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INTRODUCTION 
 
 

 The Monge problem in one independent variable, in the broad sense, consists of 
explicitly integrating a system of k (k ≤ n – 1) Monge equations: 
 
(α)   Fi (x1, x2, …, xn+1 ; dx1, dx2, …, dxn+1) = 0 (i = 1, 2, …, k), 
 
in which the F are homogeneous functions of the dx1, dx2, …, dxn+1 . 
 By the term “explicitly integrating,” we mean expressing the x variables as well-
defined functions of one parameter, n – k arbitrary functions of that parameter and their 
derivatives up to a certain order, and that those functions can also contain a finite number 
of arbitrary constants. 
 Monge solved that problem for the case n = 2, k = 1.  Monge’s result can be extended 
to certain equations or indeterminate systems of the form (α) in which n > 2. 
 In the case of n > 2, k < n – 1, one meets up with systems of Monge equations that 
have been the object of work by Serret, Darboux, Hadamard, Goursat, Cartan, and others.  
Beyond any doubt, it was Hilbert that established a fact that was foreseen by several 
geometers in relation to the impossibility of integrating explicitly in the general cases. 
 The Monge problem is linked with the problem of reducing a system of Pfaff 
equations to a canonical form. 
 If k = n – 1 then the general solution depends upon an arbitrary function of one 
argument, and the Monge problem is equivalent to the problem of explicitly integrating a 
Pfaff system of n equations in n + 2 variables of a well-defined system.  That amounts to 
the problem of the equivalence of two systems of n total differential equations in n + 2 
variables under of the group of point-like transformations in n + 2 variables.  That was 
how Cartan could recognize whether a system of the form (α) was explicitly integrable in 
the case k = n – 1. 
 Vessiot found a theorem that was equivalent to that of Cartan under somewhat more 
general hypotheses by applying his new general theory of integration problems, which 
was based upon the consideration of sheaves of infinitesimal transformations.  That 
theory, which correlates with Cartan’s theory, opens up a vast horizon of research into the 
Monge problem.  For the same problem with two unknown functions in several 
independent variables, one has some very essential results of E. Goursat.



CHAPTER I 
 

THE FIRST-ORDER MONGE EQUATION. 
 

 1. The equation: 

(1)      , , , ,
dy dz

f x y z
dx dx

 
 
 

 = 0. 

 
Integral curves.  Monge’s method. – The problem of integrating equation (1) can be 
formulated as follows: 
 Determine the curves that are tangent to one of the generators of the cone (T): 
 

(T)      , , , ,
Y y Z z

f x y z
X x X x

− − 
 − − 

 = 0 

 
at each of their points when that cone has its summit at that point. 
 We first seek the condition that p and q must satisfy in order for the plane: 
 
(2)      Z – z = p (X – x) + q (Y – y) 
 
to have two generators in common with the cone that coincide with a well-defined 

generator.  If one sets 
Y y

X x

−
−

 = t then one must express the idea that the equation: 

 
(3)      F (x, y, z, t, p + qt) = 0 
 
has a double root at t.  Hence, the desired condition will be the result of the elimination of 
t from equation (3) and its derivative with respect to t.  One will obviously arrive at the 
same condition if one eliminates y′, x′ from the equations: 
 

f (x, y, z, y′, z′) = 0, z′ = p + qy′, y zf q f′ + = 0. 

Let: 
(4)      F (x, y, z, p, q) = 0 
 
be the result of the elimination.  If (S) is an integral surface of equation (4), when one 
considers it to be a partial differential equation, then one will have that at each point M of 
the surface (S), the cone (T) will touch the tangent plane to the surface along a generator.  
Therefore: Each Monge equation (1) corresponds to an equation (4) that is the tangential 
equation to (1).  Equation (4) is also called the adjoint equation to (1). 
 Conversely, let a nonlinear partial differential equation have the form (4); it couples 
the angular coefficients p, q of the tangent plane to an integral surface that passes through 
a given point in space.  The position of that plane will then depend upon just one arbitrary 
parameter, and one can deduce from this that this enveloping plane is, in general, a cone 
(T) that has the point M for its summit.  The equation of that cone is the result of the 
elimination of p, q from (2), (4), and the equation: 
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(Y – y)
F

p

∂
∂

– (X – x) 
F

q

∂
∂

= 0. 

 
It then results that: A partial differential equation (4) corresponds to a Monge equation 
(1) that one finds by elimination of p, q from equation (4), and the equations: 
 

dz = p dx + q dy, 
F

p

∂
∂

dy − 
F

q

∂
∂

dx = 0. 

 
 The cone (T), which is the envelope of the ∞1 planes that are represented by equation 
(2) when the coefficients p, q verify (4), is called the elementary cone that is associated 
with the point (x, y, z).  Upon recalling that a contact element whose elements (x, y, z, p, 
q) satisfy (4) is called an integral contact element, one can say that the elementary cone 
that is associated with the point (x, y, z) is the envelope of integral contact elements that 
belongs to that point.  Let a surface (S) be an integral of equation (4), let (x, y, z) be a 
point of that surface, and let (T) be the cone that corresponds to it.  As one knows, just 
one characteristic of (S) will pass through the point (x, y, z) that has a generator of (T), 
which has that point for its summit, as its tangent. 
 We seek a non-characteristic curve that is situated on (S) and tangent at each of its 
points to the characteristic (S) that passes through that point.  One sees that, in general, 
such a curve will exist on (S), since one can consider the surface (S) as being generated 
by a family of characteristics, each of which meets the characteristic that is infinitely 
close to it, and therefore those characteristics will have an envelope.  At each point, that 
curve will admit the generator of (T) that relates to that point as its tangent.  Conversely, 
let (Γ) be a curve that satisfies (1) without being a characteristic of (4).  The locus of 
characteristic curves that are tangent to (Γ) will then be an integral surface of (4), and the 
curve (Γ) will be the envelope of characteristics. 
 Consequently, there exists just one curve on an integral surface that satisfies (1) 
without being characteristic, and it is the envelope of its characteristics.  By analogy with 
the case of developable surfaces, one calls it the edge of regression.  Lie gave such curves 
the name of integral curves.  One then calls any curve that satisfies (1) without being 
characteristic an integral curve. 
 If V (x, y, z, a, b) = 0 is a complete integral of (4) then an arbitrary integral surface 
will be defined by the characteristics: 
 

V = 0,  
V

a

∆
∆

= 0 [b = ϕ (a)], 

 
and the envelope of the characteristics will be defined by the equations: 
 

(5)    V = 0,  
V

a

∆
∆

= 0, 
2

2

V

a

∆
∆

= 0, 

 
so all of the integral curves can be represented by those equations (5), which permits one 
to calculate x, y, z as functions of the parameter a, while ϕ is an arbitrary function of a. 
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 If an integral curve is tangent to an integral surface of (4) then the contact will be of 
order at least two.  That property of integral curves, as well as a certain number of other 
ones, was pointed out by Sophus Lie. 
 As an example, let the equation dx2 + dy2 = k2 dz2.  The adjoint equation is k2 (p2 + q2) 
= 1, and formulas (5) will give the general solution, in which: 
 

V = (1 – a2) x + K (1 + a2) z + 2ay + 4 f (a) = 0, 
 

and f (a) is an arbitrary function of a. 
 Euler was the first to find the explicit integral to the equation: 
 

dx2 + dy2 = dz2. 
 
 
 2. Solving the equation: 
(6)      dx2 + dy2 + dz2 = ds2. 
 
Serret’s formulas. – The integration of equation (6) was first performed by Serret by 
means of a geometric interpretation of (6) in rectangular coordinates.  He sought to 
express x¸ y, z, and s as functions of one parameter θ for an arbitrary curve.  Following 
the ideas of Monge, he sought to envision any curve as an edge of regression of a 
developable surface.  That surface, which is the geometric locus of tangents to the curve, 
is represented by the equations: 
 

Φ = z – px – qy + u = 0, δΦ = du – x dp – y dy = 0, 
 
in which p, q, u are considered to be functions of one parameter q.  The edge of 
regression will then be represented by the system of equations: 
 

Φ = 0,      δΦ = 0,      δ2Φ = 0. 
 

 One will easily deduce the expressions for dx, dy, dz as functions of p, dp, d 2p, d 3p, 
q, dq, d 2q, d 3q, u, du, d 2u, d 3u from this by differentiation, while taking the equations 
themselves into account, and here one takes: 
 

ds = iA∑ d i u  (i = 1, 2, 3), 

 
in which the Ai do not contain u.  One can express s as a function of ψ, p, q, and its 
successive derivatives Upon integrating each term of ds by parts and setting u = 

3 2 1A A A

ψ ′
′′′ ′′ ′− +

.  The Ψ, p, q are considered to be functions of one independent variable.  

We remark that the independent variable θ has remained indeterminate, up to now.  
Serret chose it in such a manner that one can take simpler formulas, and he then 
expressed x, y, z, s as functions of one parameter θ and two arbitrary functions ψ (θ) and 
ϕ (θ) and the successive derivatives of those two functions [36]. 
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 Some new formulas for the solution of equation (3) were given by Darboux by using 
a method that we shall now discuss. 
 
 
 3. Darboux’s method for the equation: 
 
(7)     f (dx1, dx2, …, dxn) = 0. 
 
− First consider the Serret equation (6), when it is written: 
 
(6′)     2 2 2

1 2 3dx dx dx+ +  = 2
4dx , 

and then set: 
dxi − ai dx4 = 0 

and 
(8)     xi – ai x4 = bi  (i = 1, 2, 3). 
One will have: 
(9)      2

ia∑ = 1 

and 

(10)     i

i

db

da
= − x4 , 

 
and the problem of integrating the equation will come down to the following one: 
 
 Determine the most general expressions ai , bi that satisfy the equations: 
 

(11)     1

1

db

da
= 2

2

db

da
 = 3

3

db

da
. 

 
 We see that one has six functions to determine.  Since there are three relations 
between them, there will then be three arbitrary functions.  We take two of the ai to be 
such arbitrary functions – for example, a1, a2, and another U, whose choice will lead to 
the theory of contact.  Indeed, we remark that the relations (11) express the idea that the 
two curves (A) that are described by the point (a1, a2, a3) and (B) that are described by the 
point (b1, b2, b3) must have their tangent planes, and consequently their osculating planes, 
parallel to each other, which will show that (B) is the edge of regression of a developable 
surface whose tangent planes are parallel to the osculating planes of (A), hence, it follows 
that if one sets: 

1 2 3

1 2 3

X Y Z

a a a

a a a

′ ′ ′
′′ ′′ ′′

− U = Φ, 
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in which U is an arbitrary function of t, and the values of X, Y, Z that are deduced from 
the equations Φ = 0, dΦ / dt = 0, d 2 Φ / dt2 = 0 will be precisely those of b1, b2, b3, which, 
by virtue of formulas (8), (10), will give one the x1, x2, x3, x4 as functions of t. 
 Darboux extended his method for integrating equation (7) by setting: 
 

dxi – ai dxn = 0  (i = 1, 2, …, n – 1) 
and 
(12)     xi – ai xn = bi , 
so 

(13)     i

i

db

da
= − xn . 

 
The problem then comes down to the following one: Determine the most general 
expressions for ai , bi as functions of a certain parameter that satisfy the equations: 
 

(14)    1

1

db

da
= 2

2

db

da
= … = 1

1

n

n

db

da
−

−

, 

 
(15)    f (a1, a2 , …, an−1, 1) = 0. 
 
The number of functions ai , bi is 2 (n – 1), and the number of relations (14) and (15) is n 
– 1.  We choose the n – 1 arbitrary functions to be n – 2 of the ai and one function U, 
which will lead us along a path that is analogous to the preceding one.  Indeed, we set: 
 

1 2 1

1 2 1

( 2) ( 2) ( 2)
1 2 1

n

n

n n n
n

b b b

a a a

a a a

−

−

− − −
−

′ ′ ′
⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 = U. 

 One can write: 
U = i ibλ∑ , 

 
in which the λi are coupled by the relations that were encountered in contact theory: 
 

( )k
i iaλ∑ = 0, 

in which: 

( )k
ia = 

( )k
i

k

d a

dt
  (i = 1, 2, …, n – 1; k = 1, 2, …, n – 2). 

 
One easily sees that the values of bi are determined by the equations: 
 

U = i ibλ∑ , 
dU

dt
= i

i

d
b

dt

λ
∑ , …, 

2

2

n

n

d U

dt

−

− = 
2

2

n
i

i n

d
b

dt

λ−

−∑ , 
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hence, by virtue of the relations (12), (13), (15), one can determine the x1, x2, …, xn as 
functions of the a1, a2, …, an−2, U, and its successive derivatives, where U is an arbitrary 
function [14]. 
 It is obvious that several geometric questions will find their solution in the method of 
G. Darboux. 
 
 
 4. A particular class of equations. Method of J. Hadamard. – While studying a 
problem in physics, Hadamard was led to search for the general solution to a system of n 
– 1 differential equations of the form: 
 

( )ik k
k

F y∑ = 0  (k = 1, 2, …, n; i = 1, 2, …, n – 1), 

 
in which we let F denote a differential operation of the form: 
 

A0 D
n + A1 D

n−1 + … + An , 
 
in which D is the symbol of a derivation, and the A are arbitrary functions of the 
independent variable.  We first remark that one can always reduce the given system to a 
system of the form: 
 

ik k ik ka y b y′ +∑ ∑ = 0 (k = 1, 2, …, m ; i = 1, 2, …, m – 1), 

 
in which the aik, bik are functions of the independent variable, by introducing auxiliary 
unknowns. 
 Each left-hand side can be considered to be the sum of two terms, one of which 
contains the derivatives, and the other of which contains only variables.  Since the 
number of equations is m – 1, we will have m – 1 terms that contain m derivatives.  It will 
then suffice to replace each of those terms with a derivative by a convenient change of 
variables in order to obtain a new system in m − 1 derivatives.  That is always possible in 
the case that we are addressing, since one has: 
 

ik ka y′∑ = ( )ik k ik ka y a y′ ′−∑ ∑  (k = 1, 2, …, m), 

 
and if one sets ik ka y∑ = zi then one will take: 

 
1

1

m

i iz zρ ρ
ρ

γ
−

=

′ +∑ + δim ym = 0, 

 
in which the γiρ, δim denote constants or functions of t.  We have supposed that the 

ik ka y∑  are independent of each other in such a way that one can consider the zi to be 

independent.  Upon eliminating the ym, we will get m – 2 equations in m – 1 variables of 
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the same form as the given system.  One then proceeds with it in the same manner.  Upon 
doing that, one will arrive at just one equation of the form: 
 

1u′ + b1 u1 + b2 u2 = 0, 

 
which will define the function u2 after one chooses u1 arbitrarily.  If one then repeats the 
preceding series of calculations that were performed then one will arrive at expressions 
for y1, y2, …, ym with the aid of an arbitrary function and its successive derivatives up to 
order m – 1. 
 
 
 5. The Monge equation: 

(16)    3 12
1 2 1

1 1 1

, , , ; , , , n
n

dx dxdx
f x x x

dx dx dx
+

+

 
 
 

… … = 0. 

 
That equation admits an infinitude of solutions that depend upon n – 1 arbitrary 
functions, because one can take: 
 
     xh = fh (x1)  (h = 2, 3, …, n) 
 
arbitrarily, and what will remain is one equation that determines xn+1 as a function of x1 .  
Here, I call any curve that satisfies equation (16) an integral curve.  If one introduces the 
variables: 

jx′  = 
1

jdx

dx
 (j = 2, 3, …, n + 1) 

 
then the equation will be equivalent to the system: 
 

f (x1, x2, …, xn+1 ; 2x′ , 3x′ , …, 1nx +′ ) = 0, 

 

1

1

dx
 = 2

2

dx

x′
 = … = 1

1

n

n

dx

x
+

+′
. 

 
I keep the variables xλ (λ = 1, 2, …, n + 1) and make a change of variables jx′  by taking 

the following types of transformations: 
 

1nx +′  = p1 + h hp x′∑ ,  
1

h
h n

f f
p

x x +

∂ ∂+
′ ′∂ ∂

= 0, 

 
so the new system will be: 
(17)    F (x1, x2, …, xn+1 ; p1, p2, …, pn) = 0, 
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(18)     i

i

dx

P
= 1n

i i

dx

p P
+

∑
  (i = 1, 2, …, n), 

 
in which F is the transform of the function f, if we suppose that we are dealing with the 
general case.  Hence, each equation (16) will correspond to an equation of the form (17) 
that one calls the adjoint equation to (16).  If I consider x1, x2, …, xn to be n independent 
variables, xn+1, to be a function of those n variables, and p1, p2, …, pn to be partial 
derivatives then I will have a partial differential equation for the characteristic curves, to 
which one must add to the equations (18), the equations: 
 

1

1

dx

P
= 

1

i

i i n

dp

X p X +

−
+

. 

 
Conversely, each partial differential equation corresponds to an equation (16) that one 
obtains by eliminating p1, p2, …, pn from (17) and (18).  Here, we can also consider the 
corresponding elementary cone. 
 
 
 6. Necessary and sufficient conditions that the x of any integral curve must 
satisfy. – Let V (x1, x2, …, xn+1 ; a1, …, an) = 0 be the complete integral of equation (17); 
we have proved that one can replace equation (16) by the system: 
 

(19) V = 0,      
V

dx
x λ

λ λ

∂
∂∑ = 0,      1/

/ n

V a
dx

x V a λ
λ λ

 ∂ ∂∂
 ∂ ∂ ∂ 

∑  = 0 (λ = 1, 2, …, n + 1). 

 
For the proof of that [50], we have replaced the variables ai with the pi that are defined by 
the relations: 

(20)     
1

i
i n

V V
p

x x +

∂ ∂+
∂ ∂

= 0, 

 
and by applying the properties of determinants, we deduced a relation of the form: 
 

/

/
i

k

V a
dx

x V a λ
λ λ

 ∂ ∂∂
 ∂ ∂ ∂ 

∑  = 0 (i, k = 1, 2, …, n), 

 
and thus, the proposition. 
 
 Our proposition can result more directly by a process that was pointed out to me by 
Engel, which proceeds as follows: 
 I once more change the variables xλ, pi into xλ, ai by taking a type of transformation of 
the form (20).  The variables xλ, ai are coupled by the relation V = 0, so one can consider 
them to be coordinates in the equation F (xi, pi) = 0. 
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 Because of the equation V = 0, the conditions for the elements of equation (17) to be 
united will become: 

i
i

V V
dx da

x aλ
λ

∂ ∂+
∂ ∂∑ ∑ = 0, 

 
V

dx
x λ

λ

∂
∂∑ = 0, 

or furthermore: 

(21)    

0,

0.

i
i

i
i

V V
dx da

x a

V
da

a

λ
λ

∂ ∂ + = ∂ ∂
 ∂ =
 ∂

∑ ∑

∑
 

 
We now remark that if one sets: 

ω = i
i

V
da

a

∂
∂∑  

 
then one will have, upon letting ω′ denote the bilinear covariant: 
 

ω′ = i i
i i

V V
da d a

a a
δ δ
   ∂ ∂−   ∂ ∂   

∑ ∑ , 

or furthermore: 

ω′ = i i
i i

V V
x da dx a

x a x aλ λ
λ λ

δ δ
   ∂ ∂ ∂ ∂−   ∂ ∂ ∂ ∂   

∑∑ ∑ . 

 
Now, in order to get the differential equations of the characteristic system (20), one must 
only add the equation ω′  = 0 to equations (21) and consider the δxλ, δai to be arbitrary 
quantities that are subject to only the conditions: 
 

V
x

x λ
λ

δ∂
∂∑ = 0, i

i

V
a

a
δ∂

∂∑ = 0. 

 
One can then take the equations: 

/

/
i

n

V a
dx

x V a λ
λ

 ∂ ∂∂
 ∂ ∂ ∂ 

∑ = 0 

 
for the dxλ , which will lead to our proposition. 
 The elimination of the ai from equations (19) provides equation (16).  One then 
obtains the necessary and sufficient conditions that the x of any integral curve must be 
subject to.  Those conditions can be put into the form: 
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(22)  V = 0,  i
i

V
da

a

∂
∂∑ = 0, 

/

/
i

n

V a
dx

x V a λ
λ

 ∂ ∂∂
 ∂ ∂ ∂ 

∑ = 0. 

 
 
 7. Various applications. – It is easy to see that one can deduce the following 
equation from equations (22): 
 

2

2

V

a

∆
∆

 = 
2

i k i
i k i k i

V V
a a a

a a a

∂ ∂′ ′ ′′+
∂ ∂ ∂∑∑ ∑  = 0  (i, k = 1, 2, …, n), 

 
in which the a are considered to be functions of one independent variable.  Hence, the 
three conditions are: 

(23)    V = 0,      
V

a

∆
∆

= 0,      
2

2

V

a

∆
∆

= 0. 

 
Note that here one must suppose that the ai are not constant; i.e., that equations (23) 
belong to any integral curve, but they are not characteristic.  Hence, if one calls any 
curve that satisfies equation (16), but is not characteristic, an integral curve then one will 
have that the xλ verify equations (23) and the differential equations: 
 

/

/
i

n

V a
dx

x V a λ
λ

 ∂ ∂∂
 ∂ ∂ ∂ 

∑ = 0 (λ = 1, 2, …, n + 1), 

 
and therefore we will have equations (23) for the general solution that gives the x for any 
integral curve. 

 If one sets 
i

V

a

∂
∂

:
n

V

a

∂
∂

= − bi then one can take the following equations for equations 

(22): 

(24)   

0, 0,

/
0, 0.

/

i
i i

i
i i k

ki n k n

V
V a

a

V aV V
b b a

a a a V a

∂ ′= = ∂


 ∂ ∂∂ ∂ ∂ ′+ = + =  ∂ ∂ ∂ ∂ ∂ 

∑

∑
 

 
Botasso [3] appealed to those equations in order to establish some theorems that gave 
necessary and sufficient conditions for a simply-infinite sequence Σ of characteristics of 
(17) to admit an envelope outside of the singular integral. 
 Note that one can deduce different families of integral curves from equations (19), 
(22), or (24) if one subjects the arbitrary functions a to conveniently-chosen relations. 
 
 

 
 



CHAPTER II 
 

HIGHER-ORDER MONGE EQUATIONS.   
MONGE SYSTEMS. 

 
 

 8. The equation: 
(25)     f (x, y, z, y′, z′, y″, z″) = 0. 
 
Ed. Goursat’s theory. – Let an equation of the form: 
 
(26)     V (x1, x2, x3 ; a1, a2, a3) = 0  
be given; append the equations: 

(27)     i
i

V
dx

x

∂
∂∑ = 0  (i, k = 1, 2, 3), 

 

(28)    
2

2
i k i

i k i

V V
dx dx d x

x x x

∂ ∂+
∂ ∂ ∂∑ ∑  = 0 

 
to it.  One will then deduce that: 
 

(29)    i
i

V
da

a

∂
∂∑ = 0,  

2

i k
i k

V
dx da

x a

∂
∂ ∂∑  = 0. 

 Moreover, let an equation: 
(30)    ψ (a1, a2, a3 ; da1, da2, da3) = 0 
 
be given that is homogeneous in the da.  Upon eliminating the da1, da2, da3 from 
equations (29), (30), one will arrive at an equation of the form: 
 
(31)    F (a1, a2, a3 ; x1, x2, x3 ; dx1, dx2, dx3) = 0 
 
that is homogeneous in the dx.  If one now eliminates the a from equations (26), (27), 
(28), (31) then one can take an equation of the form: 
 
(32)     A + 2

i iB d x∑ = 0, 

 
in which the A, Bi do not contain d 2 xi .  Suppose that if one considers x3 to be a function 
of the x1, x2 then equation (26) will be a complete integral of a linear system in involution 
of the second-order partial differential equation that represents a family of surfaces (Σ) 
that depend upon three parameters a1, a2, a3 .  In addition, let equation (30) define the 
relation that the a1, a2, a3 must satisfy in order for the envelope E of the surface (Σ) to 
likewise be an integral of the system in involution.  If one has taken the a1, a2, a3 to be 
functions of one variable parameter a that satisfy the relation (30) then the characteristics 
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of the moving surface (Σ) will have an envelope (A) that we, with Goursat, call the edge 
of regression of the integral surface (E).  All of the curves (A) satisfy the same second-
order Monge equation. 
 Indeed: Consider x1, x2, x3 to be functions of one independent variable that define the 
edge of regression (A) and remark, with Goursat, that the surface (Σ) has second-order 
contact with (A) at the point where the characteristic that is situated in (Σ) touches that 
envelope.  One will then have the xi as coordinates of the curve (A) that satisfy equations 
(26), (27), (28), (29), (30), and consequently equation (31), so a Monge equation of the 
form (32) will result.  If one sets x1 = x, y1 = y, z1 = z and considers x to be an independent 
variable then equation (32) will take the form: 
 
(32′)   z″ = M (x, y, z, y′, z′) y″ + N (x, y, z, y′, z′). 
 
One also sees that integrating equation (32′) comes down to integrating (30), which is a 
first-order Monge equation. 
 Goursat likewise showed how, if one is given a linear system in involution: 
 

(33)    
0,

0

r s

s t

λ µ
λ ν

+ + =
 + + =

 

 
one can then obtain the corresponding equation directly without knowing the complete 
integral, and that also suggests that if an equation of the form (32′) is given then one can 
know whether it corresponds to a system in involution by algebraic operations and 
differentiation.  Finally, one can construct that system.  Therefore, one difference 
between the first-order Monge equation and the second-order one is obvious: In general, 
any equation (1) will correspond to a first-order partial differential equation, while an 
equation (25) will not, in general, correspond to a system in involution, and that will be 
true even when equation (25) is linear in y″ and z″ [28]. 
 Beudon has used procedures that relate to the second-order Monge equation in order 
to express x, y, J as functions of one argument with no quadrature sign by setting: 

 

J = { ( , , ) ( , , )}M x y y y N x y y dx′ ′′ ′−∫ . 

 
In order to do that, he sought to determine a function a (x, y, y′ ) in such a manner that the 
Monge equation: 

M (x, y, y′ ) y″ – N (x, y, y′ ) = 
a a a

y y
x y y

∂ ∂ ∂′ ′′+ +
′∂ ∂ ∂

 + z″ 

 
will result from a system in involution of the form (33); it comes down to determining a 
from a second-order partial differential equation [2].  Those questions have been studied 
by E. Cartan by means of the theory of bilinear covariants, which we shall address later 
on. 
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 9. The equation: 
 
(34)   f (x1, x2, x3, x4 ; dx1, …, dx4 ; d 2x1, …, d 2x4 ) = 0. 
 
One can also make a first-order partial differential equation in three independent 
variables correspond to a second-order equation by starting with a complete integral of 
the latter equation, and in that very particular case, the solution to the Monge equation 
will be given by very simple formulas that can be considered to be an extension of the 
Monge formulas. 
 Indeed, let: 
(35)     F (x1, x2, x3, x4 ; p1, p2, p3) = 0 
 
be a first-order partial differential equation, and let: 
 
(36)     V (x1, x2, x3, x4 ; a1, a2, a3) = 0 
 
be a complete integral of that equation.  If one forms the following relations: 
 
(37)     dV = 0,  d 2 V = 0 
then one can infer the equations: 
(38)      ∆V = 0, 
 

(39)     
2

i

V

a xλ

∂
∂ ∂∑∑ dai dxλ = 0, 

 
in which ∆ denotes the total differential with respect to the a.  Add to these, the equation: 
 

(40)    
2

i k

V

a x

∂
∂ ∂∑∑ dai dxk = 0 (i, k = 1, 2, 3). 

 
If one eliminates the dai from equations (38), (39), and (40) then one will get an equation 
that contains the x, dx, and a; one eliminates the a from them and (36), (37).  In general, 
one will then arrive at an equation of the form (34) that is linear in the d 2 x.  One further 
sees that one can deduce: 

(41)     
i

V

a

∂
∂∑  d 2ai = 0 

 
from equations (36), (39), (40), and consequently the Monge equation that corresponds to 
equation (35) in the manner that was cited above will have the solution that is given by 
equations (36), (38), (40), (41) for a solution. 
 
 
 10. Monge systems of n – 1 equations in n + 1 variables.  Goursat’s method. – 
Goursat gave a very elegant method for the integration of a Monge system [24]. 
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 We can make the methods of Monge and Darboux even more profound by Goursat’s 
method, and one we will see how we can extend Monge’s results.  Let: 
 
(42)  fi (x1, …, xn+1 ; dx1, …, dxn+1) = 0  (i = 1, 2, …, n – 1) 
 
be a system of n – 1 Monge equations, so the cone (T) that corresponds to the summit 
M(x1, …, xn+1) will be represented by the equations: 
 
(43)   fi (x1, …, xn+1 ; X1 − x1, …, Xn+1 − xn+1) = 0. 
 Let: 
(44)   Xn+1 − xn+1 − ( )k k k

i

p X x−∑  = 0 (k = 1, 2, …, n) 

 
be the plane (P), so equations (43), (44) will determine the generators of the cone (T) that 
are situated on the plane (P).  If one sets: 
 

2 2

1 1

X x

X x

−
−

= a 

 
then equations (43) will define the ratios: 
 

1 1

X x

X x
ρ ρ−

−
 (r = 3, 4, …, n + 1) 

 
as functions of a, and equation (44) will take the form: 
 
(45)  U (a) = ϕn+1 (a) – p1 – p2 a – pµ∑ ϕµ (a) = 0 (µ = 3, 4, …, n). 

 
We now seek to determine the coefficients p in such a fashion that the plane (P) will have 
n generators in common with the cone (T) that coincide with a well-defined generator, in 
which case, with Goursat, we say that the plane osculates the cone (T). 
 One will get necessary and sufficient conditions for the plane (P) to osculate the cone 
(T) in the form of n – 1 equations of the form: 
 
(46)    Fi (x1, …, xn+1 ; p1, …, pn) = 0. 
 
They result from eliminating the a from the equations: 
 

U (a) = 0, U′ (a) = 0, …, U(n−1) (a) = 0, 
 
which express the idea that equation (45) possesses a multiple root of order n.  Equations 
(46) are called the tangential equations to the cone (T) whose summit is at M (x1, x1, …, 
xn+1). 
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 If one considers x1, …, xn to be n independent variables and xn+1 to be a function of 
those n variables with pk = ∂xn+1 / ∂xk then equations (46) will define a system of partial 
differential equations that we, with Goursat, call the associated system to the system (42). 
 Therefore, any Monge system (42) corresponds to an associated system of the form 
(46).  Suppose that the system is in involution, and let: 
 

V (x1, x2, …, xn+1; a, b) = 0 
 
be a complete integral of that system.  If b = ϕ (a), where the function ϕ (a) is an 
arbitrary function of a, and if: 
 

V

a

∆
∆

= ( )
V V

a
a b

ϕ∂ ∂ ′+
∂ ∂

, … 

then the formulas: 
 

(47)  V = 0,  
V

a

∆
∆

= 0, 
2

2

V

a

∆
∆

= 0,  …, 
n

n

V

a

∆
∆

= 0 

 
will define the general integral of the Monge system (42). 
 
 
 11. Application of Goursat’s method. – That method can be applied whenever the 
associated system is in involution. 
 Let a Monge system (a) be given in which i < n – 1.  Goursat’s method applies if one 
can adjoin to that system n – i – 1 new equations of the same form in such a fashion that 
the associated system of the system thus-formed is in involution.  With Goursat, consider 
the Serret equation that was treated by Darboux.  Suppose that one has i equations of the 
form (7). 
 Add to them the n – i – 1 equations: 
 

(48)   
1

dx

dx
ρ = 2

1

dx

dxρψ
 
 
 

 (r = 1, 2, …, n – 1), 

 
in which the ψρ are arbitrary.  Equations (a), (48) define a system of n – 1 Monge 
equations in n + 1 variables whose associated system is in involution, and Goursat’s 
method will be applicable. 
 In that way, one will find that the general solution of the Serret equation (6′) is given 
by the formulas: 

V = 0,      
V

a

∆
∆

= 0,      
2

2

V

a

∆
∆

= 0,      
3

3

V

a

∆
∆

= 0, 

in which: 
V = x4 − k kp x∑ − ψ (a)  (k = 1, 2, 3), 
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where ψ (a) is an arbitrary function of a, and pk are functions of a that are defined by the 
equations: 
 

p1 + p2 a + p3 ϕ (a) = U (a),      p1 + p3 ϕ′ (a) = U′ (a),      p3 ϕ″ (a) = U″ (a), 
with 

U (a) = 2 21 ( )a aϕ+ + , 
 
and ϕ (a) denote an arbitrary function of a. 
 We sought [46] to apply Goursat’s method to the equations of the form: 
 

(49)    32
1

1 1 1

, , , , ndx dxdx
f x

dx dx dx

 
 
 

⋯  = 1

1

ndx

dx
+ . 

 
Append n – 2 relations of the form: 
 

1

hdx

dx
= 2

1
1

,h

dx
x

dx
ϕ
 
 
 

  (h = 3, 4, …, n) 

 
to (49).  One sees that the associated system: 
 

Fi (x, p) = 0 
 
of the Monge system that is composed of equations (46) will take a form such that: 
 

1

kF

p

∂
∂

= 0, k

h

F

x

∂
∂

= 0, 1

1

F

p

∂
∂

= 0 

 
(h = 2, 3, …, n, n + 1; k = 2, 3, …, n – 1) 

 
and one concludes from this that in order for the associated system to be in involution, it 
is necessary and sufficient that one must have: 
 

1

kF

p

∂
∂

= 0, 

 
identically, which will happen perforce if the equation has the form: 
 

f1 (x1) + 32
2

1 1 1

, , , ndx dxdx
f

dx dx dx

 
 
 

⋯  = 1

1

ndx

dx
+ , 

 
so the adjoint equations will have the form: 
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1

dx

dx
ρ = 2

1

dx

dxρϕ
 
 
 

 (ρ = 3, 4, …, n). 

 
 It would be interesting to look for the Monge systems for which Goursat’s method 
applies.  One question that would emerge from such a search is the following one: In 
which cases will eliminating a from n equations of the form: 
 

σi (x1, x2, …, xn+1, p1, p2, …, pn, a) = 0 
 
give a system in involution? 
 Therefore, we have made [49] some remarks relating to that question of the 
application of Goursat’s method.  That provided us with an opportunity to recover the 
preceding results for (49) as particular cases of more general results. 
 Gross [29] has also studied some cases in which one finds solutions to certain 
indeterminate differential systems without any quadrature. 
 
 



CHAPTER III 
 

IMPOSSIBILITY OF EXPLICIT INTEGRATION  
IN THE GENERAL CASE.  

 
 

 12. Impossibility of extending the Monge method. – Consider the Monge equation 
in four variables: 

f (x1, x2, x3, x4 ; dx1, dx2, dx3, dx4) = 0, 
 

and let V (x1, x2, x3, x4 ; a1, a2, a3) be the complete integral of the adjoint equation (Chap. 
I).  One might be tempted to believe that the equations: 
 

(50)   V = 0,      
V

a

∆
∆

= 0,      
2

2

V

a

∆
∆

= 0,      
3

3

V

a

∆
∆

= 0 

 
will provide the general solution in a manner that is analogous to the case of three 
variables. 
 We have remarked [44] that such a general solution does not exist, in general. 
 For example, take equation (6′).  Since V = 0, one will then have the equation: 
 

x4 – a1 x1 – a2 x2 – b x3 – a3 = 0, b2 = 1 − 2 2
1 2a a− . 

 
One cannot say that the xk that are inferred from (50) provide the solution to equation 
(6′), since the ai are arbitrary functions of the independent variables, and consequently, 
they are mutually independent. 
 In regard to that, we have proved that in order for (50) to give a solution, it is 
necessary that a1, a2 are not independent, but coupled by the relation: 
 

2 2
1 2a a′ ′+  = 2

1 2 2 1( )a a a a′ ′− , 

 
and we have likewise given [45] a much more general theorem that says the following: It 
is, in general, impossible to deduce the equation ∆3V / ∆a3 = 0 from equations (19) or 
(22).  Hence, one is led to demand to known whether a function: 
 

V (x1, x2, …, xn+1 ; a1, a2, …, an+1) 
 
does or does not exist such that (19), (22) can be put into the form of n + 1 other 
equations, four of which are the following ones: 
 

V1 = 0,      1V

a

∆
∆

= 0,      
2

1
2

V

a

∆
∆

= 0,      
3

1
3

V

a

∆
∆

= 0. 

 
 For example, recall equation (6′).  Goursat found a function: 
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V1 = x4 − i ip x∑ − b, 

 
[in which the pi are well-defined functions of one parameter a and an arbitrary function 
ϕ(a), and b is a second arbitrary function ψ(a)] such that the equations: 
 

V1 = 0,      1V

a

∆
∆

= 0,      
2

1
2

V

a

∆
∆

= 0,      
3

1
3

V

a

∆
∆

= 0 

 
give the general solution of equation (6′), and more generally, Goursat’s method shows 
how one can extend Monge’s method. 
 
 
 13. Hilbert’s theorem.  Generalizations. – In an article [31] that was published in 
1912, Hilbert proved a theorem that asserted the impossibility of expressing the general 
solution to the equation: 

(51)     
dz

dx
 = 

22

2

d y

dx

 
 
 

 

by the formulas: 

(52)    
1 2

1

( , , , , , ),

( , , , , ),

( , , , ),

r

r

r

x t w w w w

y t w w w

z t w w

ϕ
ψ
χ

=
 =
 =

⋯

⋯

⋯

 

 
in which ϕ, ψ, χ denote well-defined functions of their arguments, t is a parameter, w is 
an arbitrary function of t, and w1, …, wr are the successive derivatives of w. 
 In order to prove that, Hilbert started with the identity that equation (51) will lead to 
when there exists a solution of the form (52).  After making some remarks about the form 
of that identity, one will first deduce from that neither side of the identity in question 
contains wr+2, w r+1 .  One then supposes that the first of equations (52) has been solved 
for wr and that its value has been introduced into the other two equations.  If one then 
takes: 
 ψ = f (t, w, w1, …, wr−1, x), 
 χ = g (t, w, w1, …, wr−1, x), 
 
then upon appealing to certain identities that one will easily find, one can conclude that: 
 

1rwf −
= 0, 

2rwf −
= 0, …, if = 0; 

 
i.e., that f can contain only x.  One also deduces, upon taking equation (51) into account, 
that gx = 2

xxf  and then g = X + W, in which X is a function of only x, and W is a function 

of t, w, w1, …, wr−1 .  One finally sees that W is a constant; i.e., g is a function of only x.  
Now, we suppose that r ≥  1 in the solution (52), and the impossibility of integrating (51) 
explicitly is established. 
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 Hilbert’s analysis can be extended to any equation that gives dz / dx as a function of x, 
y, z, dy / dx, d2y / dx2 by means of an expression that is not homographic to d2y / dx2. 
 We have generalized [49] Hilbert’s theorem by using the same mode of proof and 
have asserted the impossibility of explicitly integrating other Monge equations. 
 
 
 14. Various remarks. –  
 
 I. In the paper that was cited above, before studying equation (51), Hilbert 
considered the first-order Monge equation (1).  One can find an equation V such that the 
equations: 

(53)     
V

dx
x

∂
∂∑  = 0, 

(54) 
2V

dx
a x

∂
∂ ∂∑  = 0 

 
result from the elimination of a from equation (1). 
 If one sets: 
(55)     V (x, y, z, a) = b, 
 

(56) 
V

a

∂
∂

 = γ 

 
then one will get equations (53), (550, (56), which give a, b, γ as functions of x, y, z, dy / 
dx, dz / dx.  One also sees that: 

(57) 
db

da
= γ, 

 
and obtains a transformation of (1) into the special form (57). 

 Conversely, (55), (56), and the equation 
2

2

V

a

∂
∂

= 
d

da

γ
 that one deduces from (54), (56) 

give x, y, z as functions of a, b, γ, dγ / da. 
 More generally, we have considered [49] a system of n – 1 Monge equations (a) for 
which we suppose the existence of a function V (x1, x2, …, xn+1 ; a1) such that the 
equations of the system result from the elimination of a1 from: 
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(58)    

1
1

2

1
1 1

11
1 1

0,

0,

.............................,

0.
n

n

V
dx

x

V
dx

a x

V
dx

a x−

∂ = ∂

 ∂ = ∂ ∂


 ∂ = ∂ ∂

∑

∑

∑

 

 If one sets: 

(59)  V = a2 , 
1

V

a

λ

λ
∂
∂

= a2+λ (i = 1, 2, …, n + 1; λ = 1, 2, …, n – 1) 

 
then one will have: 

(60)    
1

da

da
ρ = aρ+1  (ρ = 2, 3, …, n). 

 

Equations (59) and the equation 
1

n

n

V

a

∂
∂

= 1

1

nda

da
+ will then determine the xi as functions of the 

ai , dan+1 / da1 . 
 Conversely, the values of a1, a2, …, an+1 as functions of x, dx are inferred from 
equations (59) and: 

i
i

V
dx

x

∂
∂∑ = 0 

 
verify equations (60) if one takes equations (α) into account. 
 
 II. In a general fashion, Hilbert attached the problem of explicitly integrating a 
system of indeterminate differential equation to a much more general problem that 
amounts to recognizing whether one can establish a one-to-one correspondence between 
the solutions to one given differential system and the solutions of another one.  Cartan 
replaced that statement with another one that was much more precise by defining the 
equivalence of two differential systems, based upon the notion of the prolongation of the 
system [10]. 
 
 
 



CHAPTER IV 
 

EQUIVALENCE OF THE MONGE PROBLEM AND THE 
INTEGRATION OF A PFAFF SYSTEM.  

 
 

 Suppose that the system (α) has been solved for: 
 

1

ndx

dx
λ ρ+ −  (ρ = 1, 2, …, k). 

Set: 

1

dx

dx
λ = uλ (λ = 2, 3, …, n + 1 – k). 

 
If one considers the uλ to be new variables then one is reduced to a Pfaff system of 2n + 1 
– k variables: 

(61)   
2

1 2 1 2 3 1
1

1

( , , , ; , , , ),

0.

n
n n k

dx
f x x x u u u

dx

dx u dx

ρ
ρ

λ λ

+ −
+ + −


=


 − =

… …

 

 
 The two systems (α) and (61) are equivalent.  One then sees that a Monge system of k 
equations in n + 1 variables can be replaced with a Pfaff system in which the number of 
equations is the number of variables, increased by n – k units. 
 Consider the particular case k = n – 1, so the system (α) will be a system of n – 1 
Monge equations in n + 1 variables, and the system (61) will be a system of n Pfaff 
equation in n + 2 variables. 
 
 
 15. Review of some results of the theories of E. Cartan. – Let S be a Pfaff system: 
 
(62)  ω1 = ik k

k

X dx∑  = 0 [k = 1, 2, …, n; i = 1, 2, …, r (r < n – 1)]. 

 
 The system S can be written in an infinitude of ways by replacing the variables xk by a 
new arbitrary system of variables that are functions that are distinct from the latter ones.  
It is essential to know its class – i.e., the minimum number of variables that can enter into 
the equations of the system S under a change of variables.   Let γ be the class of that 
system. 
 When the system S has been put into a form in which only γ variables and their 
differentials appear, we say that it has been converted into reduced form.  We determine 
the class γ and put the system S into a reduced form by appealing to characteristic 
elements, which we shall now define. 
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 One knows that a linear element (dxk) is an integral linear element if the dx1, …, dxn 
verify equations (62).  Two integral linear elements (dxk) and (δxk) are in involution if 
they verify the equations iω′ = 0. 

 An integral linear element is characteristic if it is in involution with all of the other 
integral linear elements that issue from the same point.  In order to form the equations 
that define the characteristic elements, suppose – to fix ideas – that we have solved the 
system S for dx1, dx2, …, dxr , and then substituted the expressions for δx1, δx2, …, δxr in 

1ω′ , 2ω′ , …, iω′ that are inferred from the equations ωi (δ) = 0.  We then express the idea 

that after the aforementioned substitution, the iω′ = 0 will be independent of the δxr+1, 

δxr+2, …, δxn ; i.e., we equate the coefficients of δxr+1, …, δxn to zero.  One then takes 
certain equations: 

π1 (d) = 0, …, πµ (d) = 0, 
 
which define the characteristic system of S, along with ωi (d) = 0. 
 Denote it by S1 .  One proves that no matter what the system S, the characteristic 
system S1 is completely integrable.  In order for any integral linear element to be a 
characteristic element, it is necessary and sufficient that S should be completely 
integrable.   One calls any integral of S1 a characteristic variable and any multiplicity 
whose linear elements are all characteristic a characteristic multiplicity. 
 The number of linear equations that is independent of S1 is called the order of S1 .  
One proves that the class of S is equal to the order of S1 and that if one makes a change of 
variables in S by taking distinct characteristic variables for the independent variables then 
one will have converted S into a reduced form.  Suppose that one has obtained p integrals 
f1, f2, …, fp of the characteristic system.  If one makes a change of variables in such a 
fashion that the integrals are p of the new variables y1, y2, …, yp, for example, then the 
new Pfaff system in which one makes: 
 

yi = ci ,  dyi = 0  (i = 1, 2, …, p) 
 

has class at most γ – p; however, it can have a lower class.  For example, if the new 
system has class r then it will be completely integrable. 
 If S contains only r + 1 variables then it will be completely integrable, and in turn, of 
class r.  Hence, S cannot have class r + 1.  As for one Pfaff equation, its class is always 
an odd number. 
 
 
 16. Canonical forms.  Derived systems.  Special systems. – One knows the results 
of Pfaff, Darboux, Frobenius, and Weber that relate to the reduction of a Pfaff form to a 
canonical form.  One even knows that such a form ω of class 2p can be reduced to the 
canonical form: 

i iz dy∑  (i = 1, 2, …, p), 

 
where zi , yi form a system of 2p distinct variables, and a Pfaff form ω of class 2p + 1 will 
reduce to the canonical form: 
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dyp+1 + i iz dy∑ . 

 
 The only invariant of a Pfaff form under the most general group of point-like 
transformations is the class of that form. 
 An equation ω = 0 will have been reduced to canonical form when one has put into 
the form: 

i iY dy∑  = 0  (i = 1, 2, …, p) 

 
if ω has class 2p, and to the form: 

dyp+1 + i iz dy∑ = 0 

if ω has class 2p + 1. 
 A Pfaff equation of class three can always be reduced to the canonical form: 
 

dy2 – y2 dy1 = 0. 
 
 For the Pfaff systems that we shall appeal to in what follows, we shall use the 
following canonical form: 
 

(63)  
1 2

1 2 2 1

3 1 1 1 2 1

0, 0, ,

0, 0, 0,

0, , 0.r r

dy dy

dy dy dy y dy

dy y dy dy y dy
ρ ρ ρ ρ ρ

ρ ρ ρ ρ

− + + +

+ + + + + +

 = =
 = = − =
 − = − =

⋯

⋯

 

 
 For example, we then appeal to the form: 
 

(64)    2 2 1

3 4 1

0,

0.

dy y dy

dy y dy

− =
 − =

 

 
 Suppose that the system S has been reduced to the canonical form (63).  One then 
takes the general integral that is represented by the formulas: 
 

(65)  1 1 2 2 1
( )

2 3 2

, , , ,

( ), ( ), , ( ),r
r

y c y c y c y a

y a y a y a
ρ ρ ρ

ρ
ρ ρϕ ϕ ϕ

+
−

+ + +

= = = =
 ′= = = ⋯

 

 
in which ϕ (a) is an arbitrary function. 
 Let S be a system of r equations in r + 2 variables, and then adjoin the equations: 
 
(66) 1 3 2 0r r rdx x dx+ + +− = , 2 4 3 0,r r rdx x dx+ + +− =  …, 1 1 0r l r l r ldx x dx+ − + + +− =  

   
to the equations of the system S, in which xr+3, …, xr+l+1 are new variables.  Equations 
(66), along with those of (S), form a system Σ that obviously has the following property: 
Any solution: 

xi = ϕi (a) (i = 1, 2, …, r + 2) 
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to the system S will provide the solution: 
 

xi = ϕi (a),      xi+3 = 1

2

( )

( )
r

r

a

a

ϕ
ϕ

+

+

′
= fi+3 (a),      xi = 2

1

( )

( )
r

l

a

f a

ϕ +

+

′
= fi+1 (a),      … 

 
of the system Σ, and conversely, one deduces a solution of S from every solution: 
 

xρ = fρ (a) (ρ = 1, 2, …, r + l + 1) 
 
of the system Σ; with Cartan, we say that Σ is a prolongation of S. 
 Now consider the system S: 
 

(67)   
,

,
i i

i i

a dx

b dx

ω
ϖ

 =
 =

∑
∑

 (i = 1, 2, 3, 4). 

 
One can, in general reduce it to the canonical form (64) by a change of variables, as was 
proved for the first time by Engel [17].  S. Lie [33] proved the same thing by geometric 
considerations.  Weber [43] appealed to the results of Engel and found some more 
general results that he deduced from the preceding ones.  Finally, Cartan give a more 
direct method for the aforementioned reduction [7]. 
 Consider the bilinear covariants: 
 

( ),

( ),
ik i k k i

ik i k k i

a dx x dx x

b dx x dx x

ω δ δ
ϖ δ δ

′ = −
′ = −
∑
∑

 (i, k = 1, 2, 3, 4). 

 
 α′. First suppose that ω′ becomes identically zero if one takes into account the 
equations: 
(68)  ω (d) = 0, ω (δ) = 0, ϖ (d) = 0, ϖ (δ) = 0, 
 
which we denote by: 
(69)    ω′  = 0  (mod ω, ϖ) 
 
to abbreviate.  The equation ω = 0 will have class 3 (general case) or class 1. 
 
 1. Class 3: One converts to the canonical form: 
 
(70)    Ω = dy2 – y2 dy1 = 0 
 
by a change of variables, and the system (67) can be replaced by a system of the form: 
 

Ω = dy2 – y2 dy1 = 0, Π = H1 dy1 + H2 dy2 + H3 dy3 = 0, 
 
and one will have, by virtue of (70): 
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Ω′ = dy3 δy1 – dy1 δy3 = 0  (mod Ω, Π), 
 
which demands that: 

H4 ≡ 0, i.e., Π = H1 dy1 − H3 dy3 = 0. 
 
 It follows from the hypothesis that S is not completely integrable that: 
 

Ω′ ≠ 0  (mod Ω, Π), 
 
and that H1 and H2 cannot be zero, and the equation Π = 0 can be written: 
 

dy3 + 1

3

H

H
 dy1 = 0. 

 
The ratio H1 : H3 necessarily depends upon y4 , and upon taking y4 to be the coefficient, 
the system S will take the form (64). 
 
 2. Class 1:  It is completely integrable then.  One then writes it in the form: 
 

dy1 = 0  or y1 = ϕ1 (x1, x2, x3, x4). 
 

One infers x1 as a function of y1, x2, x3, x4, and one converts the system S into the form: 
 

dy1 = 0 , H2 dy2 + H3 dy3 + H4 dy4 = 0, 
 
in which the Hi contain y1 .  Hence, the second equation can be regarded as a Pfaff 
equation in three variables that is not completely integrable and has y1 as a parameter.  
One can then put it into the form: 
 

dy3 − y4 dy2 − Κ dy1 = 0, 
 
and the system S, into the canonical form: 
 

dy1 = 0 , dy3 − y4 dy2 = 0. 
 
 Finally, if ω′ = 0, ϖ′  = 0 then the system S will be reducible to the form: 
 

dy1 = 0, dy3 = 0. 
 
 β′.  Now suppose that ω′ is non-zero by taking equations (68) into account.  We shall 
replace the given system with another equivalent one of the same form Ω = 0, Π = 0, but 
in which: 

Ω′ = 0  (mod Ω, Π). 
 
We first remark that one can replace an equation of S with another one of the form: 
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λ ω + µ ϖ = 0, 
 
in which λ, µ denote arbitrary functions of the x.  One knows that: 
 

(λ ω + µ ϖ)′ = λ ω′ + µ ϖ′  (mod ω, ϖ). 
 
Hence, in order to have: 

Ω′ = (λ ω + µ ϖ)′ = 0 (mod ω, ϖ), 
 
it will suffice that one should have: 
 
(71)    λ ω′ + µ ϖ′  (mod ω, ϖ). 
 
Now, it is easy to determine the ratio λ / µ in such a way that one will have the identity 
(71), and indeed, for example, suppose that one has introduced the values of dx3, dx4, δx3, 
δx3 as the functions of dx1, dx2, δx1, δx2 that one infers from equations (68) into ω′.  One 
will then have expressions of the form: 
 
 ω′  = A (dx1 δx2 − dx2 δx1), 
 ϖ′  = B (dx1 δx2 − dx2 δx1) 
 
for ω′ and ϖ′  when one sees that it will suffice to choose λ, µ in such a fashion that λ A 
+ µ B = 0 for one to have the identity (71).  One then replaces the system (67) with: 
 
 Ω ≡ ∑ Ai dxi = 0, 
 Π ≡ ∑ Bi dxi = 0 or Ω′ = 0 (mod Ω, Π). 
 
Cartan called the equation Ω = 0, which enjoys an invariant property, the derived 
equation of the given system. 
 One then reverts to the first case, and one has then reduced that equation to a 
canonical form. 
 Therefore: The reduction of the given system to its canonical form depends uniquely 
upon the reduction of the derived equation to its canonical form. 
 Cartan applied his method to the search for the derived equation to equation (1).  
Suppose that one has solved it for dz / dx: 
 

dz

dx
 = F , , ,

dy
x y z

dx
 
 
 

, 

which is equivalent to the system: 
 

ω = dy – u dx = 0, ϖ = dz – F (x, y, z, u) = 0, 
 

in which one considers u to be a new variable.  One has: 
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ω′ = du δx – dx δu, ϖ′ = 
F

u

∂
∂

(du δx – dx δu), 

so 

F

u
ϖ ω

′∂ − ∂ 
= 0, 

and the derived equation is: 

Ω = ϖ – 
F

u

∂
∂

ω = 0, 

or even: 
(72)    Ω = dz – p dx – q dy = 0, 
with 

(73)    p = F – u 
F

u

∂
∂

,  q = 
F

u

∂
∂

, 

 
and one has reduced it to its canonical form − viz., equation (72) − in which p, q are 
coupled by the relation that results from eliminating u from (73); one thus comes back to 
the classical method. 
 The same method was employed by Cartan with the equation: 
 

dz

dx
= 

2

2, , , , , ,
dy d y dy

A x y z B x y z
dx dx dx

   +   
   

, 

 
which reduces to the system: 

ω = dy – u dx = 0, 
ϖ = dz – A (x, y, z, u) du – B (x, y, z, u) dx = 0. 

 

He then applied it to the calculation of z =
2

2
m d y

y
dx∫ , in which y is an arbitrary function 

of x and also to the calculation of the quadratures: 
 

u = 
1

dx

xy+∫ , v = 
1

dy

xy+∫ , 

 
in which x, y are coupled by an arbitrary function (cf., Beudon [2]). 
 Now consider a system S of r equations (62), ωi = 0, and suppose that one has: 
 
(74)    i il ω′∑  ≡ 0 (mod ω1 , ω2 , …, ωi), 

 
in which l i denote functions of the variables.  One will also have: 
 

(74′)    ( )i il ω ′∑ ≡ 0 (mod ω1 , ω2 , …, ωi), 
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and we then say that the equation: 
(75)     i il ω∑ = 0 

 
belongs to the derived system of (S), which we, following Cartan, define in the following 
manner: 
 The derived system of S is composed of all distinct equations of the form (75), in 
which l1, l2, …, l i are arbitrary functions of the variables such that one has the identity 
(74); we denote it by S′.  As one sees, it is composed of the set of equations in S such that 
two arbitrary integral linear elements of S are in involution with each other.  Let r′ be the 
number of equations in S′.  One can obviously write the equations of S in such a fashion 
that the r′ equations of S′ are: 
 

ω1 = 0,      ω2 = 0,      …,      ωr′ = 0. 
One will have: 

1ω′ ≡ 2ω′ ≡ … ≡ iω′  ≡ 0  (mod ω1, ω2, …, ωr).  

 
In order for the system S to be completely integrable, it is necessary and sufficient that 
the system S′ must coincide with S. 
 Consider a system S of r equations in r + 2 variables that is not completely integrable. 
 If one solves those equations for dx1, …, dxi then one will get: 
 
(76)  ωρ (d) = dxρ – (aρ dxi+1 + bρ dxi+2) = 0 (ρ = 1, 2, …, r), 
 
and the ρω′  will be expressed uniquely by means of the binomial (1): 

 
[dxr+1, dx r+2]; 

i.e.: 
(77)  (ρ = 1, 2, …, r) ρω′ = Kρ [dxr+1, dx r+2]  (mod ω1, ω2, …, ωr). 

 
Since S is not completely integrable, none of the Kρ are zero.  Let Kr ≠ 0.  One then infers 
from the relations (77) that: 
 

i
i r

r

K

K
ω ω

′ 
− 

 
≡ 0  (mod ω1, ω2, …, ωr), 

 
and the derived system S′ will be: 
 

ωi – i

r

K

K
ωr = 0  (i = 1, 2, …, r – 1). 

 

                                                
 (1) We let [ω1, ω2] denote the bilinear form ω1 (d) ω2 (δ) − ω2 (d) ω1 (δ).   In that way, we will write 
[dxr+1, dx r+2] in place of dxr+1 δxr+2 − dxr+2 δxr+1 . 
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 If one takes the ωi in S to be the combinations: 
 

ωi – i

r

K

K
ωr = 0  (i = 1, 2, …, r – 1) 

 
then one will have the system S in the form: 
 

ωi = 0, ωr = 0,  in which iω′ = 0  (mod ω1 , ω2 , …, ωr). 

 
 Look for S″ ; i.e., the derivative of the system: 
 
(78)     ωi = 0. 
 
 If one replaces dx1, dx2, …, dxr−1 ; δx1, δx2, …, δxr−1 with their expressions that one 
infers from ωi (d) = 0, ωi (δ) = 0 then the iω′  will become linear combinations of: 

 
[dxr, dxr+1], [dxr, dxr+2], [dxr+1, dxr+2], 

or even: 
[ωr, dxr+1], [ωr, dxr+2], [ωr+1, dxr+2]. 

 
Now, since these iω′  must be zero when one takes the equation ωr = 0 into account, what 

will remain are identities of the form: 
 
(79)  ωi = Li [ωr, dxr+1] + Mi [ωr, dxr+2] (mod ω1 , ω2 , …, ωr−1), 
 
or furthermore: 
(79′)  iω′  = [ωr, Li dxr+1 + Mi dxr+2]  (mod ω1 , ω2 , …, ωr−1). 

 
Having said that, we distinguish: 
 
 1. The general case in which the ratios Li : Mi are not the same, no matter what the i.  
The formula (79′) will then show that the iω′  = 0 reduce to two distinct equations.  There 

are then i − 3 distinct relations of the form: 
 

i il ω∑ ≡ 0, 

 
and consequently, the system S″ is composed of r – 3 equations.  In that case, we (with 
Cartan) say that the system S is a normal system. 
 
 2. The case in which the ratio Li : Mi is independent of i, so the system S″ is 
composed of r – 2 distinct equations.  For our purposes, the essential result is that the 
system S can be put into the form: 
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(I)     1

2 1

( ) 0,

0,
i i i i i i

i i i i

dy A dy B dy

dy y dy
+

+ +

Ω = − + =
 Ω = − =

 

 
in which the Ai, Bi are independent of yr+2 . 
 
 In order to prove that, first determine the class of S′, or – what amounts to the same 
thing – the order of the characteristic system.  In order to do that, we remark in this case, 
we can write: 

Li dxi+1 + Mi dxi+2 = µi (a dxr+1 + b dxr+2), 
 

and we see that it suffices that an integral linear element of the system S′ satisfies the 
relations: 

ωi = 0,  a dxr+1 + b dxr+2 = 0 
 
for it to satisfy the equations iω′ = 0.  Hence, the number of equations that define 

characteristic elements of S′ is r + 1, and the class of S′ is r + 1. 
 Now let ϕh (x1, x2, …, xr+2) (h = 1, …, r + 1) be first integrals of the system: 
 
(80)  ωi = 0,  a dxr+1 + b dxr+2 = 0  (λ = 1, 2, …, r). 
 
 Set ϕh (x1, x2, …, xr+2) = yh , while taking the new variables to be yh and one of the old 
variables – xr+2, for example.  One can write the equations ωi = 0 in such a manner that 
they will contain only y1 , y2 , …, yr+1 , and one can then give the equations ωi = 0 of the 
system the form: 

dyi – (Ai dyr + Bi dyr+1) = 0, 
 

in which the Ai , Bi contain only y1 , y2 , …, yr+1 . 
 On the other hand, the equation ωr = 0 belongs to the system (80), and since the yh are 
first integrals of that system, it establishes a linear relation between the dyh, and 
consequently, if one takes the equations for S′ into account then one can write the 
equation ωr = 0 in the form of dyr – H dyr+1 = 0, in which H cannot contain only y1, y2, 
…, yr+1, since otherwise, the system S would, in fact, be completely integrable.  Hence, 
one can consider H to be a new variable yr+2 ; i.e., one can write: 
 

Ωr = dyr – yr+2 dyr+1 = 0, 
 
and S will be a prolongation of S′. 
 
 3. The case in which all of the Li , Mi are zero. 
 The system S′ is completely integrable, and one can replace it with: 
 

dyi = 0  (i = 1, 2, …, r – 1), 
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in which the yi are functions of x1, x2, …, xr+2 give the integrals of the equations of S′.  
Substitute the variables yi, xr, xr+1, xr+2 for the x1, x2, …, xr+2, and take into account that dyi 
= 0.  ωr = 0 will then become a Pfaff equation in three variables in which the yi are 
considered to be parameters; i.e., one will have a form: 
 

A dxr + B dxr+1 + Γ dxr+2 
 
for ωr , in which A, B, Γ contain the yi like the parameters, and the equation ωr = 0 can be 
reduced to the canonical form: 

dyr – yr+2 dyr+1 = 0. 
 
One finally has the canonical form: 
 
(II)     dyi = 0,  dyr – yr+2 dyr+1 = 0 
for the system S. 
 Now suppose that we find ourselves in the second case.  Since S′ will have class r + 
1, and it will be composed of r – 1 equations, we can start with S and proceed as before 
when we started with S. 
 One then confirms that S″ decomposes into r – 2 equations, and that three cases are 
possible: 
 
 α′. S (3) is composed of r – 4 equations, and S′ is then a normal system.  Since S is the 
prolongation of S′, one sees that S will be the prolongation of a normal system. 
 
 β′. S (3) is composed of r – 3 equations, and S″ has class r. 
 
 γ′. S (3) is composed of r – 2 equations; the system S″ is then its proper derivative.  
Hence, the system S″ will be completely integrable. 
 
 In a general fashion, let αi denote the number of linearly-independent equations that 
the system S (i) is composed of, let γi be its class, and set αi − αi+1 = µi .  Suppose that γρ – 
αρ  = 2.  From the preceding, one will then have µρ = 1, and µρ+1 will be either 2, 1, or 0.  
If µρ+1 = 2 then the system S (ρ) will be, by definition, a normal system.  If µρ+1 = 0 then 
one will also have µρ+2 = µρ+3 = … = 0, and the system S(ρ+1) will be its proper derivative.  
The same thing will be true for S(ρ+2), etc.  Hence, the system S(ρ+1) is completely 
integrable. 
 If: 

µ1 = µ2 = … = µi−k−1 = 1, and µi−h = 2 
then one will have: 

α1 = r – 1, α2 = r – 2, …, αi−h = h 
and 

αi−h+1 = h – 2, 
γ1 = r + 1, γ2 = r, …, γi−h−1 = h + 3, 
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and then S(r−h−1) will be a normal system of h + 1 equations and class h + 3.  As one saw 
above, S(r−h−2) will be a prolongation of S(r−h−1), and one can take a system of variables 
such that the equations of S(r−h−1) contain only the variables y1, y2, …, yh+3 and their 
differentials, and the last equation of the system S(r−h−2) will be dyh+2 = yh+4 dyh+2 .  The 
system S(r−h−3) is obtained by combining the equations of the system with one more 
equation that one can write in the form: 
 

dyh+1 − yh+5 dyh+1 = 0. 
 
 Upon continuing in the same manner, one will easily see that one can choose the 
variables y1, y2, …, yr+1, yr+2 in such a way that the equations of S take the form: 
 

(81)  1 2 1

1 1

0, 0, , 0,

0, ( 2, , ).
h

dy y dy h rρ ρ ρ

ω ω ω
ρ

+

+ +

= = =
 − = = +

⋯

…

 

 
 Hence, S is a prolongation of the normal system S(r−h−1).  We say that S is a special 
system if there are no values of i (i = 1, 2, …, r – 2) for which µi are not equal to zero or 
one.  Therefore, if a system S of r equations of class r + 2 is not normal then a 
prolongation of a normal system will be a special system [10, 20]. 
 
 
 17. Explicitly integrable systems.  Theorem of E. Cartan. – The question of the 
existence of an explicit general integral of a system S is linked with that of the reduction 
of a system S to a canonical form. 
 Let S be a special system, and let: 
 

µ1 = µ2 = … = µi−ρ−1 = 1,  µi−ρ = µi−ρ+1 = … = µi−1 = 0. 
 
 From the preceding, the system S(r−ρ) is completely integrable, and the system S(r−ρ−1)  
is composed of ρ + 1 equations, and it has class ρ + 3.  We can then argue as in the third 
case.  From that argument, one can put the system into the form: 
 
(82)  dy1 = 0, …, dyρ = 0, dyρ+2 – yρ+3 dyρ+1 = 0. 
 
 Take the y1, y2, …, yρ+3 to be the new variables, along with r – ρ – 1 of the old 
variables xρ+4 , …, xr+2 , for example.  S(r−ρ−2) is then composed of ρ + 2 equations, ρ + 1 
of which are the (82), and the other one can be put into the form: 
 

ωρ+2 = H dyρ+1 + K dyρ+2 + T dxν ν∑ , (v = ρ + 4, ρ + 5, …, r + 2). 

 
 By expressing the idea that the equation [dyρ+1, dyρ+2] = 0 is a consequence of 
equations ωρ+2 (d) = 0, ωρ+2 (δ) = 0, one will now see that ωρ+2 = 0, which is written: 
 
(83)     dyρ+1 − yρ+4 dyρ+1 = 0, 
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in which yρ+4 is a new variable. 
 One likewise confirms that S(r−ρ−3) is composed of equations (82), (83), and the 
equation dyρ+1 − yρ+5 dyρ+1 = 0, and so on.  One finally arrives at the canonical form: 
 

(84)  1 2

2 2 1 1 2 1

0, 0, , 0,

0, , 0.i i

dy dy dy

dy y dy dy y dy
ρ

ρ ρ ρ ρ+ + + + + +

= = =
 − = − =

…

…

 

Therefore: 
 
 a′. Any special system of r equations in r + 2 variables reduces to the canonical form 
(84). 
 
 b′. The number of equations of the form dyi = 0 in the canonical form (84) coincides 
with the number r, where r – ρ is the smallest of the indices for which µi is equal to 0.  In 
other words: All of the systems of r equations in r + 2 variables for which the number ρ 
has the same value can be reduced to the same canonical form.  The canonical form (84) 
to which the special system S is reduced indicates that the system S is explicitly 
integrable.  Indeed, in order to get the explicit general integral of the system S that gives 
the integral multiplicities M1 : 
 

(85) 1 1
( )

1 2 3 2

, , ,

, ( ), ( ), , ( ),r
i

y c y c

y a y a y a y a
ρ ρ

ρ
ρ ρ ρϕ ϕ ϕ −

+ + + +

= =
 ′= = = =

…

…

 

 
it will suffice to set yρ+1 = a, yρ+2 = ϕ (a), in which ϕ denotes an arbitrary function of a.  
Consequently, if the change of variables that converts the system S to canonical form (84) 
is defined by the formulas: 
 

xi = fi (y1, y2, …, yi+2)  (i = 1, 2, …, r + 2) 
 

then one will get the general integral of S from the formulas: 
 
(86)   xi = fi [c1, c2, …, cρ , a, , ϕ′ (a), …, ϕ (r−ρ) (a)] . 
 
 Therefore: Any special system has an explicit general integral.  Conversely: If a 
system of r equations in r + 2 variables is explicitly integrable then it will be a special 
system.  In order to prove that, one remarks that if a system S that is the prolongation of a 
normal system Σ admits an explicit integral then (Σ) will likewise admit an explicit 
general integral, since that would result from the form (81) to which a system that is the 
prolongation of a normal system would reduce.  One then proves that it is impossible for 
an explicitly integrable system Σ to be a normal system, which then implies the beautiful 
theorem of Cartan: The necessary and sufficient condition for a system S of r equations in 
r + 2 variables to have an explicit general solution is that is should be a special system. 
 After the special systems, the simplest systems are the normal systems of r equations 
in i + 2 variables, whose second derivative is a special system of r − 3 equations.  One 
easily sees that such a normal system can be converted into the form: 
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dy2 – y3 dy1 = 0, …, dyr – yi+1 dy1 = 0, dyi+2 – F dy1 = 0, 

 
in which F is an arbitrary function of r + 2 variables yi ; hence, the general solution is: 
 

y1 = a,  y2 = ϕ (a), y3 = ϕ′ (a), …,  yr+1 = ϕ(i−1)(a), 
 
and yi+2 is given by integrating the differential equation: 
 

dyr+2 = F [a, ϕ (a), ϕ′ (a), …, ϕ(i−1)(a), yr+2] da. 
 
 

 18. Consequences of the theorem of E. Cartan. – If a Monge system reduces to a 
special Pfaff system then by virtue of Cartan’s theorem, it will have an explicit general 
solution.  Hence, it would be interesting to look for the Monge systems that reduce to 
special systems. 
 From what we saw above, any Pfaff system of two equations in four variables is a 
special system. 
 Suppose one has the system: 
 
(87)   fi (dx1, dx2, …, dxn+1) = 0 (i = 1, 2, …, n – 1), 
 
in which the fi do not refer to the x.  One replaces it with an equivalent system of n – 1 
equations in n + 1 variables of the form: 
 

(88)    
1

k

n

dx

dx +

= ϕk 1

1n

dx

dx +

 
 
 

  (k = 2, 3, …, n). 

 
 Upon introducing a new variable: 

xn+2 = 1

1n

dx

dx +

, 

 
one will arrive at a system S of n Pfaff equations in n + 2 variables: 
 

ω1 = dx1 – xn+2 dxn+1 = 0, ωk = dxk – ϕk (xn+2) dxn+1 = 0. 
 

One easily sees that the system S′, which is composed of n – 1 equations, has the same 
form as S, which has r + 1 variables, and if S′ is not completely integrable then one will 
see moreover that S″ has the same form and n variables, and so on.  Hence, S will be a 
special system.  Consequently, it will admit an explicit general solution.  One can 
generalize that result.  Consider a system of q equations (q < n – 1): 
 

Fi (dx1, dx2, …, dxn+1) = 0 (i = 1, 2, …, q). 
 

If one adjoins n – q − 1 equations of the same form: 
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Fq+1(dx1, …, dxn+1) = 0,   Fq+2(dx1, …, dxn+1) = 0,   …,   Fn−1(dx1, …, dxn+1) = 0 
 

to it then the system, thus-completed, will have the preceding form, and the general 
integral of S will have an explicit form with several arbitrary functions. 
 One can look for the cases in which a system of three equations in five variables is a 
special system.  In particular, suppose that one has a system of the form: 
 
(89) 1 2 3 1 0dx x dxω = − = ,   2 3 4 1 0dx x dxω = − = ,   3 4 1 2 3 4 1( , , , ) 0.dx f x x x x dxω = − =  

 
One seeks to determine the function f in such a manner that S is a special system.  If one 
forms S′ then one will have: 
 

1ω′ = 0,  2ω′  = [dx1, dx2], 3ω′ = 
4xf ′ [dx1, dx4] (mod ω1, ω2, ω3). 

 
One will then have: 

43 2xfω ω′ ′ ′− = 0, 

and the equations of S′ will be: 
 

ω1 = 0,  
43 2xfω ω′− = 0, 

or rather: 
ϖ1 = ω1 = dx2 – x3 dx1 = 0, ϖ2 = dx3 – 

4xf ′ dx4 – (f – x4 
4xf ′ ) dx1 = 0, 

so 

1ϖ ′ = [dx1, dx3], 

2ϖ ′ = 2
4x

f ′ [dx3, dx4] + x4 2
4x

f ′ [dx1, dx4] + λ [dx1, dx3] (mod ϖ1, ϖ2). 

 
In order for the system S″ to have the form of one equation, it is necessary and sufficient 
that one should have: 

2
4x

f ′ = 0; 

 
i.e., that f must be linear with respect to x4 .  If one sets: 
 

x1 = x,  x2 = y,  x5 = z 
then one will have: 

x3 = y′,  x4 = y″,  5

1

dx

dx
= z′, 

 
and the system S will reduce to the second-order Monge equation: 
 
(90)     z′ = f (x, y, y′, y″, z). 
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Conversely, any equation (90) will reduce to a system of the form (89).  Hence, in order 
for (90) to be explicitly integrable, it is necessary that f should be linear in y″’ that 
condition is sufficient, moreover [12]. 
 
  
  
 
 
 



CHAPTER V 
 

GENERAL THEOREMS ON THE CORRESPONDENCE 
BETWEEN PARTIAL DIFFERENTIAL EQUATIONS  

AND MONGE EQUATIONS.  
 
 

 19. Monge equations and systems in involution of various types. –  
 
 α′. We remark that in some particular cases the theories that relate to systems in 
involution of first-order partial differential equations can correspond to theories that 
relate to the integration of Monge systems.  One sees such a correspondence in Goursat’s 
method, in which Monge systems correspond to systems that are called associated, and 
since those associated systems are in involution, one has explicit general solutions to the 
corresponding Monge systems [47]. 
 
 β′. We have already encountered (Chap. II) a correspondence between systems in 
involution of linear second-order partial differential equations and a second-order Monge 
equation, and we saw that in the case that was studied, the integration of the second-order 
Monge equation reduced to the integration of a first-order Monge equation [28]. 
 
 γ′. Suppose one has a nonlinear system in involution.  By means of a complete 
integral, one can make it correspond to two Monge equations of the form: 
 

(91)   32 4
1 2 3 4

1 1 1

, , , ; , ,i

dada da
a a a a

da da da

 
Φ  
 

 = 0  (i = 1, 2), 

 
such that in order to obtain the general integral of the system in involution, one must 
obtain the most general expressions for the four functions a1, a2, a3, a4 of one variables 
that verify the two relations (91). 
 
 γ′. Cartan has shown how one can link the theory of Monge equations in five-
dimensional space to the study of certain systems in involution of three second-order 
partial differential equations in one unknown function of three independent variables 
when the three families of two-dimensional characteristics coincide and that single family 
depends upon eight parameters.  Cartan has shown that the integration of such a system in 
involution reduces to the integration of a system of five completely-integrable Pfaff 
equations and one Monge equation: 
 

(92)   3 52 4
1 2 3 4 5

1 1 1 1

, , , , ; , , ,
dX dXdX dX

F X X X X X
dX dX dX dX

 
 
 

= 0. 

 
He also showed that conversely, under certain conditions, any Monge equation of the 
form (92) will give rise to a system in involution of the stated type.  If two such systems 
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in involution that lead to the same nonlinear Monge equation then they can be converted 
into each other by a contact transformation [9]. 
 
 
 20. Sheaves of infinitesimal transformations.  Derived sheaves.  Vessiot’s theory. 
– One has Vessiot [39, 41] to thank for a new theory of general problems in integration.  
His theory opened up a new path to the study of indeterminate differential systems, and it 
correlates with Cartan’s theory of the Pfaff problem.  Vessiot’s theory is found to be 
based upon the notion of the correspondence between a system of differential equations 
and a system of linear partial differential equations. 
 First, let S be a system of ordinary differential equations.  As one knows, one can 
make it correspond to a linear partial differential equation E in such a way that the 
solutions to E are first integrals of S, and conversely.  One then has a sort of duality 
between S and E.  One can say that S, E are correlative.  Then consider, with Cartan, a 
completely-integrable system S of s Pfaff equations in n variables: 
 
(93)  ωi = , 1 2( , , , )k l n ka x x x dx∑ … = 0 (i = 1, 2, …, s; k = 1, 2, …, n). 

 
Choose n – s linear differential forms ϖ1, ϖ2, … ϖn−s arbitrarily that are mutually-
independent and independent of the forms ω1, ω2, … ωs .  One can obviously express dx1, 
dx2, …, dxn as functions of ω1, ω2, … ωs ; ϖ1, ϖ2, … ϖn−s , in one and only one manner.  
One can then express any total differential: 
 

df = 1 2
1 2

n
n

f f f
dx dx dx

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯  

 
linearly in terms of ω1, ω2, … ωs ; ϖ1, ϖ2, … ϖn−s , where the coefficients are linear and 

homogeneous in 
1

f

x

∂
∂

, 
2

f

x

∂
∂

, …, 
n

f

x

∂
∂

and distinct; i.e., they are linearly-independent forms 

in the 
i

f

x

∂
∂

.  One then has an identity of the form: 

 
(94)  df = Z1 ω1 + Z2 ω2 + … + Zs ωs + X1 ϖ1 + X2 ϖ2 + … + Xn−s ϖn−s .  
 
The system of n – s partial differential equations: 
 

Xρ = 0  (ρ = 1, 2, …, n – 1) 
 
admits s independent first integrals of the completely-integrable system S as solutions, 
and one knows that the system S corresponds to a complete system 
 
(95)   X1 = 0,  X2 = 0,  …, Xn−s = 0, 
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and conversely.  Hence, the two systems S, E correlate, and the integration of one of them 
will imply the integration of the other one.  One can further say that if one is given a 
system S of s Pfaff equations in n completely-integrable variables and a complete system 
E of n – s linear partial differential equations then there will exist a duality between S and 
E such that the integration of each of them will imply the integration of the other one if 
one has an identity of the form (94), where ϖ1, ϖ2, …, ϖn−s are new linear functions in the 

dx1, dx2, …, dxs and Z1, Z2, …, Zn−s are functions of the new forms in 
1

f

x

∂
∂

, 
2

f

x

∂
∂

, …, 
n

f

x

∂
∂

. 

 Vessiot considered an arbitrary Pfaff system and extended the notion of duality to 
that notion.  Let ω1, ω2, …, ωs , ϖ1, ϖ2, …, ϖn−s be n independent Pfaff expressions in the 
dx, and let f be an indeterminate function.  One can write an identity of the form (94).  
The linear operations X1, …, Xn−s , Z1, …, Zs are all well-defined then.  However, if one is 
given only the Pfaff system ω1 = 0, ω2 = 0, …, ωs = 0 then one can replace the ωi in the 
identity (94) with other linear expressions in ωi ; i.e., the ωi are defined only up to a linear 
substitution, and one can choose ϖ1, ϖ2, …, ϖn−s , arbitrarily, in such a way that if one 
makes a first choice then one can, in turn, replace them with other expression that are 
linear in ωi  and ϖj .  Such replacements of the ωi  and ϖj  have the effect of replacing X1, 
…, Xn−s  with homogeneous linear combinations of the form: 
 
(96)  X = λ1 (x1 , …, xn) X1 + … + λm (x1 , …, xn) Xm (m = n – s), 
 

and can give forms for Z1, …, Zs that are entirely arbitrary in 
1

f

x

∂
∂

, 
2

f

x

∂
∂

, …, 
n

f

x

∂
∂

. 

 If one considers expressions such as jX f  to be symbols of infinitesimal 

transformations then one can say that X will give an infinitesimal transformation for a 
determination of the λ1 , λ2, …, λm .  The preceding remarks led Vessiot to make any 
system of Pfaff equations correspond, not to a system of transformations X1, X2, …, Xm , 
but to the set of infinitesimal transformations that are given by formula (96), in which the 
λj are arbitrary functions of the variables x1, x2, …, xn and the Xj are assumed to be 
distinct.  Vessiot called such a set a sheaf of infinitesimal transformations.  The Xj, which 
are assumed to be distinct, constitute a basis for the sheaf.  One can obviously take m 
other distinct, but arbitrary, transformations to be a basis that defines the sheaf.  That 
would amount to performing a homogeneous linear substitution of X1, X2, …, Xm whose 
coefficients are arbitrary functions of the x1, x2, …, xn . 
 Let {X1, X2, …, Xm} be a sheaf.  Associate n – m arbitrary transformations Z1, Z2, …, 
Zn−m with the transformations of the basis X1, X2, …, Xm, in such a manner that the set X1, 
X2, …, Xm, Z1, Z2, …, Zn−m consists of distinct elements.  We will get an identity of the 
form (94), in which ϖ1, ϖ 2, …, ϖ m, ω1, ω2, …, ωn−m are n independent Pfaff expressions.  
It will then result that the infinitesimal displacements that the system ωi = 0 (i, = 1, 2, …, 
s) satisfies are precisely the ones that correspond to the various infinitesimal 
transformations of the sheaf {X1, X2, …, Xm}, and that any integral multiplicity of the 
sheaf {X1, X2, …, Xm} is an integral multiplicity of the Pfaff system ωi = 0, and 
conversely. 
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 Conversely, if one is given a system of Pfaff equations then one can make it 
correspond to an equivalent sheaf of transformations.  With Vessiot, we say that a sheaf 
{ X1, X2, …, Xm} and a system ω1 = ω2 = … = ωs = 0 that correspond to each other are 
then correlated with each other or dual to each other.  That correspondence makes one 
see that the theory of systems of Pfaff equations corresponds to a theory of sheaves of 
infinitesimal transformations by a sort of duality. 
 A p-dimensional multiplicity is called an integral of a sheaf of transformations if it is 
invariant under p distinct transformations of that sheaf.  A family of integral multiplicities 
such that one and only multiplicity of that family passes through each point of space is 
called a complete integral.  Any complete p-dimensional integral is provided by a 
complete system of p equations U1 f = 0, U2 f = 0, …, Up f = 0 whose left-hand sides are 
transformations of the sheaf.  The transformations U1 , U2 , …, Up  define a complete sub-
sheaf of a certain sheaf F.  In Vessiot’s theory, one considers complete integrals in place 
of isolated integral multiplicities. 
 Cartan used the properties of the bilinear covariants iω′ = δωi (d) – dωi (δ) in the 

problem of integrating a Pfaff system, while Vessiot used the Jacobi brackets: 
 

(Xi f, Xh f) = Xi (Xh f) – Xh (Xi f) (i, h = 1, 2, …, m), 
 

which are infinitesimal transformations that are covariant to the transformations {X1, …, 
Xm}.  If they all belong to the sheaf then the sheaf will be called complete, and with 
Vessiot, we will write: 
 

(Xi, Xh) = 0  (mod X1, X2, …, Xm) 
 
in order to express the idea that the brackets are expressed as homogeneous linear 
functions of the X1, …, Xm .  When a sheaf is not complete, the brackets (Xi, Xh) will be 
expressed as homogeneous linear functions of the X1, X2, …, Xm and some other 
infinitesimal transformations Z1, Z2, …, Zm′ that one can choose in such a manner that the 
X1, X2, …, Xm, Z1, Z2, …, Zm′ are distinct.  Vessiot called that sheaf {X1, X2, …, Xm, Z1, Z2, 
…, Zm′} the derived sheaf of the sheaf {X1, X2, …, Xm}; i.e., the set of brackets (Xi f, Xh f) 
of the transformations for the sheaf F, taken two at a time, constitutes a sheaf F′ that 
contains F; it is the derived sheaf to F. 
 One has some identities-congruences for the brackets (Xi , Xh) that are called the 
structure formulas, which have the form: 
 

(Xi , Xh) = , ,i h j jc Z∑   (mod F) (i, h = 1, 2, …, m; j = 1, 2, …, m′). 
 
The nature of the sheaf from the standpoint of its integration depends essentially upon its 
structure.  It is by such structural comparisons that one recognizes that one can pass from 
one sheaf to another by a change of variables.  A complete sheaf is a sheaf that is 
identical to its derived sheaf F′.  Similarly, F′ has a derived sheaf, and so on.  A very 
interesting property is that the degree of the latter derivative of a sheaf of infinitesimal 
transformations is equal to the minimum number of effective variables to which one can 
reduce that sheaf by a change of variables. 
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 The reduction of certain systems of Pfaff equations to canonical forms plays a great 
role in Cartan’s theory.  In Vessiot’s theory, one also considers canonical forms or types, 
and one has the problem of the reduction of a sheaf to a canonical or semi-canonical 
form.  Vessiot studied such a problem in the particular case in which the derived sheaf F′ 
has degree m + 1, where m denotes the degree of F.  One then knows that the structure 
formulas have the simple form: 
 

(Xi , Xh) ≡ ci,k Z  (mod F) (i, k = 1, 2, …, m), 
 

in which Z is an arbitrary transformation of the derived sheaf (that does not belong to F). 
 Just as one considered the canonical form (63) for a Pfaff system, here one considers 
the canonical form: 
 

X = 1 2 1
0 1

f f f f
x x x

x x x xρ
ρ

+
∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

⋯ ,
1

f

xρ+

∂
∂

, 
1

f

z

∂
∂

, …, 
r

f

z

∂
∂

. 

 
 Knowing a complete integral in that case will permit one to reduce the given sheaf F 
to a canonical form by a change of variables.  One then looks for the other complete 
integrals on the basis of that canonical form.  Vessiot also introduced the notion of the 
prolongation of a sheaf, which he used for the study of the problem of integrating the 
sheaf.  He gave the theorem for the explicit integration of the special systems that 
corresponded to theorem of Cartan, and constructed a theory that correlated with 
Cartan’s.  He showed that in the case considered, if the degrees of the F′, F″, …, increase 
by one unit when one passes from each of those derived sheaves to the following one then 
the general solution of the problem of integrating F (for s = 1) will be given by explicit 
formulas.  One will then have the equivalent of Cartan’s theorem with somewhat more 
general hypotheses. 
 
 
 21. Duality between Monge equations and nonlinear partial differential 
equations. – Let a system of Monge equations be given, and form the equivalent Pfaff 
system.  From Vessiot’s theory, one can pass from that system to a sheaf of infinitesimal 
transformations.  One then sees that we can study the Monge systems by means of 
Vessiot’s theory.  Moreover, that theory shows the way to the construction of a theory of 
the Monge problem by appealing to a duality between Monge equations and nonlinear 
partial differential equations.  Here, we have indicated far too few of the aspects of 
Vessiot’s very important theory.  However, on first glance, one can distinguish that a vast 
field of research has been opened up by that method. 
 
 



CHAPTER VI 
 

THE MONGE PROBLEM  
IN SEVERAL INDEPENDENT VARIABLES.  

 
 

 22. Goursat’s theory. – We shall envision some Monge equations in two unknown 
functions of an arbitrary number of independent variables.  Goursat pointed out a class of 
such equations for which we can explicitly express the two functions by means of 
independent variables, arbitrary functions of those variables, and their partial derivatives. 
 He considered the equation: 

(97) 1 2 1 2 1 2 1( , , , , , ; , , , )n n n nF x x x x x P P P+ + +… …  = 0, Ph = 1n

h

x

x
+∂

∂
 (h = 1, 2, …, n + 1), 

 
and an integral multiplicity Mn+1, for which xn+2 = ϕ (x1, …, xn+2), as well as an arbitrary 
multiplicity Mn : 
(98)   xn+1 = f1 (x1, …, xn+2),  xn+2 = f2 (x1, …, xn+2). 
 
If the multiplicity (98) is contained in an integral Mn+1 then one will have: 
 

f2 (x1, …, x n+2) = ϕ [x1, x2, …, xn , f1 (x1, x2, …, xn)] 
and 

(99) qi = Pi + Pn+1 pi , with pi = 1

i

f

x

∂
∂

, qi = 2

i

f

x

∂
∂

 (i = 1, 2, …, n). 

 
Upon eliminating P1, P2, …, Pn between (97), (99), one will deduce that: 
 
(100)  F (x1, x2, …, xn+2 ;   q1 – p1 Pn+1 , …, qn – pn Pn+1 , Pn+1) = 0, 
 
and one defines Pn+1 at a point xi of Mn .  Any holomorphic root in the domain (D) of that 
point will give an integral Mn+1 that is holomorphic in (D).  The conclusion breaks down 
for a root that simultaneously satisfies the condition: 
 

(101)    1
1

F
p

P

∂
∂

+ … + 
1

n
n n

F F
p

P P+

∂ ∂−
∂ ∂

= 0. 

 
Finally, upon eliminating Pn+1 from (100), (101), we will have: 
 
(102)   Φ (x1, …, xn+1, xn+2 ; p1, p2, …, pn, q1, q2, …, qn) = 0, 
 
which is the differential equation of the singular multiplicities of (97).  Those 
multiplicities are analogous to the integral curves for a Monge equation in three variables.  
One integrates it explicitly in the following manner: Let V (x1, …, xn+2 ; a1, …, an+1) = 0 
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be a complete integral of (97).  The singular multiplicities Mn are represented by the 
equations: 

V = 0, 
1

V

a

∂
∂

= 0, …, 
n

V

a

∂
∂

= 0, 

 

H ≡ 

2 2 2

2
1 1 2 1

2 2 2

2
1 2

n

n n n

V V V

a a a a a

V V V

a a a a a

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

⋯

⋯ ⋯ ⋯ ⋯

⋯

 = 0, 

 
in which one replaces an+1 with an arbitrary function f (a1, a2, …, an).  Conversely, let one 
be given an equation of the form (102).  Goursat gave the necessary and sufficient 
conditions for that equation to define the singular multiplicities of a first-order partial 

differential equation.  The ratio 
ip

∂Φ
∂

:
iq

∂Φ
∂

 must be independent of i if one takes into 

account the equation itself.  Those conditions are not sufficient in every case.  However, 
as Goursat proved, if they are satisfied then one can always integrate equation (102) by 
explicitly expressing the variables and the two unknown functions by means of n 
auxiliary parameters of an arbitrary function of those parameters and their derivatives up 
to second order.  In his proof, Goursat replaced (102) with a system of two Pfaff 
equations in 3n + 1 variables: 
 
 ω1 = dxn+1 − i ip dx∑  = 0  (i = 1, 2, …, n), 

 ω2 = dxn+2 − f dxn − i iq dx∑  = 0 (j = 1, 2, …, n − 1), 

 
when he supposed that (102) was written in the form: 
 

qn = f (x1, x2, …, xn+2 ; p1, p2, …, pn ; p1, p2, …, pn−1), 
 

and he sought the integrals of that system. 
 Goursat started with equation (97).  He remarked that one can start from a system in 
involution of first-order partial differential equations in one unknown function and 
generalize the preceding results [26]. 
 One finds that generalization in a very important work in which Goursat applied some 
methods that related to semi-linear systems and gave a certain number of well-defined 
types of Monge equations of the first class (54). 
 Goursat also pointed out some particular cases in which a Monge equation in two 
independent variables of the form: 
 

ik i kA dz dz∑ = 0  (i, k = 1, 2, 3, 4) 
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admit an explicit solution (27). 
 He further studied the problem of integrating a system that is composed of two 
equations of the preceding form (55). 
 One easily distinguishes that Goursat’s theory points to an extended field of research.  
 

__________ 
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