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THE

MONGE PROBLEM

By Panajiotis ZERVOS

Professor on the Science faculty
at the University of Athens

INTRODUCTION

The Monge problem in one independent variable, in the bseade, consists of
explicitly integrating a system &f(k < n — 1) Monge equations:

(0') Fi (Xl, X2, vovy Xne1 ;) OXg, A, ..., qu+1) =0 6 =1, 2, ...,k),

in which theF are homogeneous functions of the, dx, ..., X1 .

By the term “explicitly integrating,” we mean exprnegsthe x variables as well-
defined functions of one parametar;- karbitrary functions of that parameter and their
derivatives up to a certain order, and that those furetian also contain a finite number
of arbitrary constants.

Monge solved that problem for the case 2,k = 1. Monge’s result can be extended
to certain equations or indeterminate systems of time oy in whichn > 2.

In the case oh > 2,k <n— 1, one meets up with systems of Monge equations that
have been the object of work by Serret, Darboux, Hadar@ardrsat, Cartan, and others.
Beyond any doubt, it was Hilbert that established a faat Was foreseen by several
geometers in relation to the impossibility of integratexplicitly in the general cases.

The Monge problem is linked with the problem of reducing stesy of Pfaff
equations to a canonical form.

If Kk =n — 1 then the general solution depends upon an arbitracgidanof one
argument, and the Monge problem is equivalent to the prodlemxplicitly integrating a
Pfaff system oh equations im + 2 variables of a well-defined system. That amounts to
the problem of the equivalence of two systems tdtal differential equations in + 2
variables under of the group of point-like transformationas + 2 variables. That was
how Cartan could recognize whether a system of tha (@) was explicitly integrable in
the cas&k=n- 1.

Vessiot found a theorem that was equivalent to th&awfan under somewhat more
general hypotheses by applying his new general theory efration problems, which
was based upon the consideration of sheaves of infingégmansformations. That
theory, which correlates with Cartan’s theory, opena upst horizon of research into the
Monge problem. For the same problem with two unknown fanstiin several
independent variables, one has some very essential reefiltE. Goursat.



CHAPTER |

THE FIRST-ORDER MONGE EQUATION.

1. The equation:

dy ,izj =0
dx dx

1) f (x, Y, Z—

Integral curves. Monge’s method.— The problem of integrating equation (1) can be
formulated as follows:
Determine the curves that are tangent to oneeofiéimerators of the cong){(

Y-y Z-12
T flxy, , =0
(M ( v X—xj

at each of their points when that cone has its stiainthat point.
We first seek the condition thatandg must satisfy in order for the plane:

(2) Z-z=p(X-=X%+q(Y -y
to have two generators in common with the cone tuatcide with a well-defined
generator. If one se'e;sf(_—y =t then one must express the idea that the equation:
- X
(3) Fxy.zt,p+tqg)=0

has a double root &t Hence, the desired condition will be the restitthe elimination of
t from equation (3) and its derivative with resptct. One will obviously arrive at the
same condition if one eliminatg$ X from the equations:

fxy.zy,2)=0, zZ=p+ay, f,+qf=0.
Let:
(4) F(XVy,zpq=0

be the result of the elimination. I§)(is an integral surface of equation (4), when one
considers it to be a partial differential equatitthren one will have that at each pdimtof

the surface§), the coneT) will touch the tangent plane to the surface alarggnerator.
Therefore:Each Monge equatiofil) corresponds to an equatid@d) that is the tangential
equation ta1). Equation (4) is also called thdjoint equation to (1).

Conversely, let a nonlinear partial differentiguation have the form (4); it couples
the angular coefficients, q of the tangent plane to an integral surface thasgs through
a given point in space. The position of that pltlethen depend upon just one arbitrary
parameter, and one can deduce from this that twvsl@ing plane is, in general, a cone
(T) that has the poinl for its summit. The equation of that cone is thsult of the
elimination ofp, q from (2), (4), and the equation:
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oF oF _
(Y—Qa—p—0<—>9 a—q—O-

It then results thatA partial differential equatiorf4) corresponds to a Monge equation
(1) that one finds by elimination of p, g from equaf{d)) and the equations:

dz=p dx+qdy, a—de—a—Fdxzo.
ap 0q

The coneT), which is the envelope of the' planes that are represented by equation
(2) when the coefficientp, g verify (4), is called thelementary conéhat is associated
with the point &, y, 2). Upon recalling that a contact element whose elsng, vy, z p,

q) satisfy (4) is called aimtegral contact elemenbne can say that the elementary cone
that is associated with the point y, 2) is the envelope of integral contact elements that
belongs to that point. Let a surfac® pe an integral of equation (4), let §, 2 be a
point of that surface, and let)(be the cone that corresponds to it. As one knaves, |
one characteristic ofyf will pass through the poink,y, z) that has a generator of)(
which has that point for its summit, as its tangent.

We seek anon-characteristiccurve that is situated oip)(and tangent at each of its
points to the characteristi§)(that passes through that point. One sees thatnieraje
such a curve will exist ory, since one can consider the surfaSeas being generated
by a family of characteristics, each of which meets dharacteristic that is infinitely
close to it, and therefore those characteristickhvave an envelope. At each point, that
curve will admit the generator of) that relates to that point as its tangent. Coselgr
let () be a curve that satisfies (1) without being a charatic of (4). The locus of
characteristic curves that are tangentftpwill then be an integral surface of (4), and the
curve () will be the envelope of characteristics.

Consequently, there exists just one curve on an integrédce that satisfies (1)
without being characteristic, and ittlee envelope of its characteristicBy analogy with
the case of developable surfaces, one calls gdige of regressionLie gave such curves
the name ofntegral curves. One then calls any curve that satisfies (1) withourigoe
characteristic amtegral curve.

If V(X Y,z a b)=0Iis a complete integral of (4) then an arbitratggral surface
will be defined by the characteristics:

V=0, i—v=o b=¢ @),
a

and the envelope of the characteristics will be definetdhéyquations:

AV _ AV _

5 V=0, —=0,
®) Aa Aa?

so all of the integral curves can be represented b thgsations (5), which permits one
to calculatex, y, z as functions of the parametgrwhile ¢ is an arbitrary function cd.
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If an integral curve is tangent to an integral surfaic@) then the contact will be of
order at least two. That property of integral curvesyall as a certain number of other
ones, was pointed out by Sophus Lie.

As an example, let the equatidxf + dy? = k* dZ. The adjoint equation I§ (p? + o)
=1, and formulas (5) will give the general solution, ima:

V=(1-a)x+K(1+a)z+2ay+4f(a) =0,

andf (a) is an arbitrary function .
Euler was the first to find the explicit integral teetequation:

dx@ + dy? =dZ.

2. Solving the equation:

(6) dX +dy’ +dZ =d<.

Serret’'s formulas. — The integration of equation (6) was first performed byeSdyy
means of a geometric interpretation of (6) in rectamgaterdinates. He sought to
express, Y, z, ands as functions of one paramet@ifor an arbitrary curve. Following
the ideas of Monge, he sought to envision any curve asige ef regression of a
developable surface. That surface, which is the geametus of tangents to the curve,
is represented by the equations:

P=z—px—qgqyru=0, P =du—-xdp-ydy0,

in which p, g, u are considered to be functions of one paramegterThe edge of
regression will then be represented by the system aitieqs:

®=0, =0, Jo=0.

One will easily deduce the expressionsdgrdy, dz as functions op, dp, d 2p, d *p,
q, dg, d %g, d g, u, du, d 2u, d 3u from this by differentiation, while taking the equations
themselves into account, and here one takes:

ds=> Ad'u (=12 73),

in which theA; do not contairu. One can expressas a function ofy, p, g, and its
successive derivatives Upon integrating each termdoby parts and settingi =
_y
K- K+ K
We remark that the independent varialfldhas remained indeterminate, up to now.
Serret chose it in such a manner that one can takelesifggmulas, and he then

expresseq, Y, z s as functions of one paramet2and two arbitrary functiong (6 and

@ (6) and the successive derivatives of those two func{@js

The W, p, q are considered to be functions of one independent variabl
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Some new formulas for the solution of equation (3)engiven by Darboux by using
a method that we shall now discuss.

3. Darboux’s method for the equation:
(7) f (dx, dx, ..., dx,) = 0.

— First consider the Serret equation (6), when it isteni

(6) o +dx + df = dx;,

and then set:

dx —adx=0
and
(8) X —ai X4 = by (i=1,23).
One will have:
9) Y at=1
and
d
(10) L
da

and the problem of integrating the equation will come dtonthe following one:

Determine the most general expressiondiahat satisfy the equations:

We see that one has six functions to determine. Simme are three relations
between them, there will then be three arbitrary tions. We take two of the; to be
such arbitrary functions — for examph, a;, and anotheld, whose choice will lead to
the theory of contact. Indeed, we remark that thetiogls (11) express the idea that the
two curves Q) that are described by the poiat,(a;, as) and B) that are described by the
point (b1, by, bg) must have their tangent planes, and consequentlyabaiating planes,
parallel to each other, which will show th&) (s the edge of regression of a developable
surface whose tangent planes are parallel to theadsw@uplanes of4), hence, it follows
that if one sets:

Y

Q0 X
L HN
|
cC
1
o

KRNI
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in which U is an arbitrary function af and the values of, Y, Z that are deduced from
the equation® = 0,d® / dt = 0,d >® / df? = 0 will be precisely those f, by, bs, which,
by virtue of formulas (8), (10), will give one tlRg X;, X3, X4 as functions of.

Darboux extended his method for integrating equation (7¢thng:

dx —adx,=0 i=1,2,..n=-1)
and
(12) X—aX =b,
o)
(13) L IR
da

The problem then comes down to the following one: Deite# the most general
expressions foa; , by as functions of a certain parameter that satishetjuations:

(14) dy _db_ - _db,
da da da,,
(15) f(ay, @, ..., 81, 1) = 0.

The number of functiona , b; is 2 ( — 1), and the number of relations (14) and (15) is
— 1. We choose the — 1 arbitrary functions to be — 2 of thea; and one functiot,
which will lead us along a path that is analogous to theegiieg one. Indeed, we set:

b b - By
g a4 - da|_,
al(n—2) aén—z) . q:[}—lz)

One can write:

U=Y Ah.
in which the/; are coupled by the relations that were encounterechiaciotheory:
> A4a=0,
in which:

()
a¥= ddt"q (=12 ..n-1k=12, ..n-2),

One easily sees that the valuediadre determined by the equations:

n-2 n-2
U _ <, 94 d U_zld A

U= Ah, —= i - — = -
Z'h dt ' dt dt"? dt"2
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hence, by virtue of the relations (12), (13), (15), one caeradne thex;, Xo, ..., Xn @s
functions of theay, ay, ..., a2, U, and its successive derivatives, whieres an arbitrary
function [14].

It is obvious that several geometric questions will findrtbelution in the method of
G. Darboux.

4. A patrticular class of equations. Method of J. Hadamard— While studying a
problem in physics, Hadamard was led to search for therglesolution to a system of
— 1 differential equations of the form:

> F(y)=0 k=1,2,..mi=1,2,..n-1),

in which we letF denote a differential operation of the form:
AgD"+A D"+ L +A,,

in which D is the symbol of a derivation, and tlAe are arbitrary functions of the
independent variable. We first remark that one aarays reduce the given system to a
system of the form:

davtY hy=0 k=1,2,..m;i=1,2, ...m=1),

in which theay, by are functions of the independent variable, byouhticing auxiliary
unknowns.

Each left-hand side can be considered to be the cfutwo terms, one of which
contains the derivatives, and the other of whichtaims only variables. Since the
number of equations i — 1, we will havan — 1 terms that contaim derivatives. It will
then suffice to replace each of those terms witter@vative by a convenient change of
variables in order to obtain a new systermirn 1 derivatives. That is always possible in
the case that we are addressing, since one has:

Zaikyk:(z aikyk)’_z g Y k=1,2,..m),
and if one setsz a, Y = z then one will take:
m-1
Z+2Vip2p+ Om Ym = 0,
p=1

in which the y, dm denote constants or functions of We have supposed that the
Z a, Yy, are independent of each other in such a way thatcan consider the to be

independent. Upon eliminating tigg, we will getm — 2 equations im — 1 variables of
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the same form as the given system. One then proeedds in the same manner. Upon
doing that, one will arrive at just one equation of therf.

U +byus+byu, =0,

which will define the functionu, after one choosasg arbitrarily. If one then repeats the
preceding series of calculations that were performed time will arrive at expressions
for y1, y2, ..., ym With the aid of an arbitrary function and its suceesslerivatives up to
orderm— 1.

5. The Monge equation:

dx, dx dx., |_
16 F1 X, Xopeeny Xy =2 —2 = =0
(16) (xlxz mdxl dax d%j

That equation admits an infinitude of solutions that depench upe- 1 arbitrary
functions, because one can take:

Xn = fr (X1) (h=2,3,...n)

arbitrarily, and what will remain is one equation tatermines¢.1 as a function ox; .
Here, | call any curve that satisfies equation (16ngeygral curve. If one introduces the
variables:

X, = —L (=23, ..n+1)

then the equation will be equivalent to the system:
f (X1, X2, ooy X1 5 Xy X5y veny Xby) =0,

dx _d = 0%
1% X1

| keep the variables; (4 = 1, 2, ...,n + 1) and make a change of variablesby taking
the following types of transformations:

of of
+

— - = O,
X, ox.,

X;1+1:pl+z ph)<1’

so the new system will be:
a7) F (X1, X2, ...y Xne1 5 P1, P2, -+, Pn) =0,
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(18) d%— By (=12 ..n),

"> pPk

in which F is the transform of the functidn if we suppose that we are dealing with the
general case. Hence, each equation (16) will corresmoad equation of the form (17)
that one calls thadjoint equatiorto (16). If I consideks, x,, ..., X, to ben independent
variables,x,+1, to be a function of those variables, and;, p2, ..., pn to be partial
derivatives then | will have a partial differential etjoa for the characteristic curves, to
which one must add to the equations (18), the equations:

Conversely, each partial differential equation corredpaio an equation (16) that one
obtains by eliminatingp, p2, ..., pn from (17) and (18). Here, we can also consider the
correspondinglementary cone.

6. Necessary and sufficient conditions that the& of any integral curve must
satisfy. — LetV (Xi, X2, ..., Xn+1 ; &1, ..., @&y = 0 be the complete integral of equation (17);
we have proved that one can replace equation (16) by stensy

(19) V=0, zg—vdxﬂzo, Zi[gwg:jdxﬂzo A=1,2, ..n+1).

o 0X, 50X,

For the proof of thatq0], we have replaced the variabesith thep; that are defined by
the relations:

(20) — th

and by applying the properties of determinants, we deducediamelathe form:

Zi oV /oa dx, =0 (k=12 ...n),
> 0x, ( 0V/da

and thus, the proposition.

Our proposition can result more directly by a prod¢has was pointed out to me by
Engel, which proceeds as follows:

| once more change the variablgsp; into x,, & by taking a type of transformation of
the form (20). The variableg, a are coupled by the relatioh= 0, so one can consider
them to be coordinates in the equathox;, p) = 0.
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Because of the equatidh= 0, the conditions for the elements of equation (1Heto
united will become:

dx + —d 0,
axﬂ z i

N
zadx 0,

or furthermore:

(21)

We now remark that if one sets:

then one will have, upon letting’ denote the bilinear covariant:
W=y 5[avj 5 d(avj

W=y YL [ ja da - za" ("dem@

0a

or furthermore:

Now, in order to get the differential equations of tharacteristic system (20), one must
only add the equationy’ = 0 to equations (21) and consider thg, da to be arbitrary
guantities that are subject to only the conditions:

ov ov
Za—éx 0, Zacfa 0.

One can then take the equations:
Zi oV /oa dx, = 0
ox, 0V /0g,

for thedx, , which will lead to our proposition.

The elimination of thesy from equations (19) provides equation (16). One then
obtains the necessary and sufficient conditions tti@k of any integral curve must be
subject to. Those conditions can be put into the form:
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(22) Y,

oV 9 (v /o3
0, N ga =0, 9 dx, = 0.
2 5.8 25 [GV/an %

7. Various applications. — It is easy to see that one can deduce the following
equation from equations (22):

- zz o '+ZZ_Z 4=0 (k=12 ..n)

0a aa(

in which thea are considered to be functions of one independent varididance, the
three conditions are:

(23) v=o, &_, A&V

=0.
Aa Aa?

Note that here one must suppose thatghare not constant; i.e., that equations (23)
belong to any integral curve, btliey are not characteristic.Hence, if one calls any
curve that satisfies equation (1Byt is not characteristicanintegral curvethen one will
have that the, verify equations (23) and the differential equations:

s 9 [VI% g —0 =12 ..n+1),
ox, | 0V /03,

and therefore we will have equations (23) for the gerseration that gives the for any
integral curve.

If one setsa—v 6_V_ - b then one can take the following equations for equations
0a Oa,
(22):
V=0, g—v a=0,
(24) ov ov i ov/ao
NipZl=o, p+ Z d1g=0
04, 0a, 0g \dV/dg

Botasso 8] appealed to those equations in order to estallishe theorems that gave
necessary and sufficient conditions for a simphnite sequence of characteristics of
(17) to admit an envelope outside of the singuitggral.

Note that one can deduce different families oégnéal curves from equations (19),
(22), or (24) if one subjects the arbitrary funo@a to conveniently-chosen relations.
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HIGHER-ORDER MONGE EQUATIONS.
MONGE SYSTEMS.

8. The equation:
(25) fx,y,2zy,Z,y",2')=0

Ed. Goursat's theory.— Let an equation of the form:

(26) V (X1, X2, X3 ; @1, &, a3) =0
be given; append the equations:
(27) za_vdx 0 i, k=12, 3),
ox
ov
28 —d dx —dx=0
(28) > o Ox +> ax O

to it. One will then deduce that:

ov
29 —d 0, —d d 0.
@) Y 5ada=0 Y gdxdg =
Moreover, let an equation:

(30) Y (ay, ay, az; day, dap, dag) = 0

be given that is homogeneous in thea Upon eliminating theda;, da,, dag from
equations (29), (30), one will arrive at an equation ofdhe:

(31) F (a1, a2, az; X1, X2, X3; dxg, dxe, dxs) = 0

that is homogeneous in tlix If one now eliminates tha from equations (26), (27),
(28), (31) then one can take an equation of the form:

(32) A+> Bd*x=0,

in which theA, B; do not contaird 2 x . Suppose that if one consideggo be a function
of thexy, X2 then equation (26) will be a complete integral of a liratem in involution
of the second-order partial differential equation tiggaresents a family of surfaces) (
that depend upon three paramet®rsay, az . In addition, let equation (30) define the
relation that theay, ap, az must satisfy in order for the envelogeof the surfaceX) to
likewise be an integral of the system in involution.otie has taken tham, ay, asz to be
functions of one variable parametethat satisfy the relation (30) then the charactesist
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of the moving surfacex] will have an envelopeA] that we, with Goursat, call thexige
of regressiorof the integral surfaceE]. All of the curves A) satisfy the same second-
order Monge equation.

Indeed: Considexs, xo, X3 to be functions of one independent variable that defiae
edge of regressiorA] and remark, with Goursat, that the surfakg lfas second-order
contact with A) at the point where the characteristic that is s#dian ¢) touches that
envelope. One will then have tReas coordinates of the curv®)(that satisfy equations
(26), (27), (28), (29), (30), and consequently equation (31), Morge equation of the
form (32) will result. If one sets =X, y1 =Y, zz =z and considerg to be an independent
variable then equation (32) will take the form:

(32) Z=MXVY,zy,Z)y"+N(XYy, zY2).

One also sees that integrating equatiorl)(8@mes down to integrating (30), which is a
first-order Monge equation.
Goursat likewise showed how, if one is given a lirssatem in involution:
r+As+ =0,
(33) { s

s+At+v =0

one can then obtain the corresponding equation directhout knowing the complete
integral, and that also suggests that if an equationedfotfm (32) is given then one can
know whether it corresponds to a system in involutionalgebraic operations and
differentiation. Finally, one can construct that eyst Therefore, one difference
between the first-order Monge equation and the second-ongeis obvious: In general,
any equation (1) will correspond to a first-order partidderential equation, while an
equation (25) will not, in general, correspond to a systemvolution, and that will be
true even when equation (25) is lineayirandz’ [2§].

Beudon has used procedures that relate to the second-avdge Mquation in order

to express, y, J as functions of one argument with no quadrature sign bpget

T=[{M(x % Y- Nxy 9 d

In order to do that, he sought to determine a fonc (x, y, y’) in such a manner that the
Monge equation:

MY Y)Yy - N(xyy)—a—j+%>/+—yy +7

will result from a system in involution of the for(83); it comes down to determinirg
from a second-order partial differential equati@h [Those questions have been studied
by E. Cartan by means of the theory of bilinearac@nts, which we shall address later
on.
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9. The equation:
(34) f (X1, X2, Xa, X4} O, ..., dxa; d 2y, ...,d %) = O.

One can also make a first-order partial differentigbation in three independent
variables correspond to a second-order equation by startihgaveomplete integral of
the latter equation, and in that very particular cdse,sblution to the Monge equation
will be given by very simple formulas that can be congiddo be an extension of the
Monge formulas.

Indeed, let:

(35) F (X1, X2, X3, X4 ; P1, P2, P3) = 0
be a first-order partial differential equation, and let:
(36) V (X1, X, X3, X4 ; &, &, 83) = 0

be a complete integral of that equation. If one fotimasfollowing relations:

(37) dv=0, d?v=0
then one can infer the equations:
(38) AV =0,

oV
39 da dx =0,
(39) Zz 03, 0X,

in whichA denotes the total differential with respect toaheAdd to these, the equation:

(40) Zzaii\;& da dx. =0 i,k=1,2,3).

If one eliminates thea from equations (38), (39), and (40) then one will get antequa
that contains th&, dx, anda; one eliminates tha from them and (36), (37). In general,
one will then arrive at an equation of the form (34jttis linear in thel > x. One further
sees that one can deduce:

ov .,
(41) ~— d% =0
52

from equations (36), (39), (40), and consequently the Mongeiequhat corresponds to
equation (35) in the manner that was cited above will hagesolution that is given by
equations (36), (38), (40), (41) for a solution.

10. Monge systems ol — 1 equations inn + 1 variables. Goursat’'s method.—
Goursat gave a very elegant method for the integrafiarMonge systen?f].
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We can make the methods of Monge and Darboux even pnofeund by Goursat’s
method, and one we will see how we can extend Mongsidts. Let:

(42) fi (X, «oey Xoe1; A%, .y OXae1) = O i=1,2 ..n=-1)

be a system of — 1 Monge equations, so the coig {hat corresponds to the summit
M(X, ..., Xw+1) Will be represented by the equations:

(43) fi (X]_, ey X1 X2 =X, ey Xnel —Xn+1) =0.
Let:
(44) Xot %1~ B(X=%) =0 k=1,2,..n)

be the planeR), so equations (43), (44) will determine the gatans of the coneT] that
are situated on the plar@)( If one sets:

Xz_xzza
Xi=%

then equations (43) will define the ratios:

X —
207 % (r=3,4,..n+1)
Xi=%
as functions o0&, and equation (44) will take the form:
(45) U (a) = ¢ (@) —pr—p2a— Y. p, #u(@ =0 Ww=73,4,..n).

We now seek to determine the coefficigmis such a fashion that the pla® ill have
n generators in common with the cof@ that coincide with a well-defined generator, in
which case, with Goursat, we say that the ptaswilates the con@).

One will get necessary and sufficient conditiomsthe planeR) to osculate the cone
(T) in the form ofn — 1 equations of the form:

(46) Fi (X, s Xoe1 3 P2y -2 Pn) = 0.
They result from eliminating thefrom the equations:
U@=0, U’@=0 .. U"@=0,
which express the idea that equation (45) possessastiple root of orden. Equations

(46) are called the&angentialequations to the con&)(whose summit is & (X, Xy, ...,
Xn+1).
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If one considersq, ..., X,to ben independent variables amgh; to be a function of
thosen variables withpx = 0x.+1 / O% then equations (46) will define a system of partial
differential equations that we, with Goursat, callélssociated systeto the system (42).

Therefore, any Monge system (42) corresponds to aniassbsystem of the form
(46). Suppose that the system is in involution, and let:

V(Xl, X2, ovy Xn+1; Q, b) =0

be a complete integral of that system. bl ¢ (a), where the functiorp (a) is an
arbitrary function of, and if:

AV oV oV
—=—+—9¢'(a), ...
Aa oOa 6b¢( )
then the formulas:
47) V=0, ﬂ:o, AZ\2:0, A”\/:
Aa Aa AQ"

will define the general integral of the Monge system (42).

11. Application of Goursat’'s method.— That method can be applied whenever the
associated system is in involution.

Let a Monge systena) be given in which <n — 1. Goursat’s method applies if one
can adjoin to that system— i —1 new equations of the same form in such a fashion that
the associated system of the system thus-formedinyatution. With Goursat, consider
the Serret equation that was treated by Darboux. Suppatserth has equations of the
form (7).

Add to them then — i —1 equations:

(48) %zz/lp[d—xzj (r=1,2,..n=-1),
dx

in which the ¢, are arbitrary. Equationsa); (48) define a system of — 1 Monge
equations inn + 1 variables whose associated system is in involuaod, Goursat’s
method will be applicable.

In that way, one will find that the general solutidrttee Serret equation ‘(6is given
by the formulas:
ﬂ:o, AZ\/:O Aa\/:O
Aa

V=0,

JiY: C Y L

in which:
Vaxa= D pX - ¢ (@ k=1,2,3),
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where (a) is an arbitrary function od, andpx are functions oé that are defined by the
equations:

ith ptpatpsg(@=U@, p+psg’(@=U'@), psg”(@=U"(),
wit
U(a) =+1+a*+¢*(a),

and ¢ (a) denote an arbitrary function af
We sought46] to apply Goursat’s method to the equations offdinen:

(49) Plx, Lo B 0% 0%,
dx dx dx dx

Appendn — 2 relations of the form:

dx“ ¢h[ dﬁj (h=3,4,..n)

to (49). One sees that the associated system:
Fi(x,p)=0
of the Monge system that is composed of equatid@sWill take a form such that:

oF _go OF_o  F_g
py 0%, op,

(h=2,3,..nnn+1;k=2,3,....n-1)

and one concludes from this that in order for tbsoaiated system to be in involution, it
is necessary and sufficient that one must have:

oF, _
o

identically, which will happen perforce if the e¢joa has the form:

f1(x) + f, ax d&% :%,
dx " dx dx dx

so the adjoint equations will have the form:
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%:%(d_xzj (0=3,4,..n).
dx

It would be interesting to look for the Monge systemswhich Goursat’'s method
applies. One question that would emerge from such alséarthe following one: In
which cases will eliminating from n equations of the form:

O[(Xl, X2, ooy Xn+1y P1, P25 <245 Pr a) =0

give a system in involution?

Therefore, we have madeld some remarks relating to that question of the
application of Goursat’s method. That provided us withopportunity to recover the
preceding results for (49) as particular cases of marergkresults.

Gross P9 has also studied some cases in which one finds solut@reertain
indeterminate differential systems without any quadrature.



CHAPTER 1l

IMPOSSIBILITY OF EXPLICIT INTEGRATION
IN THE GENERAL CASE.

12. Impossibility of extending the Monge method-- Consider the Monge equation
in four variables:
f (X1, X2, X3, Xa ; Oxq, dxe, dXs, dXs) = O,

and letV (xi, X2, X3, X4 ; @1, &, &) be the complete integral of the adjoint equationaCh
). One might be tempted to believe that the equations:

(50) veo &V_og AV_, A&V

=0
Aa Aa® Aa®

will provide the general solution in a manner that is analogouthe case of three
variables.

We have remarkedHfl] that such a general solution does not exist, in general

For example, take equatiorn )6 SinceV = 0, one will then have the equation:

Xs—au X1 —a X —bXs—az =0, b2:1_a12_azz-

One cannot say that the t#hat are inferred from (50) provide the solution to equation
(6), since theg; arearbitrary functions of the independent variables, and consequently,
they aremutuallyindependent.

In regard to that, we have proved that in order for (60pive a solution, it is
necessary that;, a, are not independent, but coupled by the relation:

A +a = (aa,-ad),

and we have likewise gived$ a much more general theorem that says the following: |

is, in general, impossible to deduce the equatidvi/ Aa® = 0 from equations (19) or
(22). Hence, one is led to demand to known whether aidumct

V(Xll X21 ---,Xn+1 1 all a21 ey an+1)

does or does not exist such that (19), (22) can be put ietdotm ofn + 1 other
equations, four of which are the following ones:

AV, _ 0 AN,

—=0, =0.
Aa

0 AV,
Aa? Aa®

For example, recall equation' )6 Goursat found a function:



20 On the Monge Problem

V1:X4—Zpi>$—b,

[in which thep; are well-defined functions of one paramedeand an arbitrary function
#(a), andb is a second arbitrary functigi(a)] such that the equations:

V=0, %: 0, Az\21:0, Aa\{;L:O
Aa Aa Aa

give the general solution of equatiori)(Gand more generally, Goursat’s method shows
how one can extend Monge’s method.

13. Hilbert's theorem. Generalizations.— In an article 31] that was published in
1912, Hilbert proved a theorem that asserted the imposgibiliexpressing the general
solution to the equation:

dz _(d?yY
51 <~ 22
) dx (dxzj
by the formulas:
X= Pt W, W, Wy, W),
(52) y=¢(tww, -, W),
z=x(twe--, W),

in which ¢, ¢, x denote well-defined functions of their arguments, a parameteny is
an arbitrary function of, andw, ..., w are the successive derivativesaof
In order to prove that, Hilbert started with the idgntitat equation (51) will lead to

when there exists a solution of the form (52). Aftaking some remarks about the form
of that identity, one will first deduce from that neithside of the identity in question
containswi+2, W1 . One then supposes that the first of equations (52pdes solved
for w; and that its value has been introduced into the otheretywations. If one then
takes:

Y=1t w wy, ..., W1, X),

xX=0g(tw wiy, ..., W1, X),

then upon appealing to certain identities that one willyefisd, one can conclude that:

I.e., thatf can contain onlyx. One also deduces, upon taking equation (51) into account,
thatgy = f2 and therg = X + W, in whichX is a function of only, andW is a function
oft, w, wy, ..., Ww—1 . One finally sees th&V is a constant; i.eg is a function of only.

Now, we suppose that> 1 in the solution (52), and the impossibility of integrgt(51)
explicitly is established.
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Hilbert’'s analysis can be extended to any equation thasdz/ dx as a function ox,
y, z, dy/ dx, d’ / d>¢ by means of an expression that is not homographtytod:C.

We have generalizedt9] Hilbert’'s theorem by using the same mode of proof and
have asserted the impossibility of explicitly integngtother Monge equations.

14. Various remarks.—
I. In the paper that was cited above, before studwggation (51), Hilbert

considered the first-order Monge equation (1). One canafnequatiorV such that the
equations:

ov
53 —dx =0,
(53) > ™

oV
54 dx =0
>4) Z daodx
result from the elimination af from equation (1).
If one sets:

(55) V(XY,za=Db,

ov
(56) Pa =Yy

a

then one will get equations (53), (550, (56), which @ivb, yas functions ox, y, z dy/
dx, dz/ dx One also sees that:
db
57 —=
(57) &

and obtains a transformation of (1) into the speciahf(b7).

Conversely, (55), (56), and the equati%igvz—z % that one deduces from (54), (56)
give x, y, zas functions o, b, y; dy/ da

More generally, we have consideréd][a system oh — 1 Monge equation®) for
which we suppose the existence of a functibifxi, Xz, ..., X1 ; @) such that the

equations of the system result from the eliminatioa,dfom:
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Za_vdxl = O,
0%,
Zﬂ d)(l = O,
(58) 0a, 0%
v
3 dx =0
08" 0%
If one sets:
_ o'V _ C =
(59) V=ap, =& (=12 ..n+1,4A=1,2,..n-1)
08,
then one will have:
(60) da, _ ©=2.3, ..n)
da Ao+ , 3, ...N).
: 0V _da, . : :
Equations (59) and the equatl%HF— d—WI” then determine th& as functions of the
2 a
&, day1/da .
Conversely, the values @, ay, ..., an«1 as functions ofk, dx are inferred from
equations (59) and:
> a—vdx =0
0%

verify equations (60) if one takes equatioa¥iito account.

II. In a general fashion, Hilbert attached the probleimexplicitly integrating a
system of indeterminate differential equation to a muchiengeneral problem that
amounts to recognizing whether one can establish a onsetoarrespondence between
the solutions to one given differential system andshietions of another one. Cartan
replaced that statement with another one that was muare precise by defining the
equivalence of two differential systems, based upemttion of the prolongation of the
system 10].



CHAPTER IV

EQUIVALENCE OF THE MONGE PROBLEM AND THE
INTEGRATION OF A PFAFF SYSTEM.

Suppose that the system) (has been solved for:

d
BKvii-o (0=1,2,...K.
dx
Set:
Py (=23, n+1-K).
dx

If one considers the, to be new variables then one is reduced to a Pfatsyst 2h + 1
—kvariables:

d)ﬁwz—p - f
(61) dx
dx, —u, dx =0.

TR ST TIRTITS

The two systemsa)) and (61) are equivalent. One then sees that a MysteEns ofk
equations im + 1 variables can be replaced with a Pfaff systemhith the number of
equations is the number of variables, increasewl bkunits.

Consider the particular cage= n — 1, so the systeno) will be a system oh — 1
Monge equations im + 1 variables, and the system (61) will be a system Bfaff
equation im + 2 variables.

15. Review of some results of the theories of E. Cartan.LetSbe a Pfaff system:

(62) @w=Y X dx =0 [k=1,2,..mi=12, ...r(<n-1)

The systen® can be written in an infinitude of ways by replacing\thsables« by a
new arbitrary system of variables that are functidras are distinct from the latter ones.
It is essential to know itslass— i.e., the minimum number of variables that can danter
the equations of the systetunder a change of variables. Lebe the class of that
system.

When the systen$ has been put into a form in which onpyvariables and their
differentials appear, we say that it has been conyemte reducedform. We determine
the classy and put the systerS into a reduced form by appealing ¢haracteristic
elementswhich we shall now define.
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One knows that a linear elemediy is anintegral linear elemenif the dx, ..., dx,
verify equations (62). Two integral linear elemerdg)(and ©x) arein involution if
they verify the equationaf = 0.

An integral linear element sharacteristicif it is in involution with all of the other
integral linear elements that issue from the same pdmtorder to form the equations
that define the characteristic elements, suppose — iddas — that we have solved the
systemS for dx;, dx, ..., dx, and then substituted the expressionsdy oz, ..., & in
o, b, ..., o that are inferred from the equations(d) = 0. We then express the idea

that after the aforementioned substitution, tje= O will be independent of théx.,

HKes2, ..., XK ; 1.€., we equate the coefficients &+1, ..., &K, to zero. One then takes
certain equations:

=0, .. md=0

which define the characteristic systentpélong witha (d) = 0.

Denote it byS, . One proves that no matter what the sys&rthe characteristic
systemS, is completely integrable. In order for any integraleér element to be a
characteristic element, it is necessary and sufficidat S should be completely
integrable. One calls any integral &f a characteristic variableand any multiplicity
whose linear elements are all characteristbaracteristic multiplicity.

The number of linear equations that is independei®; @ called theorder of S .
One proves that the class®is equal to the order & and that if one makes a change of
variables inS by taking distinct characteristic variables for théependent variables then
one will have converte8into a reduced form. Suppose that one has obtainmadgrals
fy, f2, ..., fp of the characteristic system. If one makes a chahgar@bles in such a
fashion that the integrals apeof the new variableg,, y», ..., yp, for example, then the
new Pfaff system in which one makes:

Yi=G, dy =0 (=212 .,p

has class at most— g however, it can have a lower class. For examplde new
system has clagsthen it will be completely integrable.

If Scontains only + 1 variables then it will be completely integrabled an turn, of
classr. HenceS cannot have clags+ 1. As for one Pfaff equation, its class is always
anodd number.

16. Canonical forms. Derived systems. Special systemsOne knows the results
of Pfaff, Darboux, Frobenius, and Weber that relatén¢oreduction of a Pfaff form to a
canonical form. One even knows that such a fayiwf class p can be reduced to the
canonical form:

Zzidy i=1,2,..p),

wherez , y; form a system ofj2distinct variables, and a Pfaff formof class p + 1 will
reduce to the canonical form:
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dyp+1 +Z Z dy

The only invariant of a Pfaff form under the most gehegroup of point-like
transformations is the class of that form.

An equationw = 0 will have been reduced to canonical form when onegphato
the form:

ZYldy =0 621,2,...,[))

if whas class2 and to the form:
dypi1 +Y 7 dy=0

if whas class@2+ 1.
A Pfaff equation of class three can always be redt@édae canonical form:

dyz -y dyl =0.

For the Pfaff systems that we shall appeal to in wbldws, we shall use the
following canonical form:

dyl:O, dyZ:O, e
(63) dyp—l =0, d)é; =0, dyp+2 = Y d¥+1 =0,
dyp+3 - yp+1 dyp+1 =0, -, dY+l_ Vi d,y+1: 0.

For example, we then appeal to the form:

(64) { dyz - Y dM:O’

dy,—y, dy=0.

Suppose that the syste®has been reduced to the canonical form (63). tDee
takes the general integral that is representetidoyarmulas:

n=56 Y, =G, yp:cii’ ¥+1: a
(65) { Yoo = ¢(a), Yoez = ¢'(a), . Y., = ¢(r—p) ( a,

in which ¢ (a) is an arbitrary function.
Let Sbe a system afequations im + 2 variables, and then adjoin the equations:

(66) dx, —X.5d%,=0, dx,, =X, dx;=0, ..., dx,;—x,,dx, =0

to the equations of the syste®nin whichx.s, ..., X++1 are new variables. Equations
(66), along with those off, form a systenk that obviously has the following property:
Any solution:

x=¢@ (=12 ..r+2)
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to the systen$ will provide the solution:

:M = fi+3 (a), X = ¢r'+2(a) :f

5,.,(@) @ @

X =@ (@), X3

of the systenx, and conversely, one deduces a solutio® fodm every solution:
Xp =T, (a) (0=1,2,...r+l+1)

of the systenx; with Cartan, we say thatis aprolongationof S
Now consider the systef

w=> 3 dy, .
(67) { @=3 1 dx, (i=1,2 3, 4).

One can, in general reduce it to the canonical @) by a change of variables, as was
proved for the first time by EngelT]. S. Lie [33] proved the same thing by geometric
considerations. Webe#3] appealed to the results of Engel and found soroeem
general results that he deduced from the preceales. Finally, Cartan give a more
direct method for the aforementioned reductign [

Consider the bilinear covariants:

=) a (dxdx - dxd ¥,

i,k=1, 2, 3, 4).
@ =) b (dxdx - dxd ¥, ( )

a’. First suppose thaty becomes identically zero if one takes into accatinet
equations:
(68) w(d =0, w(=0, w@d=0  @()=0,

which we denote by:
(69) w =0 (modw @)

to abbreviate. The equatiean= 0 will have class 3 (general case) or class 1.
1. Class 3: One converts to the canonical form:
(70) Q=dy-y,dy1 =0
by a change of variables, and the system (67) eaeflaced by a system of the form:
Q=dy—-y,dy1 =0, M =H;dy; + Hydy> + Hz dy; = 0,

and one will have, by virtue of (70):
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Q' = dy3 @1 —dyl @3 =0 (mon, I'I),

which demands that:
H450,i.e., I :Hldyl—H3dy3:0.

It follows from the hypothesis th&is not completely integrable that:
Q%0 (modQ, 1),

and thatH; andH; cannot be zero, and the equatib O can be written:

H
dys + H_l dy, = 0.

3

The ratioH; : H3 necessarily depends upgn, and upon taking, to be the coefficient,
the systens will take the form (64).

2. Class 1: It is completely integrable then. Omm thrites it in the form:
dy. =0 or  y1=¢1 (X, X2, X3, Xa).
One infersq as a function oy1, Xz, X3, X4, @and one converts the syst&mto the form:
dy: =0, H> dy, + Hz dys + Ha dys = O,
in which theH; containy; . Hence, the second equation can be regarded asfa Pfaf

equation in three variables that is not completelygirstele and hag; as a parameter.
One can then put it into the form:

dys —ysdy, — Kdy =0,
and the syster§, into the canonical form:
dy; =0, dys —ys dy, = 0.
Finally, if =0, @’ = 0 then the syste®will be reducible to the form:
dy, =0, dy; = 0.
[’ Now suppose that/ is non-zero by taking equations (68) into account. kéd s
irr(la;\)l\lliti:cehfhe given system with another equivalentodtiee same forn@ = 0, = 0, but

Q=0 (modQ, ).

We first remark that one can replace an equati@wath another one of the form:
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Aw+uw=0,
in which A, i denote arbitrary functions of tike One knows that:
Awrtuow =Aw+uaw (modw @).

Hence, in order to have:
Q=Aw+ryum =0 (Mmodw @,

it will suffice that one should have:
(71) Aw+ua (modw @).

Now, it is easy to determine the ra#id 1 in such a way that one will have the identity
(71), and indeed, for example, suppose that one has intbtheealues oflxs, dx, s,

o3 as the functions adx, dx, o, & that one infers from equations (68) inid One
will then have expressions of the form:

w =A(dx oK — dx K1),
w =B (dX1 5(2 - dXz 5(1)

for w/andw’ when one sees that it will suffice to chodsg/ in such a fashion that A
+ 1 B =0 for one to have the identity (71). One then gdahe system (67) with:

Q=2 Adx=0,
M=X>Bidx=0 or Q' =0 (modQ, I).

Cartan called the equatioQ = 0, which enjoys an invariant property, tberived
equationof the given system.

One then reverts to the first case, and one has résuced that equation to a
canonical form.

Therefore:The reduction of the given system to its canonical form depends uniquely
upon the reduction of the derived equation to its canonical form.

Cartan applied his method to the search for the demepdtion to equation (1).
Suppose that one has solved itdar dx

dz dy

— = F Xl Ll - 3

dx ( Y.z dxj
which is equivalent to the system:

w=dy—-udx=0, w=dz-F(xY,zUu) =0,

in which one considensto be a new variable. One has:
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w=dux-dxau, @'= Z—F(du X — dxau),
u

SO
[w—a—Fa)j =0,
ou

and the derived equation is:

Q=w- a—F w=0,

ou
or even:
(72) Q =dz-p dx—qdy0,
with
oF oF

73 =F—-u—, =,
(73) p 3 4=

and one has reduced it to its canonical fermiz., equation (72)- in which p, q are
coupled by the relation that results from eliminatinijom (73); one thus comes back to
the classical method.

The same method was employed by Cartan with the equatio

dz dy) d*y E( dyj
—=A XY, z— + —= |,
dx ( yZ'dxj dxX Xyzdx

which reduces to the system:

w=dy —u dx= 0,
w=dz-AX Y,z u)du-B (x,y, z u) dx=0.
d’y
dx® '
of x and also to the calculation of the quadratures:

He then applied it to the calculation Z)f-j y" in whichy is an arbitrary function

_ ¢ dx _ ¢ dy
u_Jl+xy’ V_Jl+xy’

in whichx, y are coupled by an arbitrary function (cf., Beudi2jy.
Now consider a systeBof r equations (62)qw = 0, and suppose that one has:

(74) dlaf =0 (moda, @, ..., ),

in whichl; denote functions of the variables. One will diswe:

(74) (ZW)'EO (modaw, @, ..., &),
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and we then say that the equation:
(75) 2.a=0

belongs tahe derived systemf (S), which we, following Cartan, define in the following
manner:

The derived system of S is composed of all distinct equations @drthé€75), in
which k, 15, ..., |; are arbitrary functions of the variables such that one has the identity
(74); we denote it b’ As one sees, it is composed of the set of equatddsuch that
two arbitrary integral linear elements $are in involution with each other. Letbe the
number of equations i&. One can obviously write the equationsSah such a fashion
that ther “equations of’ are:

w =0, =0, eery,  @=0.

&

One will have:

Wd=w=..=d =0 (moda, , ..., @).

In order for the systerS to be completely integrable, it is necessary andseffi that

the systen®’ must coincide witls.
Consider a syste@ofr equations im + 2 variables that is not completely integrable.
If one solves those equations &b, ..., dx then one will get:

(76) awp (d) = dx,— @, dXs1 + by dxs2) = 0 =12 .0

and thea, will be expressed uniquely by means of the binonjal (

[dX%+1, dXre2];
le.:
(77) 0=1,2,..1d,=Kp[dX+1, dXrs7] (modw, w, ..., @).

SinceSis not completely integrable, none of tgare zero. LeK; # 0. One then infers
from the relations (77) that:

!

[a)I —%cqj =0 (modw, a, ..., @),

and the derived syste8iwill be:

—Lw=0 =12, ...r=1).
@ K W ( )

r

() We let [, ap] denote the bilinear formu, (d) w () — @ (d) @ (J. In that way, we will write
[dX+1, dXr42] IN place ofdX.1 HKevz = UXr2 HKesr -



Chapter IV — Equivalence of the Monge problem and the intiegref a Pfaff system. 31

If one takes they in Sto be the combinations:

m—%mzo (=12, ..r-1)

r

then one will have the syste®in the form:

w=0,a=0, in which =0 (moda, @, ..., W).

Look for S”; i.e., the derivative of the system:
(78) @ =0.

If one replaceslx, dx, ..., dX%-1; K, XK, ..., HK-1 With their expressions that one
infers froma (d) = 0, a () = 0 then thewd will become linear combinations of:

[d>QU d>4’+1]1 [d>QU d>4’+2]1 [dX‘Fl; d>§’+2]1
or even:

[C{}, de+1]1 [CL?, d)(f+2], [0}+1, d)(f+2].

Now, since these must be zero when one takes the equation O into account, what
will remain are identities of the form:

(79) a =L [a, dx+1] + M [@, dx+2]  (moda, @, ..., @W-),

or furthermore:
(79) W = [a, Li dX+1 + M; dx+2] (moda, @, ..., @-).

Having said that, we distinguish:

1. The general case in which the ratipsM; are not the same, no matter whatithe
The formula (79 will then show that thed = O reduce to two distinct equations. There

are then — 3 distinct relations of the form:

2. li@=0,

and consequently, the syst@&fiis composed of — 3 equations. In that case, we (with
Cartan) say that the syste&hms anormal system.

2. The case in which the ratly : M; is independent of, so the systen®” is
composed of — 2 distinct equations. For our purposes, the esseasalt is thathe
system S can be put into the form:
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n { Q =dy -(Ady+ B dy,)=0,

Q, =dy - y,, dy, =0,
in which theA;, B; are independent ¢f., .

In order to prove that, first determine the clas§obr — what amounts to the same
thing — the order of the characteristic system. Inmt@elo that, we remark in this case,
we can write:

Li dX+1 + M dX+2 = £4 (& d¥+1 + b dx%42),

and we see that it suffices that an integral lineameht of the systel®’ satisfies the
relations:
w =0, adxi +tbdx2=0

for it to satisfy the equationsd = 0. Hence, the number of equations that define

characteristic elements 8fisr + 1, andthe class of Ssr+ 1.
Now let @n (X1, X2, ..., %+2) (N =1, ...,r + 1) be first integrals of the system:

(80) w=0, adxi+tbdx2=0 A=12 ..r.

Setdh (X1, X2, ..., X+2) = Yh , While taking the new variables to fagand one of the old
variables ., for example. One can write the equati@as- O in such a manner that
they will contain onlyy1 , 2, ..., Vr+1, and one can then give the equatians 0 of the
system the form:

dy: — (A dy + Bi dy+1) = 0,

in which theA;, B; contain onlyy: , Y2, ..., Vr+1-

On the other hand, the equatian= 0 belongs to the system (80), and sinceyttare
first integrals of that system, it establishes a lineglation between thely,, and
consequently, if one takes the equations $6rinto account then one can write the
equationaw = 0 in the form ofdy, — H dy+1 = 0, in whichH cannot contain only;, Y,

..., ¥r+1, Since otherwise, the systeé®rwould, in fact, be completely integrable. Hence,
one can considet to be a new variablg.,; i.e., one can write:

Q; =dy — Y42 dyr41 = 0,
andSwill be a prolongation o

3. The case in which all of the, M; are zero.
The systen®’is completely integrable, and one can replace it with:

dy =0 i=1,2,..r-1),



Chapter IV — Equivalence of the Monge problem and the intiegref a Pfaff system. 33

in which they; are functions ok, Xz, ..., X+2 give the integrals of the equations $f
Substitute the variableg X, Xr+1, Xr+2 fOr thexy, X, ..., X+2, and take into account thay:
= 0. @ = 0 will then become a Pfaff equation in three varialesghich they; are
considered to be parameters; i.e., one will have a:form

Adx +B dxe +T dx

for ap, in whichA, B, I' contain they; like the parameters, and the equatipr= 0 can be
reduced to the canonical form:
dyr —VYr+2 dyr+1 =0.

One finally has the canonical form:

(1 dy =0, dyr —Yre2dy+1=0
for the systens.
Now suppose that we find ourselves in the second casee S will have clasg +
1, and it will be composed @f— 1 equations, we can start wiland proceed as before
when we started witB.

One then confirms th&” decomposes into — 2 equations, and that three cases are
possible:

a’. S® is composed of — 4 equations, anf’is then a normal system. Sir8és the
prolongation ofS’, one sees th&will be the prolongation of a normal system.

3. S®is composed af — 3 equations, an8” has class.

Y. S® is composed of — 2 equations; the syste®f is then its proper derivative.
Hence, the syste®” will be completely integrable.

In a general fashion, let denote the number of linearly-independent equations that
the systens ") is composed of, It be its class, and set— ai+1 = 44 . Suppose that, —
a, = 2. From the preceding, one will then haye= 1, andu,.1 will be either 2, 1, or 0.
If 11,11 = 2 then the syste® will be, by definition, a normal system. gf; = 0 then

one will also have/y, = 3 = ... = 0, and the systeS¥*? will be its proper derivative.
The same thing will be true fo&”?, etc. Hence, the syste8¥™ is completely
integrable.
If:

=l = ... =ly1=1, and fn=2
then one will have:

a=r-1, wmwm=r-2, ..., ainw=h
and

On1=h-2,

n=r+1, B=r, ..., K+n-1=h+3,
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and therS" ™™ will be a normal system d&f + 1 equations and clabs+ 3. As one saw
above,S" "2 will be a prolongation o8 ™™, and one can take a system of variables
such that the equations 8f ™ contain only the variableg, Vs, ..., Yns and their
differentials, and the last equation of the sys&m 2 will be dyi2 = Ynss dyiwz . The
systemS"™? is obtained by combining the equations of the systeth wie more
equation that one can write in the form:

dyh+1 ~ Yh+s d)41+1 =0.

Upon continuing in the same manner, one will easiy tbat one can choose the
variablesyy, yo, ..., Yr+1, Yr+2 In such a way that the equationsSadbke the form:
=0, w, =0, -, . =0,
(81) 2] g Wiy
dy, = Y,u dY,., =0, (o= h+2...,0)

Hence,S is a prolongation of the normal syst&fi™™. We say thaB is a special
system if there are no values d¢f F 1, 2, ...,r — 2)for which/ are not equal to zero or
one. Therefore,if a system S of r equations of classtr2 is not normal then a
prolongation of a normal system will be a special sy$tin20].

17. Explicitly integrable systems. Theorem of E. Cartan— The question of the
existence of an explicit general integral of a sys&isilinked with that of the reduction
of a systen&to a canonical form.

Let Sbe a special system, and let:

M= b= ... =lip1=1, M-p=h-pr1= ... = -1 =0.
From the preceding, the syst&fi® is completely integrable, and the systgfi¥ ™

is composed 0p + 1 equations, and it has class 3. We can then argue as in the third
case. From that argument, one can put the systerthmform:

(82) dys =0, e ady,=0, dype2 —Yprz Ayprr = 0.
Take theyi, Yo, ..., Ypr3 t0 be the new variables, along with- p — 1 of the old

variablesxpia, ..., Xr+2 , for example.S" ?? is then composed @f + 2 equationsp + 1
of which are the (82), and the other one can be putlietéorm:

W2 = H dypis + K dypio + Y T, d, (V=p+4,0+5, ...r+2).

By expressing the idea that the equatidg,l, dyx2] = O is a consequence of
equationsa2 (d) = 0, a2 (9) = 0, one will now see thaty,., = 0, which is written:

(83) dypr1 = Ypra dypr1 = O,
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in whichy,4 is a new variable.
One likewise confirms tha8" ” is composed of equations (82), (83), and the
equationdy,+1 — Y5 dy»1 = 0, and so on. One finally arrives at the canoriaranh:

dy, =0, dy,=0, ..., dy = 0,
(84) A % ¥
dyp+2

Yoz A%, =00, dy, — ¥, dy,=0.
Therefore:

a’. Any special system afequations im + 2 variables reduces to the canonical form
(84).

b’ The number of equations of the fody = O in the canonical form (84) coincides
with the number, wherer — pis the smallest of the indices for whighis equal to 0. In
other words: All of the systems ofequations irr + 2 variables for which the numbger
has the same value can be reduced to the same carfomcalThe canonical form (84)
to which the special syster8 is reduced indicates that the syst@&ms explicitly
integrable. Indeed, in order to get the explicit genetagral of the syster§ that gives
the integral multiplicitiesvl; :

V=6,
(85) { Yorr =& Yoo =¢(a), ¥]+3:¢'(a’ s Vi, :¢(r—p) (3,

it will suffice to sety,1 = a, Y2 = @ (a), in which ¢ denotes an arbitrary function af
Consequently, if the change of variables that convieetsystensto canonical form (84)
is defined by the formulas:

X =fi (yy, Yz ..., Yis2) i=1,2 ..r+2

then one will get the general integral®from the formulas:

(86) % =fi[c, C ..., Cpra,, 87 (@), .... 6 " ()] .

Therefore:Any special system has an explicit general integral. ConverHely:
system of r equations in+ 2 variables is explicitly integrable then it will be a special
system.In order to prove that, one remarks that if a syss¢hat is the prolongation of a
normal system> admits an explicit integral ther®E) will likewise admit an explicit
general integral, since that would result from the f@8d) to which a system that is the
prolongation of a normal system would reduce. One theveprthat it is impossible for
an explicitly integrable systehto be a normal system, which then implies the bedutifu
theorem of Cartanthe necessary and sufficient condition for a system S of r equations in
r + 2variables to have an explicit general solution is that is should be@as[sgstem

After the special systems, the simplest systemshar@ormal systems ofequations
in i + 2 variables, whose second derivative is a specigmsysfr — 3 equations. One
easily sees that such a normal system can be codwettehe form:
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dy, —yzdys =0, very Ay —Visr dyy = 0, dy+» —F dy; =0,

in whichF is an arbitrary function af + 2 variableg; ; hence, the general solution is:

y1=4a, v=94@, ys=¢'@), ..., yee1 = 07V(a),

andyi.2 is given by integrating the differential equation:

dy2=F[a, ¢ (), ¢(a), ..., ¢' (), yr2] da

18. Consequences of the theorem of E. Cartarn. If a Monge system reduces to a
special Pfaff system then by virtue of Cartan’s theoriemjll have an explicit general
solution. Hence, it would be interesting lamk for the Monge systems that reduce to
special systems.

From what we saw above, any Pfaff system of two émpgin four variables is a
special system.

Suppose one has the system:

(87) fi(dx, %, .., X)) =0 (=1,2,...n—1),

in which thef; do not refer to th&. One replaces it with an equivalent system ef 1
equations im + 1 variables of the form:

(88) LY [d—xlj k=23, ...n).
dX%l d)ﬂwl
Upon introducing a new variable:
Xn+2 = dx
+2 — ’
dX,.s

one will arrive at a syste@of n Pfaff equations im + 2 variables:
W =dx =Xz OXe1 =0, Gk = A% — Pk (Xr2) dXe1 = 0.

One easily sees that the syst8&fmwhich is composed of — 1 equations, has the same
form asS which hag + 1 variables, and %’ is not completely integrable then one will
see moreover th&” has the same form amdvariables, and so on. Henc&will be a
special system. Consequently, it will admit an explgeneral solution. One can
generalize that result. Consider a system eduationsd <n— 1):

Fi (dx, dX, ...,d%s1) =0 (=1, 2, ...,0).

If one adjoingn — g— 1 equations of the same form:
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Fora(dXe, ..., d%w1) =0, Faea(dX, ..., 0%1) =0, ..., Foa(dxy, ...,d%s1) =0

to it then the system, thus-completed, will have theceding form, and the general
integral ofSwill have an explicit form with several arbitranyrictions.

One can look for the cases in which a system oethrpiations in five variables is a
special system. In particular, suppose that one hgstens of the form:

(89) w=dx,-xdx=0, w=dx—X%dx=0, a=dx,— f(x, X, X, X)dx=0.

One seeks to determine the functfdn such a manner th&is a special system. If one
formsS’then one will have:

o =0, o, = [dxq, dxo, ab=f, [dx, dx] (mod w, w, a).
One will then have:
o -1, =0,
and the equations & will be:
w =0, w - f, =0,

or rather:
W=a=de-xda=0 @m=dxs—f du-F-x f)da=0,
SO
@, = [dx, dxg],

@, =t [dxs, dx] + x4 f;[dx, dx)] + A [dx, dxg]  (mod i, @).

In order for the syster8”to have the form of one equation, it is necessarysafittient
that one should have:

I.e., thatf must be linear with respectxg. If one sets:

X1 =X, X2 =Y, X5 =2
then one will have:
d
Xs =Y’ =Y, -y
dx

and the syster8 will reduce to the second-order Monge equation:

(90) 7=ty Yy Y, 2.
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Conversely, any equation (90) will reduce to a systemefdhm (89). Hence, in order
for (90) to be explicitly integrable, it is necessargtth should be linear iry"’ that
condition is sufficient, moreoveff).



CHAPTER V

GENERAL THEOREMS ON THE CORRESPONDENCE
BETWEEN PARTIAL DIFFERENTIAL EQUATIONS
AND MONGE EQUATIONS.

19. Monge equations and systems in involution of various types.

a’. We remark that in some particular cases the thedhat relate to systems in
involution of first-order partial differential equatioman correspond to theories that
relate to the integration of Monge systems. One s@&@s a correspondence in Goursat’s
method, in which Monge systems correspond to systemsatbatalledassociategdand
since those associated systems are in involution, aexmicit general solutions to the
corresponding Monge systen&/].

L. We have already encountered (Chap. Il) a correspondmioeeen systems in
involution of linear second-order partial differential efias and a second-order Monge
equation, and we saw that in the case that was stubdeedhtegration of the second-order
Monge equation reduced to the integration of a first-ordendé equation8].

y. Suppose one has a nonlinear system in involution. Byngnefa complete
integral, one can make it correspond to two Monge equatibthe form:

da, da da ) _ -
91 q) ’ ’ v,y v _0 _1121
(91) |[aiaazasaﬂda1 da dqj ( )

such that in order to obtain the general integral efdystem in involution, one must
obtain the most general expressions for the four fonst;, ap, as, a4 of one variables
that verify the two relations (91).

y. Cartan has shown how one can link the theory of ddoaquations in five-
dimensional space to the study of certain systemswvalution of three second-order
partial differential equations in one unknown functioihthree independent variables
when the three families of two-dimensional charasties coincide and that single family
depends upon eight parameters. Cartan has shown thattetipation of such a system in
involution reduces to the integration of a system of foeempletely-integrable Pfaff
equations and one Monge equation:

(92) F (Xl, Xy, X5, Xy X,

dX, dX, dX, dX|_,,
dX, "dX dX ' dX

He also showed that conversely, under certain conditiany Monge equation of the
form (92) will give rise to a system in involution oktstated type. If two such systems
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in involution that lead to the same nonlinear Monge equéien they can be converted
into each other by a contact transformatign [

20. Sheaves of infinitesimal transformations. Derived sheave¥essiot’s theory.
— One has VessioB9, 41] to thank for a new theory of general problems in irda&gn.
His theory opened up a new path to the study of indetetendifferential systems, and it
correlates with Cartan’s theory of the Pfaff prohlendessiot’s theory is found to be
based upon the notion of the correspondence between a yfsthfferential equations
and a system of linear partial differential equations.

First, letS be a system of ordinary differential equations. oi® knows, one can
make it correspond to a linear partial differential equat in such a way that the
solutions toE are first integrals of, and conversely. One then has a sortwdlity
betweenS andE. One can say th& E are correlative. Then consider, with Cartan, a
completely-integrable syste®of s Pfaff equations im variables:

(93) @@= 3, (X, X..., %) dx=0 (=12 ..5k=1,2,..n).

Choosen — slinear differential formsm, ap, ... ah- arbitrarily that are mutually-
independent and independent of the formsa, ... . One can obviously expreds,
dx, ..., dx, as functions otu, @, ... @& ; @, @, ... th-s, INn One and only one manner.
One can then express any total differential:

df = idxl+i d)% ++i d)ﬁ
0%, 0%, 0%,
linearly in terms ofw, w, ... @ ; @, @b, ... ths, Where the coefficients are linear and
homogeneous inéi, i iand distinct; i.e., they are linearly-independent forms
ox 0%, 0X,
in theg—f. One then has an identity of the form:
)(i
(94) df=Ziaw+Zw+ ... +Zs+ X g+ Xom+ ... + X Th=s .

The system o — spartial differential equations:
X,=0 =1,2,...n=-1)

admitss independent first integrals of the completely-integradylstemS as solutions,
and one knows that the syst&uorresponds to a complete system

(95) X]_ = 0, X2 = 0, vy Xn—s = 0,
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and conversely. Hence, the two syst&ris correlate, and the integration of one of them
will imply the integration of the other one. One darther say that if one is given a
systemS of s Pfaff equations im completely-integrable variables and a complete system
E of n — slinear partial differential equations then there wilist a duality betwee8 and

E such that the integration of each of them will imgitg integration of the other oife
one has an identity of the for(®4), wherew, @, ..., @ are new linear functions in the

dxq, dx, ..., dx and”Z, Z,, ..., Z,— are functions of the new formsianf—, i i
ox 0%, 0X,

Vessiot considered aarbitrary Pfaff system and extended the notiondaflity to
that notion. Letw, w, ..., @&, @, @, ..., h-sben independent Pfaff expressions in the
dx, and letf be an indeterminate function. One can write an idenfitthe form (94).
The linear operation¥, ..., Xns, 4, ..., Zsare all well-defined then. However, if one is
given only the Pfaff systerm = 0, @@ = 0, ..., @ = 0 then one can replace thgein the
identity (94) with other linear expressionsdp i.e., thea are defined only up to a linear
substitution, and one can choase @, ..., th-, arbitrarily, in such a way that if one
makes a first choice then one can, in turn, replaeetvith other expression that are
linear ina andgg. Such replacements of tla@ andag have the effect of replacing,

..., Xns With homogeneous linear combinations of the form:

(96) X=A1 (X, ooy X)) Xo ¥ oo+ An (Xay ooy X)) Xim (m=n-y9),
. : . of  of of

and can give forms fofy, ..., Zsthat are entirely arbitrary in—, —, ..., —.
0x  0X, 0X,

If one considers expressions such &5f to be symbols of infinitesimal

transformations then one can say tRawill give an infinitesimal transformation for a
determination of thel; , A2, ..., Am . The preceding remarks led Vessiot to make any
system of Pfaff equations correspond, not to a sysfanamsformations<s, Xz, ..., Xn,
but to the set of infinitesimal transformations thes¢ given by formula (96), in which the
A; are arbitrary functions of the variablgs X, ..., X, and theX; are assumed to be
distinct. Vessiot called such a sedreaf of infinitesimal transformationg.heX;, which
are assumed to be distinct, constitute a basis ®sheaf. One can obviously take
other distinct, but arbitrary, transformations to beasaid that defines the sheaf. That
would amount to performing a homogeneous linear substitofiofa, X, ..., Xnwhose
coefficients are arbitrary functions of thg X, ..., X, .

Let {X1, Xz, ..., X} be a sheaf. Associate— marbitrary transformationg,, Z,, ...,
Zn-m With the transformations of the ba3ig X, ..., Xy, in such a manner that the gt
X2y ooy Xmy Z1, 22, ..., Zn-m CONSists of distinct elements. We will get an idgraf the
form (94), in whicha, @, ..., Wm @, @, ..., ah-m aren independent Pfaff expressions.
It will then result that the infinitesimal displacente that the systemy =0 (, =1, 2, ...,
S) satisfies are precisely the ones that correspondthéo various infinitesimal
transformations of the sheaK{, X, ..., Xy}, and that any integral multiplicity of the
sheaf i1, X3, ..., Xm} IS an integral multiplicity of the Pfaff systermy = 0, and
conversely.
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Conversely, if one is given a system of Pfaff equatitren one can make it
correspond to an equivalent sheaf of transformationgh Wessiot, we say that a sheaf
{X1, Xz, ..., Xm} @and a systemu = @3 = ... = @ = 0 that correspond to each other are
thencorrelated with each otheor dual to each other. That correspondence makes one
see that the theory of systems of Pfaff equationsespands to a theory of sheaves of
infinitesimal transformations by a sort of duality.

A p-dimensional multiplicity is called aintegral of a sheaf of transformations if it is
invariant undep distinct transformations of that sheaf. A familyimtegral multiplicities
such that one and only multiplicity of that family passlerough each point of space is
called acomplete integral. Any completep-dimensional integral is provided by a
complete system qf equationdJ, f = 0,U,f =0, ...,U,f = 0 whose left-hand sides are
transformations of the sheaf. The transformatldnsU,, ..., U, define acomplete sub-
sheafof a certain shedf. In Vessiot’s theory, one considers complete inlegraplace
of isolated integral multiplicities.

Cartan used the properties of the bilinear covariaits daw (d) — daw () in the

problem of integrating a Pfaff system, while Vessiot ukedJacobi brackets:
(Xif, th):Xi (th)—Xh (Xif) (i,h: 1, 2, ...,m),

which are infinitesimal transformations that are caarto the transformations{{, ...,
Xm}. If they all belong to the sheaf then the sheaf Wwél calledcomplete and with
Vessiot, we will write:

(Xi, Xh) =0 (moXm, Xo, ..., Xm)

in order to express the idea that the brackets are ssquteas homogeneous linear
functions of theXy, ..., Xm. When a sheaf is not complete, the brack&tsX,) will be
expressed as homogeneous linear functions ofXthex,, ..., Xn and some other
infinitesimal transformationZ, Z, ..., Zy that one can choose in such a manner that the
X1, X2, «ovy Xmy Z1, 2o, ..., Zmy are distinct. Vessiot called that sheAf,{X,, ..., Xn, Z1, 2,
..., Zm} the derivedsheafof the sheaf X1, Xy, ..., Xn}; i.€., the set of brackets{f, Xy f)
of the transformations for the shdaf taken two at a time, constitutes a sheathat
containsF; it is thederivedsheafto F.

One has some identities-congruences for the bracketsX) that are called the
structure formulaswhich have the form:

(Xi, Xn) =D ¢, Z, (modF) (i,h=1,2, ..mj=1,2,..m).

The nature of the sheaf from the standpoint of itgnation depends essentially upon its
structure. It is by such structural comparisons thatrecegnizes that one can pass from
one sheaf to another by a change of variables. A @egheaf is a sheaf that is
identical to its derived she&". Similarly, F" has a derived sheaf, and so on. A very
interesting property is that the degree of the lattewvalkive of a sheaf of infinitesimal
transformations is equal to the minimum number of éffecvariables to which one can
reduce that sheaf by a change of variables.
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The reduction of certain systems of Pfaff equationsat@onical forms plays a great
role in Cartan’s theory. In Vessiot’s theory, ongoatonsiders canonical forms or types,
and one has the problem of the reduction of a sheafdananical or semi-canonical
form. Vessiot studied such a problem in the particulae @a which the derived shefaf
has degreen + 1, wherem denotes the degree Bf One then knows that the structure
formulas have the simple form:

X, Xn)=cixZ (modF) (,k=1, 2, ... m),

in whichZ is an arbitrary transformation of the derived she#t(tloes not belong t©).
Just as one considered the canonical form (63) forfadystem, here one considers
the canonical form:

X:ﬂ+ i+xzi+..,+ of of of of

ox TOx X )sf’ﬂﬁ’axpﬂ’a’ "oz

Knowing a complete integral in that case will perame to reduce the given shéaf
to a canonical form by a change of variables. One lbeks for the other complete
integrals on the basis of that canonical form. \&ssiso introduced the notion of the
prolongation of a sheafwhich he used for the study of the problem of integgative
sheaf. He gave the theorem for the explicit integnaof the special systems that
corresponded to theorem of Cartan, and constructed aytliat correlated with
Cartan’s. He showed that in the case considerelk ifiégrees of the’, F”, ..., increase
by one unitwhen one passes from each of those derived sheatresfdlowing one then
the general solution of the problem of integratihgfor s = 1) will be given by explicit
formulas. One will then have the equivalent of Qastaheorem with somewhat more
general hypotheses.

21. Duality between Monge equations and nonlinear partial diérential
equations.— Let a system of Monge equations be given, and fornedqbésalent Pfaff
system. From Vessiot’'s theory, one can pass flahdystem to a sheaf of infinitesimal
transformations. One then sees that we can studMthege systems by means of
Vessiot's theory. Moreover, that theory showswlag to the construction of a theory of
the Monge problem by appealing to a duabgtween Monge equations and nonlinear
partial differential equations. Here, we have indicated far too few of the aspects of
Vessiot's very important theory. However, on figiince, one can distinguish that a vast
field of research has been opened up by that method.



CHAPTER VI

THE MONGE PROBLEM
IN SEVERAL INDEPENDENT VARIABLES.

22. Goursat’s theory.— We shall envision some Monge equations in two unknown
functions of an arbitrary number of independent variabl&sursat pointed out a class of
such equations for which we can explicitly express the twwtions by means of
independent variables, arbitrary functions of those vasahbled their partial derivatives.

He considered the equation:

O7)  F(X0 % s Xs %ots %00l Py By, P =0, Ph:%;l (h=12, ..n+1),

and an integral multiplicityln.1, for whichx..2 = @ (X4, ..., Xn+2), as well as an arbitrary
multiplicity M, :
(98) Xn+1 = fl (Xl, ceny Xn+2), Xn+2 = f2 (X]_, ceny Xn+2).

If the multiplicity (98) is contained in an integfdl..1 then one will have:

fo (Xl, ...,Xn+2):¢[X1, X2, ..., %n, f1 (Xl, Xo, ,Xn)]
and

(99) 0 =Pi+Pn1pi, with Pi = i, g = %
0X, 0X,

Upon eliminatingPy, P2, ..., P, between (97), (99), one will deduce that:
(100) F (X, X2, .oy Xns2; Ch—P1Pas1, -o, On—Pn Prs1, Pns1) =0,
and one defineB,.; at a point; of M, . Any holomorphic root in the domaib) of that

point will give an integraM,.1 that is holomorphic in¥). The conclusion breaks down
for a root that simultaneously satisfies the condition

oF oF oF
101 —pF..t—p -
(101) P FEET

=0.

Finally, upon eliminatind®,.1 from (100), (101), we will have:

(102) D (X1, vy Xnets X2 5 P, P2, -oos Pry Gy G2y -, Gn) = 0,

which is the differential equation of the singular muditipes of (97). Those
multiplicities are analogous to the integral curvesafdionge equation in three variables.
One integrates it explicitly in the following manner: DNe{xy, ..., Xa2 ; @1, ..., 8n+1) = 0
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be a complete integral of (97). The singular multinesiM, are represented by the
equations:
ov ov

v=0, =0, .. Y=o
03, 0a,
oV oV 0%V
0af dada, 0303
H= =0,
oV oV 0%V
da da dada 04

in which one replaces,.; with an arbitrary functiof (a;, a, ..., a,). Conversely, let one
be given an equation of the form (102). Goursat gave ¢doessary and sufficient
conditions for that equation to define the singular rplidties of a first-order partial

differential equation. The ratiéag:ai) must be independent ofif one takes into

ap, dq
account the equation itself. Those conditions aresafficient in every case. However,
as Goursat proved, if they are satisfied then one lveays integrate equation (102) by
explicitly expressing the variables and the two unknowrctfans by means oh
auxiliary parameters of an arbitrary function of thpagameters and their derivatives up
to second order. In his proof, Goursat replaced (102) witystem of two Pfaff
equations in 8 + 1 variables:

@ =dxu1-Y pdx =0 (=12 ..n),
@ =dxu—fdx =D g dx =0 §=1,2,...,n-1),

when he supposed that (102) was written in the form:

qn:f(xl, X21 ,Xn+2, pll p21 '--lpn;pll p21 '--lpn—l)l

and he sought the integrals of that system.

Goursat started with equation (97). He remarked that amestart from a system in
involution of first-order partial differential equatione one unknown function and
generalize the preceding resulk$]f

One finds that generalization in a very importantknarwhich Goursat applied some
methods that related to semi-linear systems and gavetaanceumber of well-defined
types of Monge equations of the first class (54).

Goursat also pointed out some particular cases in waibtonge equation in two
independent variables of the form:

> A.dz dz=0 i,k=1,2 3, 4)
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admit an explicit solution (27).

He further studied the problem of integrating a system ighaomposed of two
equations of the preceding form (55).

One easily distinguishes that Goursat’s theory pométextended field of research.
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