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 The first problem in infinitesimal geometry is to consider an isolated continuous manifold by 
itself.  The next thing to address is the study of a p-dimensional manifold (“surface”) that is 
embedded in a higher-dimensional manifold (the n-dimensional “space”).  That problem, of which 
the theory of curves and surfaces in three-dimensional Euclidian space is a special case, shall be 
discussed here.  I would like to show how the basic concepts and formulas of that theory can be 
obtained from the infinitesimal geometry of the isolated manifold in a unified, intuitive way with 
no new calculations. 
 Let x1, x2, …, xn be coordinates in n-dimensional space, and let y1, y1, …, yp be coordinates on 
the p-dimensional surface.  The equations of embedding, which give the spatial location xJ where 
an arbitrary surface point P = (y) is found, might read: 
 

xJ = xJ (y1, y1, …, yp)  (J = 1, 2, …, n) . 
 
Inside of the n-dimensional vector space that belongs to P is established the p-dimensional tangent 
space T = TP, which is spanned by the vectors: 
 

e =  1 2, , , ne e e    = 1 2, , , nxx x
y y y  

  
    

   ( = 1, 2, …, p) . 

 
 
 I. – We next assume that space carries an affine connection.  In order to be able to define it on 
the surface, we must assume that the arbitrary surface point P is associated with not only the p-
dimensional tangent space, but also a q = (n – m)-dimensional normal space N = NP .  It likewise 
consists of a linear family of vectors in P.  T and N can have no vector besides 0 in common, such 
that each vector in P will be additively composed of a tangent vector and a normal vector in one 
and only way.  I would like to refer to a complemented surface in space under those circumstances 
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in a way that should be easy to understand.  Let ei (i = p + 1, …, n) be q independent vectors that 
span the normal space.  If I apply the splitting of the vector space into T + N to the parallel 
displacement of an arbitrary vector in P to the infinitely-close surface point P then I will get the 
following: 
 
 1. A tangent vector t at P will give rise to a vector t + dn at P (t tangent, n normal).  I shall 
refer to the rule t  t, by which a surface vector at P will go to a surface vector P,  as the affine 
connection on the surface.  In ordinary surface theory, we refer to the law t  dn, by which a 
surface vector at P and an infinitesimal displacement in the surface gives rise to a normal vector 
dn at P, as curvature.  The curvature measures the extent to which the tangent space turns into the 
normal space as one proceeds across the surface by parallel displacement. 
 
 2. A normal vector n at P gives rise to a vector n + dt (n normal, dt tangent).  The 
infinitesimal linear map n  n from NP to NP is the torsion.  One can call the law n  dt, which 
makes a normal vector and an infinitesimal displacement in the surface give rise to an infinitesimal 
tangent vector, and which shows how the normal space turns into the tangent space, the transverse 
curvature, to distinguish it from the “longitudinal” one that was mentioned in 1. 
 
 If: 

dvi = dv vi k
k ,  dvi

t  = ( )dy 
i

t  ( i  = i ) 
 

is the formula for the infinitesimal parallel displacement of an 
arbitrary vector vi ei (the German indices run through all values 
from 1 to n, the Greek ones run through only 1 to p, and (dy) 
stands in place of dy , due to its contravariant nature) that is 
carried out on the surface then the splitting will correspond to 
four components of the decomposition of the square matrix of 
the coefficients dvi

k  (i is the row index and k is the column index) 
that is suggested to the left.  We will employ Latin indices for 
the normal components under the splitting and Greek indices for 
the tangential ones, set ep+i = ie , and denote an arbitrary tangent 

vector by v e and an arbitrary normal vector by i
iv e .  Then: 

 
 tt) 

 = 
  are the components of the affine connection of the surface.  The rule t  t 

reads: dv =  ( )v dy  
 , as a formula. 

 
 nt) iG = p i


  are the components of the curvature: The two infinitesimal displacements d and 

 on the surface belong to the normal vectors with the components  iG (dy) (dy) (i = 1, 2, …, 

affine 
connection 

trans- 
verse 
curv- 
ature 

longitudinal 
curvature torsion 

1, …, p p+1, …, n 

1 
. 
. 
. 
p 

p+1 
. 
n 
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q).  As in ordinary surface theory, one also has the symmetry law iG = iG  for the “second 
fundamental form” here, as well. 
 
 tn) iG 

 = ,p i


  are the components of the transverse curvature, which allows a tangential dy 

to give rise to another one dy by way of a normal vector v  : (y) =  i iG v (dy). 
 
 nn) i

kT = ,
p i

p k 

  torsion: idv =  ( )i k

k v dy 
T . 

 
 If a vector with the components uJ in the coordinate system of the xJ changes into the vector uJ 
+ duJ under the displacement (dx) J of the origin in space then the vector with components duJ + 

J K
Kd u   will measure its invariant change; B are the components of the spatial affine connection 

in J
Kd  = ( )J N

KN dxB .  If we apply that to the “unit vectors” u = ei =  1 2, , , ne e ei i i  that belong to 

the surface for a displacement in the surface and likewise express the invariant change in the ei in 
their own coordinate system then we will get the fundamental formulas of surface theory, which 
one cares to couple with the name of Frenet in the case of p = 1: 
 

(1)      
J

J M N
MN

e e e
y 






i

iB  = Je j
i j . 

 
If space is planar and the spatial coordinate system that is employed is a linear one (so B = 0) then 
those equations will read: 

(2)      
y




ei  =  ek
i k , 

 
in particular, or when decomposed: 
 

(3)   t) 
y








e
 = r

rG
   e e , n) i

y




e  = r
i i rG 
  e eT . 

 
 
 II. – From the affine connection, we now come to the metric.  If the space is a metric 
Riemannian space then its metric will carry over with no further discussion to every surface that 
is embedded in it.  In order for the fundamental metric form on the surface to never be a degenerate 
one, the fundamental metric form of space must be definite, and we would, in fact, like to assume 
that in what follows.  The surface will be complemented in space in the natural way – i.e., the 
normal space N will consist of all vectors that are perpendicular to T.  We choose q vectors of 
length 1 that are mutually perpendicular to be the ie  = ep+i .  The components gi k of the metric 
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field in space at the surface point P, which are the scalar products (ei  ek), then define the 
accompanying matrix.  In it: 

ds2 = g (dy) (dy) 
 
us the fundamental metric form on the surface. 

 The metric space is provided with an affine connection that is 
characterized uniquely by the fact that the length of a vector remains 
unchanged of a vector parallel translation.  Under the splitting T + N, 
that will imply the following statements: 
 
 1. The map t  t from TP to TP leaves the length of the vector t 
unchanged, or: The affine connection on the surface is the one that 

belongs to the metric that is in effect on the surface. 
 
 2. For the maps t  dn and n  dt, one has (t  dt) + (n  dn) = 0.  The transverse curvature 
will lead back to the longitudinal curvature in that way. 
 
 3. The map n  n (viz., the torsion) is also a congruence; i.e., an infinitesimal “rotation.”  
One can express that in formulas by saying that the equation: 
 
(4)     dgik = g d g d r r

ir k kr i  
splits into: 

(5)    

) ,

) or ) 0 ,
) 0 .

i
i

i k
k i

g
tt g g

y
nt tn G g G

nn

  
   




  

 


      

  


T T
 

 
 
 III. – If the vector vi ei goes around an infinitely small two-dimensional element on the surface 
with the components: 

(y) = (dy) (y)  (dy) (y) 
then it will suffer a change of: 

vi = r v i k
k  = 1

2 ( )R v y 
 i k

k , 
where 

R 
i
k  =  y y

 
   

 

  
         

i i
k i r i rk

r k r k . 
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In order to avoid confusion, I shall use the term vorticity for this, instead of the Riemannian term 
“curvature,” which generally seems appropriate to the change in a quantity under a circuit of a 
surface element.  In metric space, r ik = g r j

ij k  is a skew-symmetric matrix, because the vector 

does not change in length under a circuit.  The square matrix of the r j
k , in turn, decomposes into 

the four components tt, tn, nn (tangential and normal components of the changes in a tangential 
and normal vector, resp.).  I shall write down the explicit expressions for the case of a metric space. 
 
 tt) R ; = S ; + ( )r r r rG G G G    , 
 
 nn) R p+i, p+k ; = Uik ; + ( )i k i kg G G G G

    . 
 
S ; is the longitudinal surface vorticity (or the “Riemannian curvature” of the surface): Namely, 
it is the change in a tangential vector that goes around a two-dimensional element that lies in the 
surface according to the displacement law t  t; it depends upon only the affine connection on 
the surface (or its fundamental metric form).  However, the transverse surface vorticity Uik ; is 
the change in a normal vector that goes around the surface element according to the displacement 
law n  n; it belongs to the torsion, just as the longitudinal vorticity belongs to the affine 
connection on the surface.  I shall refer to the component: 
 

 nt)  ,
iC    =    

i i
i i r i i i

r r r

G G
G G G G

y y
   

         
 

  
         

T T  

 
as the Codazzi tensor; due to the skew-symmetry of rik , the tn) component ,iC 

  is essentially 

identical to it: , ,
i

iC g C 
    = 0. 

 If the space is planar then the change in a vector under a circuit of a surface element will be 
equal to zero: 

(7)  

) longitudinal surface vorticity = ( ), 

) transversal surface vorticity = ( ),

) o ) the  tensor = 0.

r r r r

r
k i k i

r

tt G G G G

nn g G G G G

nt r tn

   


   

 

 






Codazzi

 

 
These are the integrability conditions for the “fundamental formulas” (2) [(3), resp.].  If they are 
fulfilled then those equations will have one and only one solution with arbitrarily-given initial 
values, when they are considered to be differential equations for the unknowns ei .  If x means the 
vector that leads from the origin to the surface point and has the components xJ then one can 

determine x from x / y = e , since from (3t), 
y






e  = 

y








e
.  In the metric case, the solutions ei 
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will fulfill the equations (ei  ek) = gik on the surface when they are true for the initial values, since 

from (2), the quantities g
ik  = (ei  ek) satisfy the relations: 

 
(4*; cf., [4])    dg

ik  = g d g d  r r
ir k kr i . 

 
 For a given fundamental metric form, curvature, and torsion there always exists one and only 
one (in the sense of congruence) surface in Euclidian space, assuming that the given quantities 
satisfy the conditions (6) [(7), resp.] (fundamental theorem of surface theory). 
 The plane is not the only metrically-homogeneous space.  The “sphere” of (positive or 
negative) constant curvature , whose fundamental metric form reads: 
 

2
2 2 2 1 1
1 2 2 2 2

1 2

( )( )
1 ( )

n n
n

n

x dx x dxdx dx dx
x x x




 
   

   



, 

 
is also of that type.  Therefore, one can also pose the problem of determining a surface from its 
metric, curvature, and torsion in such a spherical space.  Its solution is achieved in the same way.  
The “fundamental formulas” and “integrability conditions” can be simply adapted with the 
following two modifications: One adds the terms –  g  x to the right-hand side of (3t) and the 
terms –  (g g  g g) to the right-hand side of (7tt). 
 In an arbitrary space with an affine connection whose vorticity has the components R J

KAB  in 
the coordinate system of the xJ , the equations: 
 

JR e
i
k i = R J K A B

KAB e e e k  
will appear in place of (6). 
 All of that is indeed quite trivial; however, it must still be said.  It would be very desirable to 
incorporate the concepts of infinitesimal parallel translation, the conception of the Riemannian 
curvature as a vector vorticity, and the idea that the affine connection on the surface and its 
curvature and torsion define a natural totality into ordinary surface theory; the gain in intuitiveness 
and clarity would be significant.  Furthermore, it would seem expedient to adapt the theory of 
curves to the representation that was given here insofar as the axis-cross in the normal plane no 
longer employs the principal normal and binormal, since the theory suffers from the inconvenience 
that they will be indeterminate when the curvature vanishes. 
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