas generally read
somewhat differently, though. One gets a differentjal¢ion of the type:

y'+f(qy’+

4h’f M) ¢=0 1)

for the individual degrees of freedom, insteadlgf (By the substitution (3), this goes to
the somewhat more general Riccati differential @qna

h h
>V —g(x)—z—mf(x)y—yz, 4)

and one immediately derives a recursion formula ihaimilar to (8), (9) (cf., 8 5, 6).
The arguments in 8§ 2 are valid for each degreeeefdom individually.

8 5. Application to the H atom. — In order to prove the simplicity of the new
calculation procedure, we treat the problem ofkhatom as the first example. After
splitting off the equation for spherical functiof, the wave equation in that case will

read {):
¢/"+§¢/’+1—ZZ{2mE+ me +( hj I+ 1)}//: 0, [=0,1,... (19

r 278 r?

With Sommerfelds abbreviations:

(™) In fact, the elements of the diagonal matrices tipgear in the development of the matyixn
powers of the matrix —Xx, are identical with the numerical coefficients of theelepment ofy in powers
of x —%.

() E. Schradinger, Ann. Phys. (Leipzigy9 (1926), 361.

() | inverted Schrodingers notation forn, | in order to remain in agreement with the currently-
accepted notation for “quantum numbers.” Cf., &ymm andSommerfeld Zeit. Phys36 (1926), 36,
pp. 37, footnote 5, df. Hund, Zeit. Phys36 (1926), 657, pp. 658, footnote 2.
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A=2mE B =m¢€, C= ('hj,
27

the Riccati differential equation (4 will read:

LIPERRC NI P

r r

Forh = 0, one will have:

at  r=oo: yo_\/ﬁ+ﬂg}+

If one substitutes the series (7) in (20) thenfilsé approximation will read:

L]

+_ —
s 2%{% re

However, from the foregoing series fgy;, one easily sees thg will behave regularly
for r = 0 (the poles that originate in the three teranscel each other precisely) and that
the development of; for r = o will begin with:

1
Vi=——+ ...
r

yi1 [h/ 25Ti then contributesh) to the sum of the residues. All higher corrattig, s,
etc., will behave regularly far= 0, as well ags = . Since the correctiong, ys, ... only

contribute a whole number to the sum of the residilren, the general quantization
condition (12) will reduce t&ommerfelds:

%(ﬁ Y, dr=whole number, (21)

which verifies the validity of the Balmer formula wave mechanics.
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If one adds a term/ r® to the potential energy then the calculation will pest@ an
entirely analogous manner when one determ@&sm the quadratic equation:

27

C+ iﬁ :(%j (1 +1) +e

That will then yield a formula for a term with a “hatiteger azimuthal guantum number”

[ +1/2:
2—ﬂii:n— (I +Ej+ (I +—1j2—const
h JA 2 2 |

(This is an extension of thgalmer formula to theRydberg formula.)

Finally, we would like to convince ourselves thhe solutions (10) to the wave
equation that belong to the energy valBgsactually have no singularities mt 0 andr
=co. If one substitutes the development yahat one then obtains into (10) then it will
follow directly that:

For r=0: Y =constd'+ ...,
27 [omEn -1
For I =oo: {n = constde " r—+..),

which coincides with the complete expressiongarthatSchrédinger gave ¢).

8 6. Application to the Stark effect.— As a second example, one might treatHhe
atom in a homogeneous electric fiel8chrodinger (°) carried out the separation of the
wave equation in question in parabolic coordinateghat way, one will arrive at two
ordinary differential equations of the type:

e Ly o AT [a+9+£+dx}¢:o; (22)
X h X X
> 1( mh\’
a=2mE b=m(e" £ D), c=—|—| (Mm=0,1,...), d =+ 2meFE
4\ 2

The associateRiccati equation reads:

i_[y +1}:[a+9+£+d&} VA (23)

271 X X X

() Loc. cit, pp. 369, equation (18).
(®) E. Schradinger, Ann. Phys. (LeipzigB0 (1926), 437.
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Only yp will produce a residueéZni\/E) atx = 0, while all remaining; will be regular.
At x = c0, one must first develop them in powers of the fielérsjthF (d, resp.). The
series in question reads:
Vo = [a”2+%ba‘l’2x‘l+~]
+ Ed a—lIZX_l- bai3’2+(§ o4 8_.5/2——1 Ca3/2j <.

2 2 8 2
_ }dz a—3/2X2_§ ba—3/2x+(£5 o4 5_7/2——3 CaS/zj

2 8 2

8
+ (—3—5b3a‘9’2+1—5bcai7’2j X |+,
16 4

V1= [—ix‘l+}ba‘1>(2+~}+ d[——l él+0D>Zl+~}
2" 4 4

+d2[:11a’2x—711r ba’3+OD>Zl+-~}+

Vo = I:_%a—l/2x—2+_..:l+ d[l_]é a’3’2x’1+~~}

+d2[_ga—5/2+1i258ba—7/2x—1+”}+

All higher y,, y4, ... behave regularly (fox = «) in the terms ird 2 and up. The residue

at:
y=Vyo+yi[h/ 27 +y, (h/ 277i)?

_ba__l/2 —EL}

is then:

N
N|
—
NI
N
S

This expression, when augmented with the residue-d1:

—277i\/_:—%m h
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is set equal toy h in one case [namely, fir=m (€° + ), d = + 2me H, and equal ta; h

in another case [namely, fir= m (€ - B), d = - 2me H, corresponding to the two
differential equations that one obtains from the sejaratIf one then eliminates the
integration constanf in a known way then one will get the eigenvalues ofehergy
constants:

_ 2m’'mé 3KF
nln2n3__ 2. 2 - m(rl_r&)
h?n 8°me (24)
h6F2
—mm4[l7n2—3(q— Q)2—9(r§—l)2+ 19]+ y
in which one sets'):
n=ni+n+m+1l=np+nmn+nz=1, 2, ..., ns=m+1=1,2, ...

The first-order Stark effect naturally agrees with the that was predicted before by the
earlier quantum theoryauli () andSchrodinger (°) have already established that. By
contrast, the second-order term deviates from the mat€Epstein (%) calculated; using
the old quantum theor¥gpstein found, not the bracketed expression [cf., (24)]:

[17n* =3 (L —n)*—9 s — 1F + 19], (25)
but the expression:
[17 n? = 3 (u —np)* — 93] . (26)

Naturally, both expressions will go to each other fegdaquantum numbers; however,
the new expression will be noticeably larger tBastein’'s for small quantum numbers.
As is known, the quadratic term in (24) means that thiisp of the hydrogen lines
in large field strengths is no longer symmetric toftbkl-free lines, but is shifted to the
red. This “quadratic Stark effect” was knownSommerfeld (°), in conjunction with
Takamine and Kokubo, and further investigated experimentally My Kiuti (°) andJ.
S. Foster(’). The most precise measurements are the ones ttiainp® the middle
components oH, . Takamine (®) andKiuti agreed that the redshift is larger than was
expected fromEpstein's formula, and in fact, judging fronKiuti’'s graphical
representation, the discrepancy amounts to about 2@rmgerélowever, that is precisely
what one would expect from formula (24). The middle comepds in questions arise, in
fact, from the two transitions\{, n, ns):

() AsW. Pauli already pointed out [Zeit. Phy86 (1926), 336]n; = m + 1 = 0 is excluded from the
outset.
() Loc. cit.
% Loc. cit.
4) P. Epstein Ann. Phys. (Leipzigh1 (1916), 184.
) A. Sommerfeld Ann. Phys. (Leipzigh5 (1921), 36.
)
)
)

(o2

M. Kiuti , Japanese Journ. Ph¥q1925), 13.
J. S. Foster Astrophys. Journ63 (1926), 191.
Cf., A. Sommerfeld loc. cit.

N

N AR

o,
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1,2,3-0,0,2 and 2,2,10,0,2.

However, for the first of the two lines, the deviatiointhe expression (25) from that of
Epstein (26) amounts to 19 percent, while it is 7 percent for therobne, which is,
however, much weaker in intensity calculatiof)s (Fosters measurements relate Itts
andH,, but they are less precise; he found a deviation afrake- 30 percent compared
to Epstein for Hs, but no noticeable deviation fét; (middle component). Equation (24)
leads one to expect + 5to 10 percent.

The difference between the expressions (25) and (2&nfafl quantum numbers is
more definitive, and especially in the ground state n, = 0, n3 = 1; the expressions
(25) and (26) then have a ratio of 4.5 : 1. In that cdme is, in fact, no direct
experimental criterion, but there is an interestingneation with the problem of the
stimulated helium atom. The failure of the earlierrquen theory in the context of that
problem €) is, in fact, partially based in the fact that ielgied a value for the induced
dipole moment in the outer electron shell in’ ket was much too small. However, the
constant of the quadratic term in (24) is precisely a measurthe polarization that is
produced in the Heshell by the external field. Due to the magnitude of the
aforementioned ratio 4.5 : 1, one must then hope that wuamechanics will be much
more fruitful in the helium problem. If one, wittnsold (°), makes the assumption that
the magnitudes of the terms in the He spectrum arégeirinal analysis, determined by
the polarizability of the Heshell (and not by its quadrupole moment) then formula (24)
will allow one to make a first approximation of the dams in the series formula that
might read:

V:Lz, with 5:£G15,k:£,§,...
(n=9) 128 k 2 2
One then gets the numerical values:
0=0.028, 0.0022, 0.0004

for the seriep, d, f (k= 3, 2, £, resp.) in the He line spectrum. Those numbers li

almost exactly at the mean of the empirical sergasstants for ortho-helium:
0=0.069, 0.003, 0.001
on the one hand, and para-helium:
0=-0.011, 0.002, 0.001,

on the other. (Cited bynsold, loc. cit)

() Perhaps four or five times the corresponding calculatiof H. A. Kramers (Diss. Copenhagen
1919) and around 4.4 times thosesohrddinger, loc. cit.

() Cf.,M. Born andW. Heisenberg Zeit. Phys16 (1923), 229.

() A. Unséld, Zeit. Phys36 (1926), 92.
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Summary

8 1. The Ricatti differential equation that is associated with tBehrodinger
equation can be integrated by means of a series irasingepowers offi, in such a way
that zeroth-order approximation corresponds to the classeehanics (earlier quantum
theory, resp.), while the addition of the higher power$ @allows one to arrive at a
progressive approximation to the new quantum — or wave —an@sh

§ 2. The Sommerfeld quantization condition[ﬁ y dx =k [h remains true when one

replaces (instead of the impulsg) with the solution to th&iccati differential equation
that was obtained in § 1.

8 3. The solution to the eigenvalue problem that this yieddslentical with that of
the residue method that the author previously introduces imixmaechanics; the
absolute normalization of the quantum numbers that efisopen in it proves to be
unique here.

8 4. The method for one degree of freedom that was develop®d and 8§ 2 was
generalized to arbitrary separable systems.

8 5. The application to thél atom yields a very simple derivation of tBalmer
series formula.

8 6. The calculation of the Stark effect confirms the kndarmula for the linear
effect; by contrastzpstein's formula for the second-order effect was modifiear IH,,
this difference in the middle components amounts to 1&petheoretically, and around
20 percent experimentally. For the ground state, the qum@féct proves to be 4.5
times bigger than whdpstein calculated, which might be interesting in a future thieor
of the helium line spectrum.

Munich, Institut fur theoretische Physik, June 1926.




