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CHAPTER I

THE GREEN TENSORS OF THE STATIC ELASTIC PROBLEM.

8 1. Introduction. The basic formulas of the theory of eldiity.

In order to solve thetatic problem of the theory of elasticiiyr a homogeneous,
isotropic body of arbitrary form with the boundary ciiach of vanishing displacement,
one appeals to two essentially different methods, @hevhich was developed by
FREDHOLM, LAURICELLA, MARCOLONGO {), while the other was developed by
KORN and BOGGIO?). Both have in common that they reduce the probleansigstem
of linear integral equations. However, since the metHoH@RN-BOGGIO leads to
kernels with singularities that are difficult to discgscontrast to BOGGIO's assertion
that they falsely prove to be “regular”), we will giher only the first path, which runs
parallel to the NEUMANN-FREDHOLM solution of the cesponding problem in

(*) I. FREDHOLM, “Solution d’'un probléme fondamental de théorie de I'élasticité,” Arkiv for
Matematik, Astronomi och Fysilg, (1906), no. 28, pp. 1-8.

G. LAURICELLA, “Sull'integrazione della equazioni detjuilibrio dei corpi elastici isotropi,” Atti
della Reale Accademia dei Lincks (1% semester 1906), 426-432.

R. MARCOLONGO, “La teoria delle equazioni integrai le sue applicazioni alla Fisica-
matematica, ibid. 16 (1% semester 1907), 742-749.

() A. KORN, “Uber die Lésung der ersten RandwertaufgabeEthstizitatstheorie,” Rend. Circ. Mat.
Palermo30 (2" semester (1910), 138-152. KORN's previous treatises @saime subject are cited in
this.

T. BOGGIO, “Nuova risoluzione di un problema fondarantiella teoria dell’elasticita,” Atti della
Reale Accademia dei Lincéb (1% semester 1907), 248-255.
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potential theory; that path, which encounters no such bcatipns, seems to me to be
the only natural one. In order to be certain that themogeneous integral equations in
guestion possess a solution, it is known that one naiablesh that the corresponding
homogeneous equations possess no other solutions beb@esivial solution O;
LAURICELLA (®) showed flawlessly that this is the case. Howevss, important for
us to make the construction independent of the proofaiffétt in order to be able to
adapt the method to other boundary conditions. In otloeds, we will show that the
solution of the problem that is posed can be achieved wiemomogeneous integral
equations possess solutions, as well as when that thenaise. With that, a stone has
been removed from the path that one often stumbles ovthe conversion of the
NEUMANN-FREDHOLM method to the general cadp (

On the basis of that argument and certain AnsétzeOddEBSINESQ, one will also
succeed in solving the static problem of elasticity theorytlie case in which not only
the displacements, but also the stresses, are fre$d¢a be zero on the outer surface. To
my knowledge, that case, which must be referred th@satural one, has been treated
only by BOGGIO using his method up to no. (However, | must confess that, on the
basis of what was suggested above, its method of proofrddeseem to be completely
convincing, and in any event will prove to be inadequatedorfurther purposes.

We shall consider a third type of boundary conditionwimch u is understood to

mean the displacement):

divu =0, u normal (on the outer surface).

It will be essential for us that it should bring abdl transition from elasticity
theory to potential theory according to the schema:

Elastic bodies- FRESNEL'selastic aether- electromagnetic sether

In the present article, however, we will not tréhe static problem, but thescillation
problem. For each of the three aforementioned boundary dondjt the force-free
elastic bodies can exhibit an infinite sequence of eigeillations whose oscillation
numbers define the (discrete) spectrum of the bodieshall be proved that the density
with which those eigen-oscillations are distributed along the frequeraye &t the
spectrum in the region of the high oscillation numbers is asymptoticalgpendent of
the special form of the elastic body and depends upon only its volume anwd #lastic
constants. More precisely, the result is formulated as folloWg means time then the
equation for the elastic oscillations will read:

é) loc. cit. ().

() Cf., the remarks of E. E. LEVI on this in “I probledtei valori al contorno per le equazioni lineari
totalmente ellittiche all derivate parziali,” Memouié Matematica e di Fisica della Societa Italiana delle
Science (detta dei XL) (36 (190), 3-11; page 8 above and footnote.

() T. BOGGIO, “Determinazione della deformazione di unrpoo elastico per date tensioni
superficiale,” Atti della Reale Accademia dei Lin6i(2" semester 1907), 441-449.
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*u _ .
(1) e a grad divu —b curl curlu,

in whicha andb are two (certainly positive) elastic constarfys (I will always denote
the expression on the right-hand side, which playsahgeesole in elasticity theory that
Au does in potential theory, and will go over to it wieenb = 1, moreover, bp™u. The

eigen-oscillations are characterized by the fact thatime-dependency af is given by

a periodic functior" ; the constant is its frequency. 18 means the volume of the body
then the number of eigen-oscillations whose frequeni®s below the arbitrary limiig

is asymptotically amounts to:
ng (1j3/2+2(1j3/2
6 |\ a b

in the limit asvp goes to infinity. | shall obtain this result byw adapting my
investigations into the problem of the oscillatiomisa membrane in Mathematischen
Annalen and Crelle’s Journd) (to the elastic oscillations. At the same timbappe that
this paper will yield the opportunity that | desotbeing able to present that theory once
more in a clearer form, since it was developed rigefsing various approaches, and its
presentation was, as a result, afflicted with uaigaps and sources of incompleteness.
Fora =b = 1, the result will include thasymptotic spectral law of cavity radiation
that | already proved before. The asymptotic ldwelastic eigen-oscillations will be
taken to be the starting point for the theory adasfic heats of solid bodies (the law of
DULONG-PETIT and its variationsf)in a manner that is analogous to the way that it
used as the basis for the modern theory of radiatldowever, as one convinces oneself
in the theory of radiation, that law is derived famly the special case of cubic cavities
(JEAN’s cube), such that DEBYE (and indeed by expbalculation) determined that
elastic law only for a spherical body. That theamhich is based upon an application of
the principles of thermodynamics and the quantupothesis, would itself contain an
unreliable contradiction if the asymptotic law theds discovered in a special example
could not lay claim to any general validity becaiisgas not independent of the form of
the cavity (body, resp.). One would therefore likebelieve that the rigorous proof of

() If M is the elastic modulusy is the ratio of lateral contraction to length ditata, and the mass
density = 1 then one will have:
_ M@-0) b= M
T @+o)(1-20)’ T2(1+o)’
() a) “Das asymptotische Verteilungsgesetz linearer patieDifferentialgleichungen (mit einer
Anwendung auf die Theorie der Hohlstrahlung),” Math. Ash(1912), 441-479.
b) “Uber die Abhangigkeit der Eigenschwingungen einer Memisoa deren Begrenzung,” J. reine
angew. Math141(1912), 1-11.
c) Uber das Spektrum der Hohlraumstrahlungjd. 141(1912), 163-181.
d) “Uber die Randwetaufgabe der Strahlungstheorie und asysopi@tSpektralgesetzalid. 143
(1913), 177-202.
() P. DEBYE, in his well-known paper: “Zur Theorie der zfischen Warmen,” Ann. Phys. (Leipzig)
(4) 39(1912), 789-839.
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this “LORENTZ postulate” ) would be admittedly imperative for the mathematicians,
and as good as irrelevant for the physicists. | carettwe® assert: If one starts with a
deeper foundation of those physical theories by which theynamics is replaced with
static considerations then a mathematical proof of the asympf@quency law for
bodies of arbitrary form that we spoke of will be dbsaly essential. Of course, that has
still not been achieved. In order to give, e.g., arctedenagnetic-static basis for
KIRCHHOFF’s law of emission and absorption, one musivdeghat asymptotic spectral
law for not only homogeneous, but also arbitrary inhomegas media, and one must
further transfer it to the eigealuesand eigefunctions i.e., consider them instead of the
oscillation numbers and oscillation states, respdgtive hope to be able to go into that
in more detail at another time. — The studyimtegral equationshas embodied the
mathematical essence of the theory of oscillatipngay of the viewpoint that was most
clearly emphasized by HILBERT that by ascertaining thereoscillations of continuous
media, one iglealing with the transformation of an infinite-dimensional ellipsoid to its
principle axesand that viewpoint shall be the prevailing one in any sgmtation of that
theory that strives for an actual incisive comprehemsibmatters. It is no wonder that
the method of integral equations not only allows oneatoycout the existence proof of
the eigen-oscillations in the most transparent wayalsat proves to be powerful enough
to ascertain their asymptotic distribution over the spett

We establish the followingonventions:Let the body to be examined — hence, a
region of spacd of volumeJ that lies at finite points — be bounded by the outdiasar
9. p (as well ag', p’, ...) means a variable point Jno means a variable point am, dp

means the spatial element at the locapounder integration, ando means the outer
surface element at the location n = n (0) is the unit vector in the direction of the

interior normal that is applied to the poobf the outer surface. f is a vector theny ,
Vy, Vz; Vi Will denote its components along tkey, z axes and the normal, resp., while
v = v —n (v n) will denote the projection onto the tangential plargy, z is a Cartesian

coordinate system in this.
As is known, the GREEN formula that is crucial &lrof potential theoryreads:

_ ov
(G) L (gradu - gradv +uAv) dp= J.Du%do,
and immediately yields the result that:
, _ ov_ 0u
(G") jJ (UAV—vAU) dp= jg(u% v%j do.

u andv are any two functions that are continuously differengiabl and for whichAu,
Av exist. Ifuis a potential functior® const.) and we set= v in (G) then that will yield
the important inequality:

() H. A. LORENTZ addressed that problem in the fourthhisf invited talks to the WOLFSKEHL
Foundation at Géttingen on April 1910 at the request ofrtaitaematicians.
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9
(Go) - jgua—zdo = [ (gradu®dp>o.

There are several formulas ®lasticity theorythat are analogous to GREEN'’s
formulas. Ifu, v are any two vector fields that are continuously diffaedre inJ then

one can bilinearly combine the first derivativesupb with respect to the coordinates
y, z of the pointp into an expressio&(u, v) that is symmetric int andv and means

twice the stress (i.e., potential energy density) atghint p that is produced by the
displacement fomr = v. One will then haveE(u, u) > 0 whenu is not merely an

infinitesimal motion with no change in form. Therdwula forE(u, u) reads:

) ? ) ?
E(u,u):(a—ﬂbj(di\/u)z.{.é i_% +.oo4...L+p &+% FR R
3 3|\ady oz dz 0y

It emerges from this that the constaatb fulfill the inequality:
(2) A2>4>0

for any elastic body. However, we will generally makdy the assumptions that> 0,b
> 0 in order to also include the case of cavity radmf@o= b = 1) in this. The stress that
is produced inside the body by the displacementténsorl1 = M (w) that depends upon

the position of the surface element against which thespre acts. The pressure vector
that is directed against a surface element whose n@irex-axis has the components:

(a—2b) divu + 20 2%
ox

b %.}.% ,
dy 0Ox
b %.}.% .
0z 0x
We denote the pressure on the outer surface elesodny B3 = P(u), and the pressure

that the displacement produces on the outer surface by3(v). The BETTIformula,
which is the first analogue of GREEN's formula, redds (

(B) L {E (1, v) +uA'v} dp:—jouodo

(% | employ the notations of the Enzyklopaedie der Mathisttaen Wissenschaften for vector
analysis; in particular, the square bracket meansatt@nal product.
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and leads directly to threciprocity law:

(B") L(uADn v A') dp:—jg(ug—uqs)do.

However, for a vector fields that satisfies the equatioh'u = 0 in J, under the
assumption (2), one will have:
(Bo) —jgufpdo:jJE(u,u)dpzo,

in which the equality sign is obtained only when the itégimal displacement is that

of a rigid body.
The second analogue of GREEN'’s formula, which seenmate been little noticed
up to now, is:

(C) .[J(adiVudivu+ beurlu curlv +u A% ) dp= —jg(aundivm beurlv[n,u]) do.

If one switchear andv in this and subtracts the equation that is obtained {@)nm that
way then that will yield an equatio€ () that will convert the spatial integral:

L (uA% — v A'u) dp

into an outer surface integral in the same wayBH9.( For a fieldu that satisfies the
equatiomA u = 0, one will have:

(Co) —jg(aundivm beurlv[n, u]) doz.[J{a(div w) 2+ b(curlu)3 dp= 0,

in which the equality sign is obtained only whers a field that is free from sources and
vortices. The proof of@) will be provided when one first makes the replacement:

tw=udvo
and then:
to = [u, curlv]
in the GAUSS equation:
Ldivmmpz - jgwn do,

multiplies the first equation that arisesdythe second one iy and adds them.

Along with B) and C), one must also consider all equations that one abfeam
the schemg (B) + y(C); i.e., in such a way that one multipli€®) Py a positive constant
5, (C), by a positive constamt and adds them. In particular, we use the equation:
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_a b
(D)= ——(B) + —(C)

and the associated reciprocity equatibri) and the inequalityl¥p). The latter does not
require the assumption (2) for its validity, but oaly b/ 3 > 0. The integrand of the
spatial integral that appears will then read:

a 2
2 (a—Ej(diVu)2+ 2ab _Jfouy _ou, ) ., .
a+bl”~ 3 3a+b) |l ay az

2 2
+ P (curlu)® + ab auy+auz R
atb atb|l 0z 0dy

Something that is fundamental to all of potential tiigs thebasic solutionto the
potential equation that corresponds tgant sourceat the origin of the coordinate
system:

1 1
ro «/x2+y2+zzl

If f is a given function op that is non-zero only in a finite domain then thaset®ons of
the equation:
Au = — 47t

that vanishes at infinity will be given by:

1
r(p,p’)

(3) u@ = | f(p)dp,

irlllwhichr (p, p') means the distance from the “reference pqriti the “source pointp’
The static problem of elasticity consists of imtgong the equation:

A u=-4rf,

in which 4r7f is a given vector field, namely, the (infinitelyeak) force field that brings

about the deformation of the elastic body. If wagine that all of infinite space is filled
with our elastic medium then that problem will lwdved by a formula that is analogous
to (3):

(*Y) Confer my remarks in the papé), (pp. 182, footnote, for the fact that with a natimtgrpretation of
the operatod, a function (3) that satisfies the equatfan=— 477f might also be a continuous functibof
the kind that was obtained.
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(4) u (p) = [P(p, P)(P) dp.
In this, P is a tensor (which was first determined by SOMIGNA) that is the GREEN
tensor of elasticity theorylt is composed additively of two parts:

1 1
5 P=—Py+—Pp.
®) 2a © 2b °

If we employ rectangular coordinates for which se@rce poinp' is the origin, and ik,
y, Zare the coordinates pfthen:

1 X  xy _xz

rord r3 r3

yx 1_¥ yz

Pa=| -5 —=% =
roror r

zx _zy 12

r3 r3 r r3

and
2

X Xy XZ

-t -3 —
rr r r

yx 1 yz

Po = -t S

¥ ror r

ZX zy 1 2

s Zy Z+=2
r r ror

The multiplicationP(p, p') § (p') is understood to mean matrix multiplication, wiere
regardsy = (fx, fy, f)) as a column vector that consists of those compisneBy contrast,

f (p) P(p, p') is to be interpreted as a matrix multiplicationnhichf means a row vector
with those three components. Finallyajfb are any two vectors then | will understand
a x b to mean the tensor that comes about under matritipiication when | regare as

a column vector anfl as a row vector:

ab ab ahb
axb=lab ahb ahbj.
a,b ab ab

Each of the three columns tHatconsists of is a solution of the equativit = 0,

when it is considered as a vector. In that wag tvo summand$®, and P, will
correspond to the two terms from whishu is composed, such that each column in the
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first summand will represent an irrotational vectetdj and each column of the second
one will represent a source-free one.

8§ 2. Solution of the first boundary-value problem of elasticityheory.
However, our problem does not consist of integratinditii®mogeneous problem”:

(6) A'u = - 451§

for all of infinite space, but only inside of a finitedyy J when one of the three boundary
conditions that were enumerated in the introductigoréscribed on its outer surfage

We begin with the first one:
u =0 onthe outer surface

and call it the (inhomogeneous) problem I. We will satve the form:
(7) u ()= [ I(p, P)F(P)dp,

in whichl" =T, (viz., the GREEN tensor that belongs to 1) is nothbngthe solution to
the static problem in the special case for which thetiagciorcef is concentrated at the

pointp’. The corresponding homogeneous solutjon Q) has the unique solutian= 0.
According to the inequalitydp), any solution of it is then a pure translation:

u = const. =,

and sinceu must vanish on the outer surface, one must kave0. Of course, one

assumes that > b/ 3 in this. If one did not wish for that to be triiert one would have
to start with the inequality(Jp) instead; one would arrive at the same result inwlat
Using SOMIGLIANA's tensoiP, we set:

Fr=P-A.

We denote the three columns &f by R, , Ry , R, , respectively; we employ
corresponding notations fdr and A, and for any tensor that occurs at all. In order to
determineA, one must solve the problerh df determining a fieldu that satisfies the
homogeneous equatidwe say briefly:a static field and is given on the outer surface.
Namely, if one considers the source pghto be fixed ther®l,, for example, will be a
static field as a function qf and will possess the same value€iason the outer surface,

and that is indeed well-known. We employ an Ansata%that is analogous to the one
that NEUMANN employed in order to solve the first bournye@alue problem of
potential theory, in which we letDj (and not perhaps one of the other possible
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analogues) enter in place of GREEN's formula in poteth@bry. In order to formulate
that Ansatz, we must define the expression:

bb(adiVu - ey +beurlu [u, e])

P(u) e +

a+b

in terms of an otherwise-unknown vectorial distribaote(o) on the outer surface, in
which we replacar with the three column vectors g8(p, p') in sequence (in which the

source pointp’ is fixed). The three quantities that one obtains mt thay are the
components of a vector:

(8) A(p, 0) ¢(0)

(A means a tensor), and the Ansatz that we have to reakls:r
(©) u(p) = — [ _A(p,0)e(0) de
2mIo '

In order to perform the calculation, it is convenienb&se it upon a coordinate system
y, zwhose origin is found at the poiatof the outer surface and whos@xis coincides

with the normal at that point. ¥y, z are the coordinates of the source pgirthen one
will find the following values for the three componentg &t

aib{Zb—ﬂa b)—jwar b— o+ (& biz%

| e ey

2l SOOI

If | denote the angle that the vectop = r,, of lengthry, = ‘tpo

normal at the poind by &, then | will obviously get the expression:

2b cosd,, ot 3(a-b) cod,,

A(p, 0) e(0)=a+b z N v (v 00€)

po po

from this, which is liberated from any choice of spec@rdinate system by its vectorial
notation. IfE is the %3 identity matrix then one will find that:

cosd,,
(11) A(p, 0) = -z {a+bE+

po

3(@a- b)txt}
atb ¥ |
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From a remark of FREDHOLM"Y), the vector fieldA(p, 0) e(0) has this simple,
intuitive meaning: If one lays the tangent plane tootmer surface through the pombn
it and imagines that one of the two half-spaces inte@hvthat plane will divide the total
space [namely, the one for whialfo) is also its interior normal] as being filled with our

elastic medium and applies the foege) at the poinb then that expression will represent

the deformation of the elastic half-space when thdalisent is assumed to be zero on
the planar outer surface. The solution to the statblpm for a half-space that is
bounded by a plane was first given by CERRUTI and BOUSIGIE®).

We assume that not only does the outer sufagmssess a continuous normal, but

also that it satisfies a HOLDER condition; i.e.,rthehall be a positive exponemt< 1)
such that the anglg,y that the normals at two neighboring poiot®' make with each
other satisfies an inequality:

| Moo | < const. €o0)”.

In particular, that will be the case € 1) when the outer surface is curved continuously.
In order to determine the unknown distributienwe get the followingintegral

equationfrom the Ansatz (9):

(12) u(0) = ¢(0) + —[_A(0,0)e(d) do.
2o
Since:
cosd . _const.
r020’ B (roo’)z_a ,

the kernel of this integral equation will be infmiof order only less than two for= o',
and as a result, FREDHOLM theory will be valid tbe equation itself. On just those
grounds, it would be necessary to start with thedague D) to GREEN'’s formula (and
not any other one); that choice would have the egusnce that must appear as a factor
everywhere in the expressions (10).

Should the homogeneous integral equation thatespands to the inhomogeneous
equation (12) admit no solution (other than theidatione 0), then no matter how the
vector fieldu(0) might be given on the outer surface, (12) waldays be soluble, and

the construction of the GREEN tengor ", would then be possible. pf p' are any two
distinct points inJ that are excluded from the domain of integratigntwo infinitely-
small balls then when the reciprocity formulld), as applied to:

u(p) =(p, P), v(p) =r(p, p"),

*?) loc. cit. ().

(*¥ CERRUTI, “Ricerche intorno all’equilibrio dei corplastici isotropi,” Atti della R. Accademia dei
Lincei (Roma), Ser. Ill: Memorie della classe di $ae Fisiche, Mathematiche e Naturbl (1882), 81-
123.



Weyl — The asymptotic distribution law of eigen-oscitias. 12

will yield the symmetry of th€REENtensorl", which states that the tensdr§’, p"),
I(p", p') will go to each other when one converts the rows aaiumns.

However, the fact that (at least under the assumpgtaha > b / 3 > 0) any
homogeneous equation that belongs to (12) will posses®lnton can be shown in a
manner that is completely analogous to potential thedtgwever, as was mentioned
already in the introduction, we cannot be satisfied whik line of reasoning that was
pursued by LAURICELLA t% since it cannot be adapted to the case that we shall
address later. In fact, the solubility of the inhomaegers Problem | cannot be also made
independent of the insolubility of the homogeneous integrahtion that belongs to (12),
but must be based upon the single condition that the horaogse Problem | admits no
solution besides OWe therefore now assume that the homogeneous integral equation:

(13) (0) +=—[ A(0,0)e(d) d6= 0
27779

possesses a solutiaf0) # 0. However, for the sake of simplicity, we take tase in

which no further solutions exist besides that one tratiaearly independent of it. The
“transposed” homogeneous equation:

2(0) +=—[ A(©,0)2() d6= 0
27779

will then also possess a unique soluttdf) # 0; the integraljge(o)b(o) dois non-zero

and shall be taken to be equal to 1. The inhomogereuegion (12) is soluble then
only when the given left-hand side fulfills the cormiti

j ,u(0)2(0) do=0.
In order to construct:

n_ 1
2 (p, P) = [ A(P.0)%R,(9) d
we must actually satisfy the equation:
M(0, p') = K,(0) +ij~ A(0,0)K, (0) dO.
2o

However, that is not generally possible now, sincerder for a solutiorRy(0) to exist,
we must replace the left-hand side with:

R,(0, P) ~e(0)] R, (0 P)(9) de.

*4 loc. cit. ().
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The solutionRx = Kx(0, p) will be normalized uniquely by the condition:

j &, (0,P)2(0) do=0.

It is given by:
f(0, P) =20, ) - [ A0,0)R,(J, P) do,

in which the resolveni\ of Zi/\ is understood in the modified sense. If we proceed
Vg

correspondingly witty andz then we will get a tensd{ (o, p') with the column vectors
R, By, Ky, and:

A'(.P) =5 [ A(P.O)K (0, B) e

must initially enter in place of the GREEN “compensattitat must actually be
constructed. The three rows Af are obviously static fields when considered to be
functions ofp’. The functionr = P — A" does not have the boundary value 0, but one
will have:

Mo p=c@xg'(®)  {g'(p)=]_P(p,0)2(0) da}.

Of course, shouldy’ be identically zero inJ, thenl” would be the desired GREEN
functionl;. Otherwise, | would setg (p) = g (p), in which | determine the constanin

such a way that | would ha\/jeJ g°dp =1, and furthermore:

f(p) = [ F(p, B)a(P) dp,
and define:
M (p, ) = (p, p) = §(p) * 8(p).
That will make:
(o, p) =0.

However, ™ (or rather, the column vectors th&t consists of) will not satisfy the
equationA = 0 as a function gf, but one will have (one understands the meanirteof
notation with no further clarification):

A T= 4mg(p) x a(p).

The row vectors of~ satisfy the homogeneous equatibn= 0 as functions of’, and
the relation:

[ .T™(p, p)o(p) dp=0
will come about.



Weyl — The asymptotic distribution law of eigen-oscitias. 14

If p', p" are any two points id then by the same line of reasoning by which we
recognized the symmetry bf in the case of the insolubility of the homogeneousgrsl
equation, formulal') will yield the result that:

r(p, p") =" (0, p") +| a(p)T™(p, P) dpxg( P)

is symmetric. The rows vectors Bf(p, p') are static fields with respect p5, so due to
symmetry, the column vectors will also have that priyp@s functions op. When one
sets:

[, 8(PT™(p, B) dp=f (p),

the boundary values will be:
(o, p') =7 (0) x g(P) -

If one also shiftg’ here to a boundary point # o then that will yield the symmetry law:
(14) f'(0) x 8(0) =g (0) X (0).

At this point, we now make use of the fact that the homogeneous Ptqlaesesses
no solution beside8, from which, we conclude thg{o) cannot be identically = 0 on the

outer surface, since otherwigép) would have to vanish in all af As a result, (14) will
imply the existence of a constantsuch that:

f(0)=-cg(0),
SO
F(p, p) =T«(p, P) +C g (p) * g(p)

will then have the boundary value 0, and the desired GREB&i6N will bel" =T, . It
can be left to the reader to carry out the analogousidenations in the event that the
homogeneous integral equation (13) should possess more thdmearly-independent
solution {°).

If we now once more assume that this integral equagiinsoluble then we can raise
the objection to the proof of the symmetry of the teserl, that was suggested on pp.
12: The proof assumed that the quantities:

S, :a;jb[Pn(u) +bdivu], & :ﬁ{a%(u) + b? [curl u, u]},

(**) For our argument, confer also E. E. LEMK. cit. (%), pp. 11-14, and
HILBERT, Grundzlge einer allgemeinen Theorie der linearen Integralgleichungepzig, B. G.
Teubner, 1912, pp. 227-232.
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which require singlaifferentiationsfor their determination, exist on the outer surface,
when one replacas with each of the columns &f . If we assume without proof, for the

moment, that this is actually the case, and regardhtiee quantitiesS,, &y, G, that
correspond to the column vectarof I} as the column vectors of a tenggo, p') then
the solution of the Problem | will be given by the faiten

Aru(p) = j 2(0, pu(0) de,

which one sees when one applies equati®h i such a way that one excludgsfrom
the domain of integration by an infinitely-small balldatakesv to be each of the three

column vectors oF, in turn. On the other hand, we have already solvedptitiblem in
the form:

(15) 27u(p) = | _©(0, p)u(0) do,

in which:

(16) O(p, 0) =A(p, 0) - [ _A(p,0)A(d, 9 do.
We must then have:

(17) 2(0, p) = 20(p, 0).

Under the assumption of the existenceZofwe can then calculate its value (©)2
Therefore, it is obvious that we can prove equation (17¢cty by an altered
arrangement of this train of thought, and also withoetassumption of the existence of
2. This can come about perhaps as follows:

By construction, one has:

(18) AP, P) =~ [ ©(p.0)P(a. B) de

Any row of A(p, p') will then be a static field as a function @f as a result, one must
have:

U — 1 !
A(p, P) =—_[ A(p.0)O(p. d) do,
and one will get the formula:

art Ap, p) =] [ @(p,0)P(0, d)@( B, 6) dod,

which exhibits the symmetry of the tengomwith no further assumptions. One can then
write:

(P, P) =P(P. )~ [ ,P(P.0)O(B. O ci

and the existence @&(o, p') can emerge from this equation with no doubt. One easily
glimpses how that train of thought will be modified whéwe thhomogeneous integral
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equation (13) has solutions. In that way, perhaps in éjp@e of objections that point
to the non-existence of certain quantities on the aitdace, the proof will also be easy
to invalidate for the following boundary-value problem bgimilar rearrangement. |
shall go only so far into the question of the modificagithat will perhaps be necessary
for any further problems as a result of the solubilifytloe homogeneous integral
equation, since | regard that point as having been likewsavexl by our argument
above and would not like to get lost in the detailsi{ia tmerely preparatory chapter).

Let one further point be mentioned here: One can lsaly the insolubility of the
homogeneous Problem I:

Au=0 ind, u =0 onthe outer surface

is solved here under only the assumption that the esipre§ that is formed fronu as

above is finite on the outer surface. | do not thir it is necessary to discuss the extent
to which | can free myself from that assumption; seffit to say that at the single
location where we make use of this law of the insobybdf the homogeneous problem
[namely, where we conclude thgfo) is not identically zero], we will, in fact, be dedi

with a functionu = g(o) for which the expressio® exists on the outer surface and is
continuous.

8 3. Solution of the second boundary-value problem.

We now go on to Problem II:
ANu=-4mf inJ,

divu =0, u; = 0 onthe outer surface.

The corresponding homogeneous Problgm Q) has no solution besidas= 0 when the

spacel is bounded by a single surface, which we would, in fdat, tb assume (if only
for the sake of simplicity). NamelyCg) will imply that a solutions of the homogeneous

problem will fulfill the identities:

curlu =0, divu=0

in all of J. If we setu equal to identically zero outside dthenu will be irrotational in
all space, and due to the boundary conditips 0, no surface vortices will exist an,

either. As a result:
u=gradg, A@=0,

and the boundary conditian = 0 says thap is a constant o8 (viz., the derivative of
in the tangential direction is everywhere zero); leegcis equal to a constant in all &f
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andu = 0. This result is nothing but the well-known factttha electrostatic field can

exist inside of a conductot?.
Ansatz for the solution of the inhomogeneous problem:

u(p) = [ T, (p, P)F(P) dp, Fi=P-Ay.

In order to find the column vectors Af=A;, we must address the following problem:
Find a static fieldu in J for whichdiv u, 1 are known on the outer surfac&he correct

way will be given by formula@). With the help of a scalar distributic®o) and a
vectorial one:(0), we then define:

—a W S(0) +bcurlu[u, e],

in which we replacea with the three column vectors Bfp, p') in turn. If we introduce a
rectangular coordinate systeqy, z with o as its origin in the same way as before (pp.

10) then we will get:
atb a-b b X VYo _ 2
2br NE 9T

_a-b Xy, X
RS
_a-b xz
2 e
We now once more denote the poirty, 2 by p, instead ofp’. The divergence with
respect top of the vector whose, y, Zcomponents are the quantities that were just
ascertained is:
X

5 50).
r

The vector itself can then be represented by:

a-b a— bcos? cosy n
- ns-— >t St——e——(ve),
2br D r r

and our Ansatz will then read:

(19) 277u(p):—'[ {_ ( ) ( po ( ))j

po

559‘“’ [e( 0-2 2, ¢ 9>j d

(*°) If J is bounded byr + 1 surfaces then the homogeneous problem will havésphet linearly-
independent solutions. Cf., WEYIac. cit. ("), pp. 184 and pp. 188t seq.
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That will imply that:

(20) (divar)o = 5(0) + — j C0%% 5(d) do.

From this equation, as is indeed known to be umyguessible, one can imagine
determinings(o), and with its help:

(21) b v(0) = @-+h) |_ —n(o)s(d) do+(a pf oy 0% ¢ 61 d

In order to write down the integral equation thattiue fore(o), one represents the
projectiona; of a vectora(o) by:
a(0) - n(0)(a(0) n(0)),
and introduces the vector:
n(0) - n(0)(n(0) n(0)) =noo

(which vanishes foo = 0'), along with the tensor:

(22) A =0, 0) = °rs’9°° {E - n(0) x n(0)} —eoTo
That equation will then read:
(23) et (0) +iJ.A(o, 0)e(d) dd=1(0) + v¢(0).

2

The productA(o, 0') ¢(0') depends upon only(0'), since that is in the nature of our
Ansatz. However, by this construction, one wi@aot only:

A, 0)n(0)=0
but also
n(0)A(0,0) =0

We can then determineby means of the equation:
(24) ¢(0) +2i [A0,0)e(d) d6= a(0) + v (o),
T
in which we takax(0) to be any vector distribution on the outer swefadath the property

that a = U
We cannot exclude the possibility that the homegeis equation:
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(25) (0) += [ A(0,0)e(d) d6= 0
21T

is solublea priori; that is realized, e.g., when the badlys a torus. However, as we
know, that fact does not prevent us from implementiggconstruction of the tensbr=
M by means of the inhomogeneous equation. It follows fiammula €C’) in a known
way that this tensor is symmetric with respect to these and reference point.

Since the column vectors &f; (p, p’) must be normal to the outer surface when
considered as functions pfI; (o, p’) must have the form:

i (0, p') =n(0) x g(o, p').

If one poses the problem of determining a static field ghabrmal to the boundary and
for which one is given that diw = I(0) on the outer surface then an application of

formula ) to u and each of the three column vector$ pf(in whichp' must initially

be excluded from the domain of integration by an infinityall ball) will imply that
this solution can be only the following one:

(26) - 47u(p) = | a(0, p)1(0) do.

On the other hand, the fact that [at least, underassumption that the homogeneous
equation (25) is insoluble] the problem that isqabs this form with the help of a certain

vector g alwayscan be solved is implied directly by our existenceqgdrabove, which
makes it possible to construgtwithout appealing to the tensbyi . The column vectors
of:

B, (P P) == [, ©(p O@(dxa(a B) do
(27) 4

zzi [.(e(p.9m(9)*a(a ) do
JT

are regular, static fields as functiongpqeven at the locatiop), and one has:
Bu(o, p’) =n(0) x g(0, p).
Both properties splB,, intol';, — M, and one must then have:
By=ru-T, Fy=r +By.
Naturally, it can be confirmed directly that thétda formula actually yields a tensby;

with the property that we demand.
When one observes precisely the way by which gmestantsa andb enter into the

tensod” =TI, one will see that:
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(28) r=2r+ir,
a

b

in whichT 5, 'y are completely independent of the constarasidb. We would like to
show thatany column vector df, is irrotational, and any of the three column vectors of
I"a is source-free, and one has:

Malp=0, MNlMa=0,

moreover, when we perform the composition of the Kenagrices in the present way:

Falo (0, P) = | Ta(p, PITL(F, B) dB.
In fact, we have:

u=—u, +-—u,

b

(29) 1 1
==[ r.(p. P)F(P) dB+=[ To(p BFCH df
a’ b

as the solution to Problem I, in whiefy , u, are independent of the elastic constants. If
one takes the divergence of both sides of the &quAtu = - 477f then that will give:

(30) a- A(div ) = - 47 div §,

and the divergence ok will then be independent of the constants, intligh the
boundary condition diw = 0. One must then have:

divuy, =0,

and the absence of sources for the column vectdrs will thus be proved. If follows
further from (30) under the assumption that isfciv0 identically that:

divu =0,
and our equations can then be written:

Au=-4mby.

Since this differential equation, together with theundary conditions, determines
uniquely,u will depend upon onhp now, and one will then have:

(31) [, Fa(p. P)F(P) dp =0,
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in the event that diy = 0. In particular, if one applies this resultfte uy, then it will

follow that:
MNaMNp=0,

and due to the symmetry d¢f, and ', , one will also havd ', = 0. The two
component§ ,, ', will then be orthogonal to each other. It followsrmh GAUSS's law:

Llel‘nEipZ - JDW” do,
when we setv = [a, b] and assume that is directed normal to the outer surface, that:
J'J div (a curlo —b curla )dp= 0.

If we understand to mean an arbitrary vector field and $et curlb in (31), and
understandr to be mean any of the three row vector§ jrthen this equation (in which
we integrate ovep', instead op) will imply that the curl ofa that is taken with respect

to p’ will vanish. Due to its symmetry, each of theethicolumn vectors df, will then
be irrotational as a function pf or (what amounts to the same thing) that:

curluy = 0.

Since u, is directed normal to the boundary, in additiore wonclude thaty, is the

gradient of a scalar fielg, that has a constant value on the outer surfacevarchn then
take it to be equal to zero there. Equation (30)tken go to:

AAG, = - 4rr- div §.

@, and @, vanish on the outer surface. Gfdenotes the usual GREEN function, £&@
denotes its iteration:

GG(p, p) = [ G(p, F) G B, p) dp
then that will imply that:
- 4744(p) = [ GG( p B)divF(p) dp.

If x, y, zare the coordinates of X, ¥, Z are the coordinates pf, and we introduce the
tensor:
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2 2 2
O 66 % _cc 2
XX axdy 00 2
2 2 2
H=|-"66 -2 66 -2 G
dy o ayay FIE
2 2 2
" s - 66 -2 o
9zox 070y PR

GG

G ’

which we can probably denote by:

grag, gragy GG (p, p')
then it will turn out that:

4rmua(p) = [ H(p. B)§(P) d,

and 47T, will then be identical with the tensét:

1 ,
(32) Ma= Egrada gragy G G(p, p').

What we have actually achieved with our method ehiswhen the determination of the
tensor,. Since it is independent of the constamtb, we can choose, e.@=b=11In
order to find it,and the coupling of elasticity theory with potehttheory will be
exhibited in that way.Naturally, the possibility of such a decomposit{@8) rests upon
the special kind of boundary conditions Il, and aamo way be adapted to Problems |
and Il.

8 4. Solution of the third boundary-value problem.

In order for Problem IllI:
ANu=-4rf indJ, P =0 ond

to be soluble, the force field7Zf on the body must preserve its equilibrium as & rig
body, which is a requirement that is expressedibyirear integral conditions ofi I,

for the sake of convenience, we employ a rectangolardinate system whose origin lies
at the center of mass of the body (of mass det¥iagnd whose coordinate axes coincide
with the principle axes of inertia at the centem@dss then the associated homogeneous
problem will, in fact, have these six solutions:

a; = (i,0,0J, a; = (0,i ,Oj, az = (O,O,AJ;
M M M
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a0 = (o,z ,__yj, o = (_z,o,zj, o = (z,_z, j
R R S S T T

M ? means the mass df while R>, &, T 2 are the three principle moments of inertia.
With that special choice of coordinate system, eéhes< vectors will be mutually
orthogonal and normalized:

_] 0 @) . _
medp—{ L =) (,i=123,4,5,86).

When we setu equal to one of the vectors in equation B), but setv equal to the
desired solutiom of Problem 11l that will give:

(33) jjqdpzo (=12, .. 6),

and that was our assertion. On the other handsal¢ion of Il cannot be unique, since
one can add an arbitrary linear combination ofdh® u without affecting equations Ill;

it is only when one adds the normalized equations:
(34) Lumdpzo (=12 .., 6

that the solution will become unique. Our probken consists dinding the solution of
lIl that satisfies the corresponding normalized eaquret{34) under the assumption of
(33). FormulaBp) guarantees that no solutions to the homogenemisem will exist in
addition to the linear combinations af; naturally, we now assume thaa 3 4b > O,

which holds true for any elastic body. The inhoegpus problem in the formulation
that was just given shall now, in turn, be integddby an equation:

u(p) = [ T(p, P)F(P) dp

that involves a GREEN tensbr=T"; that must still be determined. We initially make
orthogonal to the;, while respecting its symmetry, and thus replaeath:

P(p. p)=P(p B)~ 2 (Px ] a (B)P( B, B) db
(35) -2 J,P(p. P (B)xa () df

+ a(p)xa, (P)] [ a (PP(p B)a, (P) dpdp

ij=1
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The column vectors oP no longer satisfy the equatiadn = 0 as functions op, but
rather when the proceAs is performed column-wise with respecttoone will have:

6
A"P =4y a;(p)xa, (p).
i=1
We make the Ansatz:

M =P —Apy

and seek to determine the column vectors:
u(p) = Ax(p, ), 2Ay(p, P), AAp, p')

of A = Ay, as static fields for whicfjd(u) assumes the same value on the outer surface as
it does for:

u=R,(pp), R (p.pP) R P)
The problem:
(36) ANu=0 ind B3(u) = given vectop(o) onO

can certainly be soluble only when:

[ p(0)a,(0) do=0 (=12 ..6).

The proof is based upon formuB)(when one replacaswith a;, butv with the solution
u of (36). However, those of the three vectprs p.(0, p'), p,(0, p'), pA0, p’) for which

the solution of the problem is required in orderd&iermine the column vectors Afj
do, in fact, satisfy those linear integral condiso One shows that when one replages

with a; in equation B), butv with each of the three column vectorskf naturally, one

must initially excludep’ from the domain of integration by a small bali.wias precisely

in order to fulfill those conditions that we repdad® with P.
The closely-related Ansatz:

(37) u(p) = [ P(p.0)e(0) do

for the solution of (36) is, as emerged fror,§0t useful, since it will not lead to any
regular integral equation for the unknown distribate(o). We refer to the vector (37) as

the elasticity vector that emerges from the outer stefdistributione. Along with the

outer surface distribution, we must mount an “angdistribution” onO. | focus my

attention upon a single locati@nof the outer surface and erect the exterior noahej
the assumption shall be made initially that thisnmel does not re-enter the body when it
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is lengthened. | employ rectangular coordinateg z for whicho is the origin and the
interior normal coincides with the positixeaxis. | then define the function:

V=xIn{r+x)—r
and its derivatives:

a_v:m(HX)’ 6V: y 6V: z
0x

9y r+x’ 0z r+x

0V / ox is the potential of an electromagnetic field thagaserated by the exterior normal
when | think of it as an antenna that is uniformly dmtted with electricity.oV / ox is
the potential of a “dipole antenna” that we will obtaumen we fold together two
antennas that start from the pomin the xy-plane and lie symmetric to theaxis, and
are uniformly charged with equal and opposite electricig @pon that passage to the
limit, the densities of electricity increase simultangly in such a way that the field will
take on a finite magnitudeV itself will then be a potential function (as onecat®nfirms
easily by calculation). With its help, we now counstrthe tensorpg means the poirx, vy,
2):
oV oV _ oV
ox axoy %0z
_ 0V 9V oV 9%V
oxdy 90X 07 0y z
oV 0%V 0’V 9%V
0x0z dyoz 90X 0V

Y(p, 0) =

The divergence of any column vectprof Y is obviously = 0, and since one is dealing
with nothing but potential functions, one will also hake equation curl cusgy = O for
every column vector then, and therefdrey = 0. If one forms the pressufg(y) that
acts upon a surface element parallel toytaplane and corresponds to the displacement
field y and employs the equation:

0V _

0x°
for the calculation then one will get:

= |k

1 01 _01 _01
=P(y) = | 2—=,2—,2—|,
b‘B(U) ( oxr oyr azrj

1 1 &Y, v v &Y 1
E*B(ny):[—za oV _ 90V _J Oj {=2a——zi—},

—_— — + —_— -
ayr' oxay> o0xX 0x0Z° ox®  oxr
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and analogously fof3(y,), such that the tensor that consists of these tpressure
vectors will read:

X _y _Z
r3 r3 r3
X

r r

X
= 0 =
r r

u(P) = -], Y(P.0)e(0) do,

and | call it theelasticity vector that emerges from the “antenna distributiefd). It can

be constructed in the event that none of the extadanals to the body enter the body
J except at their base points (which is the case fgr, @nvex bodies).

In order to solve our probler(B6), we combine an outer surface with an antenna
distribution, in which we write:

(38) u(p) = == [ Z(p,0)e(9) do
T
where:
==_1 (1Y -aP)
"~ a-b‘? '

= is nothing but the solution that was first given by BRUSESQ (') to the static
problem of elasticity theory for a half-space thab@inded by the tangent planeacat
when zero pressure acts upon its planar outer surfliame then defines the pressure
that is associated with the column vegt@f = then one will get the tensor:

3x* 3y 3Xz
r5 r5 r.5

3y 3xy 3xy1Z
r5 r5 r.5 !

3x’z 3xyz 3x2Z
r5 r5 r.5

and that will vanish fox = 0. From this, it is also clear that the boundanydition:

P(u) =p(0)

*" Loc. cit, *3).
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for the vector field (38) will go to an integral equation:
(39) ¢(0) +- - [ A(©,9)e(d) d6= p(o),
2ir

whose kernel tensor has the propetfy (

const.

A(0,0) | )
[N o)1= (e

Should the assumption that the external normalhe¢obody meet nowhere not be
fulfilled, then we would modify our Ansatz in suatway that we would cap off all of our
antennas at a constant height that is chosen smb# enough that the capped antennas
would no longer penetrate the bodly The analytical formulation of this idea can be
implemented with no difficulty.

In each case, equation (39) is soluble only when:

(40) jp(o)ai(o) do=0 (=12, .. 6).

The associated homogeneous equation then has st $ea linearly-independent
solutions. If it possesses no others then the iiond (40) will be sufficient for its
solubility, and the construction of the GREEN tenf$o = I, will be completed.
However, the construction of the GREEN tensor caibneak down, due to the fact that
the homogeneous equation might possess even mteoss (and it is impossible to
exclude that case from the outset), as we show8@.inBy a column-wise application of
the procesA” with respect to the variabte we will have the equation:

(41) ATy = 4ﬂiai (p)xa, (P).

i=1

We can take care of that in such a way that:
(42) JLa(Pr,(p p)dp (=12 ..6).

The symmetry of the tensbr= "y, can be deduced from (41) and (42) by an applinatio
of the Betti formulaB').

Once we have found that tensor, we can asserththdroblem (36) can be solved by
only the formula:

4rru(p) =] Ty (0, PIw(0) do

(*® The absolute value/ | of a tensom\ is the square root of the sum of the squares of its nine
components.
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when we demand that must be orthogonal to the sa#¢ . The proof of this will be
simple to carry out when we apply the Betti formuBd) (fto u and each of the three

column vectors ofly, . However, once we have already recognized [under the
assumption (40)] the existence of such a solution irficihme:

2rru(p) = [ Z(p,0) p(0) do,

we can conclude that the tensbrthat appears in it must (essentially) coincidehwit
-1y (o, p). If we introduce the kerndT, (p, p') that arises fronT; by the same process

(35) that produce® from P then:
: 1
(43) Fm—T, =Bu and - —J. O(p,0)Z(fd, 0 dc
Vi O

will be essentially identical; i.e., they will odf by only an expression of the form:

6

2 & a; (p)*a (P)

i,j=1
with constant coefficients; .

8 5. Behavior of the compensating Green tensors the limit.

A series of estimates will be necessary for thenasytic laws that will be developed
in Part Two, which shall be summarized here.

cos?
j | £ |olo < const.
o 7

po

0

for all p inside of J— The integrand is the spatial angle under whighouter surface
elementdo appears from the poiqt outwards. For convex surfaces, for example, the
validity of the inequality is clear with no furtheliscussion. In order to prove it in
general, we establish the pooitthat has the least distance frprauch that the poirgo

is perpendicular to the outer surface, and drawtaéngent plane to the surface at the
point 0o, . We compare the integral with the one that arfsem it when we let the
integration poinb run through that tangent plane, rather than thergsurface.

(N If K(o, 0) is a kernel that satisfies the inequality:

const.

K(o, 0) | ———
A

(O<a<l)
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then its resolvent will also fulfill an inequality that reads the sarag.
For the iterated kernels, one finds successively:

const.

K™0,0) | ———
e

m=1,2,3,..)

as long as the exponent 2ng is positive. For that reason, there is a wellrdaf index
n for which:
| K"(0, 0') | < const.

Its resolvent K" will then be restricted in the same way that woelterge from
FREDHOLM'’s theory. The resolver of the original kerneK is:

=(K+K2+ . +K™) + (K"+K"K +K"K2+---+ K"K ™).
That elucidates the validity of our assertionis lalso clear how the consideration is to be
extended when the concept of resolvent must berstadel in a modified sense due to

the solubility of the homogeneous integral equation

(1 1f f (p, 0) is a function with the properties that:

const.
|f(p,0) < o jDI f (p,0)|do < const.,
and one has the estimate:
const.
0,0)|s—
lg(0,0)] (T )
for the function o, 0') then the function:
(44) F(p.o)=[ f(p.0)g(d, 9 do
will satisfy an inequality:
const.
F{@o)|s——.
|F (P, o) | Ty

In order to prove this, (b ando are given) | decompose the outer surface into two
parts: Part [1] consists of all poinds for whichrye <31y, While all of the other ones

belong to the Part [2]. Sinde}g (o', 0) |dd, when it is extended over the domain of the
pointso’ for whichry, < £, will be:
< const.&”

for all e (> 0), the integrafF will have the absolute value:
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const. / const.
<= jm|g(o,o)|dds —
po po

when it is taken over only the part [1] of the awterface (in which one hagy = $ry0).
However, when one integrates over Part [2], in Whig, > 1ry, , that will yield an
absolute value:

< cotlst..[ | f(p,d)|dd < corjst..
r2 a O r2 a
po po
(v) If:
const.
|f(p. o)<
po
in the rule(lll) then one will have:
const.
|F(p. o)< ~Ta

po
(in the event thatr < 1).

In order to prove this, one must replace the ostefaceD with a plane; one will
then be dealing with an estimate for:

do
rpo’ (rod)z_a ,

F(p.0) = |

in which the integration is extended over the enpilane. Leb; be the base point of the
altitude that dropped fromto the plane. If:

Moo < Tog s S0O Moo < \/E [Hoe,
then one concludes that:

1 5
roq < Erpol ! SO I'po < Trpq !

If one then draws the circlé

<
r010 - rPOL

aroundos, which is contained with the circle:

3
rod SE I'pol y

and integrates over only then one will get a value that is:



Weyl — The asymptotic distribution law of eigen-oscitias. 31

1-a *
po

For all points outside of, one will haver, ; = %rq0 , SO the integral over that external

region will be:
do . const.

3-a — l-a '
roo’ ) rpo

<

N w

(rodzérpq) (
and the proof is also achieved in that case.

(V) Iff (p, 0) has the property:

1f (p,0) |< C??St', [ (p.0)|do< const
and one has: ;
lg(0.p) |< const.
then: "

F(p.p)=|_f(p.ojg(a p) de

will satisfy the estimate:
const.

R(p B)

|F (. P) [

in which Rp, p’) means the minimum ofer+ r,, when o runs through the entire outer
surface (hence, the light ray from p towth a single reflection frornD).

| setR(p, p') = € and divide® into two parts: The first one [1] consists of @dlintso
for which one hasy, < £/ 2; one will also have,, = £/ 2 there. Now, since the integral

j do_ onste

(rpoe) Tpo

for any positive value of (here, “const.” means “independentpadinde”), the integraF
over that first part will have an absolute valuat tis:

< cor;st]- E < const.
£ Wy, £

Integrating over the rest of the outer surfacewhbichry, > £/ 2, yields:
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const.

const.
< [.1f(p,0)|do< —

T«

‘ .[[2]

We now go on to the application of these estimatesitqroblem in elasticity. In §
2, we learned how to integrate the equatidon = 0 with given boundary valuago) in

the form:

u(p) :%T [.e(p.0)u(0) do.

The problem was reduced to an integral equation with theekAjo, o). If we now
denote the tensak(p, o) that appeared there By (o, 0'), in order to avoid confusion,
then we would have [eq. (16)]:

© (p.0) =Au(p. 0) = |_A\(p.0)A, (d, 9 do.

Due to (1), in addition to:

| A1(p, 0) | = C??St', one also has L}lAI (p,0) | do< const.,

po

and by means of (II) and (ll1), it will follow frorthis that:

const.
2
Moo

(V1) |©(p, 0) |< , jD|e(p,o)|dosconst.

The compensating GREEN functiok is expressed by equation (18), and we then
conclude from (V) that:
const.

Aip, p)|< .
|Ai(p, P) [ R(p. 0)

We would like to adapt this estimate to the othey tensordd; , Ay, as well. We will
then show that:

(VIl) The compensating GREEN tensors:

A=A, AL A
satisfy an inequality*®):
const.
|A(p, P) |< :
R(p, 0)

(*% This inequality expresses the idea tAatan only be infinite whep andp’ converge to the same
boundary point of. Itis, | believe, the natural, and at the same timarpest, estimate that one can exhibit
for the GREEN compensators in that regard.



Weyl — The asymptotic distribution law of eigen-oscitias. 33

| shall first speak oA, . The tensoZ (p, o) that appeared in & which proves to
coincide with Iy (o, p), was given by the formula:

Z (p,0) == (p,0) - [ =(p.0)A, (3, 0 do,

in which | have replaced the symblthat was employed there witky, for the sake of
clarity 9. It emerges from (ll) and (1V) that:

1Z (p, 0) | < 008

po

According to (V), the tensor:
L[ e(p.oz(p. o de,
T O

which is essentially identical ty — ', = By , will have an absolute value thats<is
const.
R(p P)

When this estimate is adapted to the one thattieased in 83, and one solves the
problem:

, and the equality can then be asserted\fpr.

ANu=0 ind; w =0, divu =1(0) onQ
by way of:
- 47u(p) = |_ (o, p) () do,

that will create a certain difficulty. | shall noexpresau(p) by means of the function
s(0) that was given by (20), insteadl{d) = (divu)o . When | determine(o) by means
of (21) and ther(0) on the basis of equation (24), from which thentafo) is dropped, |
will get:

¢(0) =|_b(0,0) (J) do,

in which one has the inequality:
const.

|b (0,0) [=

o0

for the vectory. If I introduce this into (19) then that will ygean expression:

277u(p) =|_j(p,0) (9 dc.

The following terms then appear;jip, 0):

(*® And the overbar again means taking the resolvent.



Weyl — The asymptotic distribution law of eigen-oscitias. 34

atb 1 a—-bcosd,, cosd
- —~ u(0), - - Tt 0,0)dd.
2b r, ©) 7i S ID ro (@)
cosd,, . : .
These are ak in absolute value (the last one, from Ill). Howeun addition,
r
po

2ru(p) will contain the term:

.[D (tpo 5(0))

n(o) do.
po

The difficulty originates in it. We write(o) in the form:

¢(0) = v(0) - %Tjg/\” (0,0)e(d) do,

and then [see eq. (21)] have to deal with the esges:

(tpom() 1,
a) jDPT—n(o)do,
po’ do
(tpo Tos) COST,,
b) jo > 50 n(0) dd,
po do
., A\, (0,0) ,
c) L%x n(0') dd =K (p, o).

po

| split off the term:
.[ (tpo’ n(o’))i
O r3

n(0') (n(0) n(0)) do

po’ do

. . . const. . .

from a), which will have an absolute value thaglsco—s, according to (Ill). What will

r

po

remain is:
t,ng,) 1
| (0 o) I d")—n(o') dd.

o r

po' do

The normal at the poirt has the components (1, 0, 0); that integral \wéit read:

.[D ypo’ ny(d)r: Zpd Q( O)in(o,) do.

po' do
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Of the two terms in the sum, | shall examine only tingt one, and perhaps its
component:

Jo 22 nen(o) do

3
rpo’ do

Let ﬁ be the shortest line segment frprto O. We write this integral in the form:

LLICHY TR y;é{ N9 nn p}dd.

3
rpo rpd Drpé rbo r po

The first integral that appears in this remainsestricted for alp, which one shows most
simply when one replaces the outer surface withiahgent plane at the poioi. Since:

| e ny (01) [< [Ny (01) | < const.(r,, )? < const.ry,

the first term will have an absolute value that is:

< const.
r

1-a
po

as a result. In the second term, | decomposeetine that is placed in curly brackets, in

turn, into two:
nn(d)-nne nxny(ol){i——lj.
r ,

oo

oo po

The first one has an absolute value:

(" a r;;,
< const——— < const—,
ro’o ro’o

and the integral that it defines will then be:

do const.
< constj <
o rpo’ rdo r

(a<1).

1-a
po

The absolute value of the second one is found to be

Moy
< r2_§°r Iny (01) |,

po' do

and the integral that it defines will then be:
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< ccrast]- do < CTHSLEIh _1.
rpo o rpdrdo rpo rpo

a) is achieved with thatb) is treated in an analogous way, in which onetbasbserve
that whero', o,, 0 are any points on the outer surfat®: (

| cosd,, — cog,, <const.(r,,)".

(* It emerges from this that one can see the valifityis inequality in the event that all three of the
pointso, 0', 0, lie close to each other. If | employ a coordinateteayx, y, z) with o as its origin and
whosex-axis is normal ab then the equation of the outer surfatenight read:

x =1(y, 2), Y +Z2<cd)
in the vicinity ofo, ando’, o, might belong to the neighborhood that this represeftg projections of the
pointso’, o, onto theyzplane might be called/( Z), (y1, z). If:

r,<?2ar., SO Foo < 31y, ,
o o 00
then the assertion will be correct, since:
| cosd < const.(r )7 <const.(r, ),
00 00 o

and an analogous inequality will be true for €ps . In the other case ( = 2r,, ), one will have:

Fog 2 T,y Ty 2 BT,
. X %
One must estlmat%u R One has:
[o]o] 0q
, of 1 oOf
X =y [y, t2)di+ 2P = (t), 19 d,
Yo 5y ) dt 2Jo o (8 13

1 af 1 af
= — tz) dt —(ty, t7) d.
X1= Y, fo oy (Do 1R A+ gl 5, (% @
In addition, | define:

- 1 ﬂ
X=Yh g
Since the difference between the valuegfdfdy at the locatiory, z, whose distance is & itself proves to
be< const.?, one will have:

(ty,, tz) dt+ 2[ %( ty, tz) d.

|X = X |<constreg(r,,)" .

In addition:
|x, = X |<const.r, (1),
but:
a a a a o r a 1 ., . .
r°"1(r°‘1) = (ro"l) (rdq) (roq) s (ro'q) E{izq) Toq = Frool(ro'q) <2ry (ro'q) .
In total:

| . =X |< const.r, (r,,)",
-X
< % I+
r

X{l_l]
od loo roq

The first term in the sum on the righlﬂs;:onst.(ro,q)” , while the second one is:

X_x
fog T 0q

Iy lo )Ty [ i o Iy
smsconst.(“l) °°l=C(°°l) MAcoc 2 sg(r, ).
1-a 21—a 0()l
foo roq foo T 0q oo T 0q ( rool )

The inequality in the text is proved with that. On thigettb cf., WEYL,loc. cit. ('), a), pp. 476t seq.
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That shows that the expressignalso has an absolute value that proves to be:

const 1
< l—_]n —_—.
a
rpo rpo

One introduces (22) fa\; in c); one finds by a corresponding treatment t)atas the
absolute value:
. const

Tor

2-a
po

ln—l.
[ oo
The term:
[ K(p,0)b(d, 0 do

that occurs if(p, o) will then have an absolute value:

< const
r

1-a
po

1
In—.
[ oo
We have considered all terms with that, and we have

li(p, 0) | < C‘:”St'.

po

If M (0, 0') denotes the resolvent %2%—% then one will finally have:
T

2
oo

g (0.p)=-j(p.0) + [_i(p,0) M(d, 9 do,

and one will have, in turn:

lg(0,p) |< Cf”St'.

po

As a result of (V), one will then get the inequalit

const.

R(p, P)

[Bi (p, p) | =

for the tensoB,, that is calculated from formula (27).
We conclude from that result that for all threeEEHR tensors, we will have:

(45) IF(p.p) |< C‘:”St'.

pp
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The I' then exhibit kernel matrices to which the FREDHOLM-HERBT theory of

integral equations is applicable. One has that ghessess infinitely many discrete
eigenvaluesat the singularity. 1 shall denote the sum of thee¢ elements of the
principal diagonal oB = By, or By, by B(p) for p =p'. In the Part Two, we will prove

that B(p) = 0. We would have to call the integrEIB( p) dp theintegral traceof the

tensorB, in the event that it is finite. Our inequalitissply that when we understand
r(p) = 4 R(p, p) to mean the shortest distance from the poita the outer surfac®, we
will have:

const.
B < :
|B(p) |= (o)

Of course, the finitude of the integral traceBotannot be concluded from that, but we
will see at least that it is only logarithmicallgfinite. We formulate that precisely as
follows:

If £is understood to mean a small positive number Wesout out a thin shell. from
the bodyd that lies on the outer surface with the thickne@se., a region whose poinps
will be characterized by the inequalitfp) < &), and the following inequality will be true
for all £ (< 1) €9):

volume ofJ, < const., j 9P _ onst. It
=% 1(p) £

(VIIN) We will then have:
(46) I B( p) dp< const. Ini.
J-J, £

(** The second of these inequalities is a consequendeedirst one. From it, the shef}, that is
characterized by inequality:

1 1
T < <
2n+1 - r(p) - 2n
will then have a volume that:isconst.zin = 23 (for all n). The integrallg % is<2™ S <2C andas a
nr p

result:

[ 9 cocn
SL+%+'"+ % r(p)
and that was our assertion. We will get the proof effifst inequality when we sets out to show that a
body that is enveloped by an outer surface with continnousals will possess a well-defined volume.

We employ fine cubic nets and count the cubes that hamsgn common with], “frame-wise” (i.e.,
parallel to thex, y, andz axis).
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CHAPTER II.

THE REGULARITIES IN THE “SPECTRUM” OF AN ELASTIC BOY
THAT ARE INDEPENDENT OF FORM

8 6. Three general theorems on integral equations.

Let:
K (% ¢ (0<x, é<1),

like all the other kernels that we shall considerheste paragraphs, be symmetric and
such that the usual FREDHOLM-HILBERT theory is valifthe system of reciprocal,
positive eigenvalues &€, which are arranged in a sequence, will be denotég (by= 1,

2, 3, ...), and the associated eigenfunctions that definethonormal system will be
denoted by, (X). If only finitely manyl, are present then we will extend that sequence
to an infinite one by the addition of nothing but zero&®r kernelsk’, K', etc., that
differ by upper indices, we shall employ the same systaodistinguish the quantitiés

and u, (X) that belong to them. The theorem upon which wel dtade our further
investigations into elastic oscillation, which is both @ienand rich in consequences,
reads:

THEOREM I. —If K is the sum of two kernels’k K” then the following relation
will exist:
(47) |m+n+1s I:]1+l+|;+1 (m, n= 0, l, 2, )

Proof. For all functionsv(x) whose square integraj:vzdx < 1, one has the
inequalities:
[, Ij{K'(xf)—il:u;(x)q(x)} (Y &) dxd< L,
(48) ':nl
IJIJ{K"(X,E)—ZI:' W9 Y x)} (3 ¥ dxd< 1,

Now, if Imnse1 # O then the eigenfunctiong(x) (i = 1, 2, ...,m + n + 1) will exist, from
which we define:

m+n+1

=3 by

as a linear combination. The constant# this shall be determined in such a way that
v(X) is orthogonal to all of the functions:

u(x), uy(X), ..., u,(X); u(x), uy(X), ..., U (X).
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That givesm + n linear, homogeneous equations for the unknawnave can then take
care to insure that(x) fulfills the normalization condition:

[v= g b

For this special functiow(x) the left-hand sides of the two inequalities (48) wdldgual
to:

(KON UE) dxeE, [ K" (VX &) dxeE , resp.,

so their sum will be:

m+n+l m+ 1

J‘:J‘:K(X,Q()V(X) \(5) dX(f: Z quzz Im+n+l Z b|2: |m+n+1 .

We emphasize this particular consequence of our maineime

THEOREM 1l . — All eigenvalues will be lowered by the addition afpositive-
definite kernel to an arbitrary one.

One understands a positive-definite kerielx, x) to mean one whose associated
guadratic integral form:

[ oK OV W) dxek

does not prove to be negative for any functigf). As is known, such a kernel can also
be characterized by saying that all of its eigenvadwegositive. We shall show: Kf =
K’+K’, and therefor&’, is positive definite then we will have:

w121l (M=0,1,2,..).

In fact, if we write:
K=K+ (-K)

and imagine that the first reciprocal positive eigeneaf —K is already equal to zero
then the inequality of Theorem | will show the validitiyour assertion when we take=
0.

i 1
If f(x) is any function whose square mtegrﬁﬂf ’dx = 1 then one can convert the

arbitrary kerneK into oneK that is orthogonal tb(x):

[[K& f(ag=o,

while respecting its symmetry, but at the same time,alb functionsv(x) that are
orthogonal td (), the equation:
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[L[ROOVOI M) dxa = [ [ K6 EV(R) UE) dxe

will be fulfilled. One must set (cf., pp. 23):

K(6€) =K (x & = F(9]. F(NK(y&) dy= [ KOwp) 1) ay &)
+ (O] [ Kxm) F(y) F@) dyay.

If we apply the inequality:
I:I;{K(Xﬂ)—ili ui(x)u(f)} A YY) dyd < lnus

to only those functions(x) = v(X) that are orthogonal tb(x) then we can replace each
u(x) in them with the function:

009 =t () —f09 [ F(y)u(y) dy,

which is orthogonal t&(x). For thatv = v(X), we will then have:

) LIk -S89 vod W@ dxcsa,

Now, if v(X) is once more an entirely arbitrary function whegeare integral = 1 then the
expression on the left-hand side of (49) will halwve same value for it as it does for the
function:

V(9 =00 ~ 109 [ v(y) () dy

(whose square integral $1). Therefore, (49) is true in general. The pextal first
positive eigenvalue of the kernel that is set idychrackets on the left-hand side is then

< In+1, and on the basis of our main theorem, we condluad ., < |1, since therg+1)"

reciprocal positive eigenvalue oZIiUi(x)q(E) is zero. On the other hand, since the
i=1

difference K — K is a kernel that possesses omlgye positive andone negative
eigenvalue, one has thit: < | ,,, as a result of the same theorem. The result thus

n+l?
obtained is the precise analogue of a theorem BV on quadratic forms with finitely
many variables. Namely, if we interpret the quéidrantegral form that belongs to a
kernelK as asecond-order surface in an infinite-dimensionaldiional spacethen K

will be nothing but the intersection &f with the “plane” that goes through the center
(viz., origin) whose altitude &X).
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THEOREM Il —If K is generated in such a way that one intersects¢oend-
order surfaceK with an arbitrary plane through the center thdre tprincipal axes of

K will be separate from those of K:

|1Z|12|22|22|32|32...

8 7. Exact spectral laws.

As we have investigated in the previous chapter, the equatidhef displacemertit
=M (p, t) {t = time} in an elastic medium in the absence of exdklorces reads:

0%l
ot?

=A'sL.
In order to examine a simple oscillation, we makefolilewing Ansatz forsl:

$U(p, t) =€ - u(p)

in which the amplitudasy(p) is a function of only position, while the numberis a

constant, namely, the frequency of the oscillatiodeunscrutiny;i =,/ -1. We then

obtain the equation:
(50) Au+Au=0 ¢} =V%)

for the amplitude. According to whether one poses thersurface conditions I, I, or Il
for the elastic body, the solutiond, (u) of this equation will coincide with the

eigenvalues and eigenfunctiofis [y, T (*); it only in the last case that the eigenvalues
and eigenfunctions df,, approach the six-fold eigenvalde= 0 of all six eigenvectors.
The eigenvalues that define a discrete point spectare all positive;i.e., the kernel
matrix has a positive-definite character. Namelyné introduces a solution, (1) of
(50) that satisfies the relevant outer surface candtinto the equation®j, (C), (B),
resp., then that will give:

[ (--=Au?)dp=0,

in which the part of the integrand that is sugge$te ... is> 0 in each of the three cases.
That equation excludes the possibility that oneleared < 0.
The following theorem is true for the eigenvaloé®roblem I:

(*® We tacitly think of all the GREEN tensors and fuact of Chap. | as being provided with the factor
1/ 4rr(without altering the notation).



Weyl — The asymptotic distribution law of eigen-oscitias. 43

THEOREM IV. —If one imagines any finite number of bodi€sdJ, ..., J" that do
not mutually penetrate each other as being contained within the body J therstaade
many eigenvalues (of Problem 1) that belong to J will lie below artrargilimit as the
total number of the eigenvalues that belong to the individual bodies.

If we denote the GREEN tensdrs=T", that belong to the sub-bodi@§J” ... by,
r", ..., resp., in which we also make the convention that,l"" is set equal to zero when
the source or reference point lies outsidd ‘@hen according to Theorem Il, the proof of
this theorem will be achieved when it can be shownttiekernel matrix:

F—(@ +T"+ ...+

is positive definite. We assume that the sub-bodiesbounded by outer surfacgs,
9", ..., which fulfill the same assumptions that we havstylated in regard to the
boundary© of J, and neither contact each other nor the externalthull shall letJ™?

denote the part af that remains when | think of all the sub-bodiésl”, ... as having
been removed fror Since the GREEN tensbl** that belongs td™* and corresponds
to the boundary condition | has positive-definite typs, was mentioned above, the
assertion to be proved will be tradortiori when:

A=T— ([ +T"+ +T"+1™Y
turns out to be a positive-definite matrix; i.e., wieturns out to possess only positive

eigenvalues.
Hence, lef be an eigenvalue &, and letv be the associated eigenfunction:

(51) v(p) =4 | A(p, P)o(p) dp.

The inequality = 0 proves to be a consequence of that assumpti@p). satisfies the
equationA’v = 0 in all ofJ, except for the outer surface®, O", ... As far as the

behavior of the vectors on these outer surface®rngerned, one initially specifies that
they are continuous on them. Namely, for a paionQ =O' + O" + ...+ O":

(52) v(e) = | T (@, p)o(p) dg.

The vector&(v) exists on both sides of such an outer surface

_a , _ 1 2
Sn—m[Pn(u)+bd|v v], Gt—m(a‘pt(uﬂb [curl v, n]).
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However, the values of this vector on both sides do na&eadiets = s (&) denote the
“lump,” which is the difference between its values oe side and the other vanishes
on the outer surfac®.

We shall now apply equatio®{) in such a way that we substitute the tedqg; p')
(that belongs td) for u and indeed, apply it to the bodi#sJ”, ..., 3™ in succession (in

which the pointp’ must first be excised from the body in which it liesabogmall ball).
Adding theh + 1 equations that one obtains will give:

(53) v(p) =-[_T(w p)s(e) do.
If we substitute this value in (52) then that wgive:

v()=-u jDr MNwo)s(W)dd,

in which " T is the kernel that correspondsltdy iteration. Finally, we make use of the
inequality Oo), when replaces with v in it, and replacd with the bodied’, J” ..., J el

in succession. We add the inequalities thus-obthim turn, and find that:

- J'Dn(a))s(a))da) >0,
SO

(54) ,U'[D'[Dﬁ WIT w)s @ dwda = 0.

On the other hand, when one squares the left-haddright-hand sides of (53) and
integrates oved, one will conclude that:

/,zjos(w)rr(w,w)s(w)dwdw: an(p)dp > 0.

The factori in (54) must then be > 0, since it is non-zero.
We point out yet another consequence of thisdiheeasoning. 1f° is a region that
is surrounded byl then I" ,— 'y will be positive definite when we let the sourceda

reference points vary inside 8. When we set: equal to only those particular fields
that are equal to zero outsideJoft will emerge from the inequality:

[ ] u(PXT (R B =T,(p P P dpdk20

which is formulated on the basis of the previoud, fehatl” ,—I'; will also be a positive-

definite kernel matrix when the source and refeegumuints run through only the regidn
If we takeJ° to be, say, a large sphere and let its radiusase to infinity for a fixed
center then passing to the limit will yield therfarla:
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[, u(PXPCR B)-T,(p B B dpdf=0.
It shows that:

THEOREM V. —The kernel matri® — I, is positive definite.

Whereas the validity of the law of the dependencthefeigenvalues of the regidn
on the boundary condition | that was formulated in THREM 1V is restricted in scope
to that case, the following analogue to THEOREM V exstehe boundary conditions
Il and 11l, and it is proved by the same method:

THEOREM VI. —The kernel matrices:

Bu=Fy-ry, Bu=rw-T,

are positive definite. As a result, we know at least as mageyelues of the oscillation
problem I, as well as Ill, that lie below an arbitrary limit ag do for Problem I.

Let &, v be an eigenvalue and the associated eigenvecBrd;, :

(55) v(p) = ¢| B(p, P)o(p) dp.

If we let the pointp in (55) move about the outer surface then we will fimel houndary
value ofo:

Vi (0) = 4 g(0, P)b(p) dp,

in which we understang to mean the same quantity as on pp. 19. On the other hand, i
[(0) means the divergence wbn the outer surface then we will have (cf., pp. 19):

(56) v(p) =-|_s(0, p) (o) do.
By substituting this in the previous equation, we will get:

Yo (0) = - 42f _ 89(0,9) I(d) dd

{9 8(0,0)=] g0 P)g(d, P dg}
The inequality Co) yields:

- jDvn(o)I(o) do= L {g(curlu)2+(divu)2}dp20;
that is:
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,LIJD'[Dgg(O, d)1(0) 1(d) dodd= 0.
One arrives at the inequality from (56):
'[D'[Dgg(o, d)1(0)1(d) dodd = Luzdp >0

by squaring and integrating: is positive, as a result.
If B in (55) means the matrB, then we conclude as follows: One has:

(57) v(0) = ,UJ'J (o, p)o(p) dp+ a(o).

In this, I means the tensdr,, anda(p) is a linear combination of the solutions to the
homogeneous static problem Il that were mentioned ai¢geining of 4.

(58) o(p) = —#ID (o, p)a(o) do {a=P(v)}.
By substituting this equation in the previous one, onegeiil

v(0) = —yjor I (0,0)q(d) dd+ a(o).
One has the inequality:
—jDu(o)q(o) do=>0,

since one necessarily has (cf., pp. 24):

[.a()a(0)do=0;
that is:
ngqu(o’)r (o, d)q(d) dodd= 0.

One must, in turn, combine this result with the one fiblitws from (58):
[ — 2
[.],a(@)TT(0,d)q(d) dodo=[ v*dp > 0.

One concludes thdt;; possesses just as many eigenvalues below an arbitratry. las
I, does. However, the number of eigenvalues of Problethatllie belowl is higher
by six than it is for the kernel matrik, sinceA = 0 enters into it as a six-fold
eigenvalue. On the other hand, from Theorem lII, thmlver of eigenvalues of

below an arbitrary limit amounts to six less tha@ tlumber of eigenvalues of the tensor
I . The statement of our theorem is therefore tu¢hle boundary conditions IlI.
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8 8. The asymptotic spectral law of the “three-dimensional embrane problem.”

Now that we have spoken of the most importexact spectral laws (which are
expressed by inequalities) in the previous paragraphs, we shallgo on to the
asymptotidaws (which are formulated as limit equations). Vegib with Problem | and
first focus upon the special case in which the constatsdb possess the value 1, so
A"u will go to the potential expressidni. Therefore:

G 0 O
=40 G 0,
0 0 G

if G means the usual GREEN function that belongs to teewundary-value problem
of potential theory. The eigenvalueslgfare the same as those@fexcept that each
eigenvalue of’; must be must be counted three times as often &S.fofhe following
facts are known about the GREEN funct®n

1) O<G<£.
r

2) If the region)’is contained id thenG; < G; .

It will then follow from this that a GREEN functionilWalso belong to a regiod when
the assumption that it is bounded by a finite numbeuct uter surfaces that satisfy the
requirements that were formulated on pp. ltasfulfilled. Namely, ifJ is any region
that lies completely at finite points then we can asge a regiold, with any sufficiently
small&£> 0 such that:

1) Any J. is bounded by a finite number of outer surfaces thasgssscontinuous
tangent planes and continuous curvatures.

2) J.is contained completely ihswhend< &

3) Ii[rg J: = J; I.e., for any poinp inside ofJ there exists a@ such thatp also lies

inside ofJ;.

If G¢is the GREEN function that belongsdgthen Ii[rg G = G will exist, and indeed

it will be uniformly true for allp, p' that belong to a fixed, closed spatial region thest
completely inside od that one will have:

im {G (p, ') ~ G (p. P)} = 0.
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SinceG always remains smaller than i, /it will have discrete, positive eigenvalués
A2, As, ...

Here, we do not need to examine the question of whediner,in what sense, the
GREEN functionG also takes on the boundary value 0. It is essentiaisf@nly that this
will be true whenJ is acube If one imagines that the cube sits on a horizopitaieE
then the GREEN function that belongs to the cube wmllifact, be smaller than the
GREEN function of the half-space that is determinedheyplaneE, and since the latter
has the boundary value G,will also have the boundary value 0 on those of thessadJ
that cover the horizontal plane. If the cube is gikg 0< X, y, z< c then:

sinlnxsinlﬂysinlnz (,mn=1,23,..)

c c C

will be eigenfunctions of the GREEN function of thébe, and there will no other ones
besides them (or rather, besides ones that can be cednpbs finite number of the
aforementioned functions with constant coefficient®ll of the eigenvalues o& will
then be provided by the expression:

(59) g (I + m? +n?

here when one letsm, n run through all positive numbers independently of each .other

Let J°, J” ..., J" be any regions that are contained in the entirely-arfitfinite
regiond, but have no interior points in common. One askstwdnghe theorem that was
spoken of in the previous paragraphs, namely, that thelkern

G-G'+G"+...+G"

is positive definite, will also be true now that wetaige ourselves from any assumption
about the boundaries of the regialisJ” ... In order to resolve that issue, we must
approximatel’, J, ... from the inside out by regiond;, J;, ... in a manner that is

analogous to what we just did fr In order to do that, we will insure thaf, J;, ...,

including their boundaries, lie completely insideJof. We must then show that the
inequality:

(60) nggg{j% [Le(RP U dodp-> [ [ & pp WP dp’r}rzo

exists for any functioru(p) that is continuous in the closed regidn | assume that
J'J u’dp< 4. Let0<d<e. I replaceG, G, G” ... in the expressioB, that is contained

in curly brackets in the latter inequality with the @t Js, J;, J;, ... that belong to the
GREEN functionsGs, Gj, G;, ....; the quantitie§&s will then arise from thés, in that
way. One has:
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lim Gg=G;.
0=0

From the investigations in the previous paragraph, | knowGkais non-negative. An
application of the so-called SCHWARZ inequality will yi¢he relation:

Gw-Ga’ = || ©)dpdp+Y. [[ (G) dpc

55— & jzlJ}J}—Jgj J}

S:H(%jzdpd[5=Aa—Pg,

in which the latter integral should be taken over tkelBnensional region:

h
(J5d5—Jed) +D (I3 35 -2 3).

j=1
It will then follow that:

Gy 22— A[y—A

When the finite quantityjyr_rol A; is denoted by, the passage to the limit lidx= 0 will

yield:
Gg > - A_ AX‘ ’

and the passage to the limit lén= O will confirm the inequality (60), moreover, &8s
to be expected. The number of eigenvalued o6&, ..., G" below an arbitrary limit will
never exceed the number of eigenvalueG tat lie below the same limit then.

LetJ, in turn, be an arbitrary finite region, and ddte a (small) positive number. We
draw a cubic net in space whose edge lengttarsd understand to mean the number of
cubes in that net that belong da&ompletely. The eigenvalues of the GREEN function
that belong to an individual cube are given by (59). As we know, as long as these
eigenvalues lie below an arbitrary linhif their numbeiN,, can be deduced as follows: In
a space with rectangular coordinates;, {, we consider the positive octant of the unit
sphere:

E2+mP+ %<1, ¢&=20, n=0, (=0,

and construct the cubic net in that space whose &gth is7z/c,/L and is oriented

parallel to the coordinate axes (and to which thgirobelongs as a vertex)N,, will then
be identical to the number of cubes in that netlbkeéong to the positive octant of the unit

3
sphere. If we then multiply it by the volume oftimdividual CubeiiJ then

cy L
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3
N{%} must be equal to the volume of the spherical octaninfmitely-largeL,
c

and we will get the asymptotic expression for the nuntbelf from that:

3
C
Nw~ _L3/2.

677

From Theorem IV, and with consideration given te #&xtensions that we have just
added to that theorem, we have the following inéutar the numbelN; of eigenvalues
of the GREEN functio6 that belongs td that lie belowL:

Ny=H Ny,
SO.

fiminf N HE
- L% 6

If the bodyJ possesses a well-defined voluth¢henJ will be the limit of Hc® as the
mesh widthc becomes infinitely small, and it will follow that:

. N J
liminf —2Y> —.
= L2 61

In order to find an upper bound for the lim supmprison the body in a cubic box
W, and ifW — Jmeans the remaining empty space then | will have:

Nw = Nj + Nw-g ,
SO

o N ... N . N w  WwW-1] J
liminf =% = liminf 2% —liminf -2 < - = .
L=c0 3/2 L=0c0 3/2 L= L3/2 6”2 6”2 6”2

The limit equation:
.. . N 1
liminf =~ = —J
L= L2 61

is thus proved. A1, A2, A3, ... are the eigenvalues of the GREEN functithat belong
to J then we can also write them as:

(61) Ao ~ (@j .
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THEOREM VII. —One has the asymptotic law:

(6ﬂznj2/3
An -~
J

for the eigenvalues = A, of the boundary-value problem:

Au+Au=0 inJ, u=0 ono
when they are arranged in an increasing sequence.

Whena = b = 1, the numbeN of eigenvalues of the tensbr= T, below a limitL
asymptotically amounts to:
J
62 N~ — L%,
(62) 277

8 9. The asymptotic spectral law of elastic oscillations.

From that result, it is possible to go on to thigeo two problems Il, Ill, at first, under
the assumption that = b = 1. However, Problem Il possesses the peculitiit that
when the asymptotic distribution of eigenvalue&rnswn in the special case=b = 1,
we can deduce it in the general case of arbitrpogi{ive) constants and b with no
further assumptions. Namely, fron88we have [eq. (28)]:

M= Era'*'l-rb
a b

in which the matriced , , ', are mutually-orthogonal and do not depend upon the
constants andb. If A% are all of the eigenvalues Bf, andA® are all the eigenvalues of
Iy, then all of the eigenvalues Bf will be given by:

a- A2, b- A"

The A% are nothing but the eigenvalues of the GREEN fand® that was considered in
the previous problem. Namely,Afis an eigenvalue, andis an associated eigenfunction
of G thenA will be an eigenvalue df, with the associated eigenvector graagnd at the
same time that construction will providé of the eigenvalues and eigenfunctions of the
matrix Iy . That will emerge from the analysis of the terSpthat was carried out in 8
3, which had the result (32). Now, if we know thag¢ asymptotic law (62) is valid in the
case ofa = b = 1 for not only Problem I, but also for Il, there can conclude: The
number ofA® < L is asymptotically ~J/ 377) L*? and the number of eigenvalueslaf
will generally be:
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J a2 1 3/2 1 1/2
(63) ~§L {(Ej +2(Bj }

One would also expect the same formula then foblBno | for arbitrary positive
constants, b. In that way, Il will make it possible to compdethe transition froma =b
=1 to arbitrary values of the constants.

The conjectures that were just mentioned can beeatdeon the basis of Theorem |
from the single fact that the eigenvalueBgf=T, — I, are asymptotically distributed in
a way that is sparser than would correspond toutar(61), and the proof of that fact, in
turn, rests upon the estimate By that was achieved in$

const.

R(p B)

[Bi (p, p) |<

The eigenvalues d@,;, which are arranged in increasing magnitude (aedss we know,
all positivg shall be calleds, , and the associated eigenvectors (which are riytua
orthogonal and normalized) shall be calkedp). The kernel matrix:

n

mmm—Z%m@xmm

has the eigenvalues..1 , G2, ... Since they are all positive, the associateadgatic
integral form will be positive definite, and theoeé the three functions in the principal
diagonal of the matrix must O for p = p' itself. If we add those three inequalities then
that will give:

n

Z%Uf(p)s Bu (p)-

i=1 M

According to the inequality (46) ing the integration ovel = J, will yield the estimate:

1 1
64 = v’ dp < const. In-.
(64) 27 J, ., vidp .

On the other hand, we have:

!

: 1 2 U dp
—v?(p) < |.IB,(p,p)f dp <const.| ———— <const.,
;ﬁ J,1e, Lﬂmm
and upon integrating over the shilt

51
(65) —| v’dp < const.e
271,
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When we replace “const.” with C, it will follow from (64), (65)a fortiori that:

13 2 1 1 1 ’
— ‘dp<iCin=, — v dp<iCpg ¢
/J’Zl: L e ﬁzl‘ I

Addition gives:

We can best utilize this inequality when we take (In £, / 5, . It will then follow (as
long asg, > e) that:

n
— <CIng,
B,
and from that (as long as> €'/°):
1n
66 >
(66) A Clnn

An analogous argument can be made for the eigeesalfB,, and also for those of
the likewise positive-definite matri, . We formulate the result in:

THEOREM VIIl. - One has the estimates:
+
is const.ln(n+1) : is (:onst.ln(n Y : n=123..)
a, n h n

for the eigenvalues;, of A| and the eigenvalues, of B =By, (B, resp.).

| shall denote the eigenvaluesfaf, [y, when arranged in magnitude, by, A!,
resp. We have:

1) Al <Al (Theorem VI),
2) e
An Ah ﬁs

if h, sare any two indices of the sum- 1 (Theorem I).We next consider the case of a
b =1, since, as we know, we have:

(67) fim o= (Ej =D.

n=e n2/3 J
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If we substitute the largest numbker= n — 1 —s that is contained completely in
n*®\/Inn for sin the inequality 2) that was just cited then from TleeoNIIl, one will

have:
1 Ins JInn
—< const.— < const.~—,
n
1
2/3
n
lim—— =0,
n=co ﬁl
and
2/3 h2/3 1
lim—=1lim-— = —
= A = A D
That will give:
n2/3 1 1]
: . .
I.Loo sup)l—:s D’ Iim inf T >D.

However, in view of relation 1) and (67), it wilfow from this that:

(68) fim = :(ﬁj |

e 23 J

If we once more think of a and b as arbitrary canststhen we can deduce, in the
way that was given at the beginning of this panalgrshat:

A I J -3/2
(69) Ir!m nTn/3: {ﬁ a_3/2 + 2b_3/2)} =Dgp .

| shall now employ the inequality 2) in order taldeeA" from A' in the form:

: lim supi < Dap.
n

o 1
lim inf —_— 3
Dab n=co

n=o A

The relation 1) and (69) once more gives:

= 12/3
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The oscillation problems | and Il are thus dispatchddwe now understangs, to
mean the eigenvalues Bfi, then we will have:

1 1 1 1

Ts PP ,3
n n h s

1 Ins
—< const.—,
S

S

and conclude from this in the same way as befoaé tthe asymptotic law (69) [(70),
resp.] can also be adapted to the boundary-valoklgm Il1l. We formulate the final
result as:

THEOREM IX. — The number of eigen-oscillations that an elastic body J (of volume
J) is capable of performing with the outer surface tenSiap to the frequency limit v
asymptotically amounts to:
J

ﬁ (a—3/2 + 2b—3/2) m, 3

(for lim v = ).

Ascertaining that law was the goal of the foreggpaper. If we were to carry out the
proofs of the estimates rigorously then we would get the error (i.e., the difference
between the number to be determined and its asyimmgrpression that was derived
here) is certainly®():

Inv
%

< const\V® -

Zurich, 9 March 1914.
HERMANN WEYL

(**) WEYL, loc. cit(), pp. 196-199.



