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 1.  Older investigations.  Certain sections of Malus’s optics (1) can be regarded as 
the oldest investigation of differential line geometry and line geometry at all (2).  He 
expressed the equations of a line as: 
 

m (z −  z′) = o (x – x′),  n (z −  z′) = o (y − y′), 
 
in which m, n, o are arbitrary functions of x′, y′, z′, and thus associated every point P ≡ 
(x′, y′, z′) of space with a line g that went through it, and thus defined a line complex.  He 
then sought the neighboring point of P whose line intersected g and found a second-order 
cone of directions.  He then restricted himself to lines of the complex that emanated from 
the points of a surface: 

F(x′, y′, z′) = 0, 
 

and thus, to a general line congruence, and found that every such congruence can be 
regarded as the locus of the intersections of two systems of developable surfaces.  He also 
found the focal surfaces, determined the two focal planes and the angle between them, 
presented the condition for the two families of developable surfaces to intersect 
perpendicularly everywhere (or as we now say, for the ray system to be a normal system) 
and asked which surfaces F = 0 one must associate with a given complex in order for the 
system to be a normal system.  He obtained a nonlinear first-order partial differential 
equation. 
 One refers to the theorem that a normal system will always go to another such system 
after arbitrarily many reflections and refractions at separation surfaces between 
homogeneous media as the theorem of Malus and Dupin.  Malus himself proved that 
theorem only for a single refraction (or reflection) of rays that started from a point, and 
even expressed the opinion (loc. cit., pp. 103) that the theorem would no longer be true 
for several refractions.  The error was corrected by Dupin and Cauchy (3). 
 At the same, from his interest in optics, Hamilton  (4) was led to investigate ray 
systems.  He represented them analytically by giving the direction cosines of a ray as 
functions of the position in space.  However, the functions α, β, γ of x, y, z must be 
arranged such that they will not change when one replaces x with x + ρ α.  They must 
then fulfill the differential equations that one obtains (5) when one sets the ϕ in: 
 

α ϕx + β ϕy + γ ϕz = 0 
 

                                                
 (1) “Optique,” Journ. de l’Éc. polyt., t. VII (cah. 14) 1808; pp. 1-44 and 84-129.  
 (2) Generally, Monge had previously (1796) investigated the normal system of a surface in connection 
with the theory of surfaces, and in fact remarked that it could be decomposed into ∞1 developable surfaces 
in two different ways (Journ. de l’Éc. polyt., cah. 2).  However, it was in Malus that line manifolds 
appeared for the first time independently.  For the older investigations of line geometry, cf., also Lie and 
Scheffers, Geom. d. Berührungstransf. pp. 268, et seq. 
 (3) For the discovery of the Malus-Dupin theorem, cf., Darboux, Théorie des surf. II, pp. 280, note. 
 (4) “Theory of systems of rays,” Transact. of the R. Irish Ac. 15 (1828); “First supplement to an essay 
on the theory of systems of rays,” ibid. 16 (1830). 
 (5) Cf., also Cauchy, Proc. of the Lond. Math. Soc. 8 (1877) or Coll. Papers IX, no. 625 and Mess. of 
Math. (2) 17 (1887) or Coll. Papers XII, no. 876, and furthermore, Bertrand , “Mém. sur la Théorie des 
surf.,” J. de Math. 9 (1844). 
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equal to α, β, γ, in turn.  Moreover, one obtains equations from differentiating ∑α2 = 1 
that yield: 

βz – γy = kα, γx – αz = kβ, γy – βx = kγ, 
in which: 

k = ∑ α (βz – γy). 
 
For k = 0, ∑α ⋅⋅⋅⋅ dx will be the complete differential of a function V.  That is the case for 
normal systems, and V = const. will then be the equation for the family of orthogonal 
surfaces.  Hamilton  found the most important results of Malus once more and, in fact, 
added the equation that is named for him, which we would like to discuss in more detail: 
 If one considers a fixed ray s of a congruence and a variable neighboring ray s′, along 
with the shortest distance a between them and the foot N of the latter on s, and one lets s′ 
go to s then the limiting position of the plane (s, a) will be determined by the angle α 
between it and a fixed starting plane through s, and the limiting position of N will be 
determined by the distance z from a fixed point to s.  Now, for a suitable choice of 
starting plane, z and α will be related by: 
 
(1)     z = z1 cos2 α + z2 sin2 α   (z1, z2 const.) 
 
for all ruled surfaces of the congruence, and that is “Hamilton’s equation.”  Hamilton  (6) 
has also already compared the various cross sections of one and the same bundle that was 
defined by the neighborhood of a ray, and thus came very close to Kummer ’s measure of 
density.  He already found the cylindroid in the first treatise as the locus of the shortest 
distances from a ray to its neighboring rays. 
 The discovery of the null system and the ray thread by Giorgini  (1827) and Möbius 
(1833), as important as it also is, was not concerned with differential line geometry, so 
we shall not discuss it here.  By contrast, the concept of the distribution parameter P for a 
ray of a ruled surface is important for differential geometry: If s′ is a neighboring ray, a is 
the shortest distance between the two, and ω is the angle between them then one will 
have: 

(2)      P = lim 
a

ω
. 

 
One can thank Chasles for that concept, as well as the discovery of the correlation 
between the points of a ray of a ruled surface and their associated contact planes (7). 
 Sturm, in his treatise on the theory of vision (8) considered an “infinitely-thin ray 
bundle”; i.e., the neighborhood of a ray s of a normal congruence.  Such a neighborhood 
will be determined completely when one knows the two principal curvatures of a normal 
surface of the bundle at its point of intersection with s and the orientation of the planes of 
the associated principal section through s (viz., its azimuth).  Now, if a refracting surface 

                                                
 (6) Loc. cit., (rem. 4), vol. XVI, pp. 59.  
 (7) “Sur les surf. engendrées par une ligne droite, etc.” Corresp. math. et phys., ed. Quetelet (3) III 
(Tome XI), 1839.  
 (8) Comptes R. XX, pp. 554, 761, and 1238 (1845), transl. in Pogg. Ann. d. Phys. u. Chemie, Bd. 65 
(III, Reihe 5), pp. 116-134 and 374-395.  
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is present then the ray s will be refracted into another s′ whose neighborhood can be 
defined by the three analogous elements, and Sturm solved the problem of determining 
those elements.  In that way, he proved (as Monge knew already) that the normals to a 
surface in the neighborhood of a point P could be regarded approximately as the 
intersections of two lines – viz., the focal lines – and said (loc. cit., pp. 376) that the focal 
lines cut the normal at the point P perpendicularly.  However, that is not the only 
possible way of looking at things, and that is why several misunderstandings will arise 
later in regard to this subject (no. 7). 
 
 
 2.  Kummer’s theory of ray systems.  The papers of Malus and Hamilton  seem to 
have been almost forgotten, since Kummer , in his treatise “Allgemeine Theorie der 
geradlinigen Strahlensysteme” (9) proved most of the theorems on ray systems that were 
known at the time in a newer and simpler way and extended them at some points (10).  Its 
starting point was the following: One intersects the ray congruence with an arbitrary 
surface F: 

x (u, v), y (u, v), z (u, v). 
 

A ray s of the congruence is then determined when its point of intersection P0 with F and 
its direction cosines X, Y, Z are known as functions of u, v.  If one denotes: 
 

 2
uX∑ = E,      ∑ Xu Xv = F,      2

vX∑ = G, 

(3) 

 ∑ Xu xu = e, ∑ Xu xv = f, ∑ Xv xu = f′, ∑ Xv xv = g 
 
(these quantities might be called Kummer’s “fundamental quantities”) then the two 
formulas: 

 ∑ dX 2 = E du2 + 2F du dv + G dv2, 
(4) 

 ∑ dx dX = e du2 + (f + f′ ) du dv + g dv2 
 
will play a role here that is analogous to the two quadratic differential forms of the theory 
of surfaces: The first one represents the line element as the spherical image of the 
congruence.  The topics that Kummer  then treated were: The shortest distance to the 
neighboring rays, limit point (11), principal planes, Hamilton’s equation, focal points, 
focal planes, midpoints, focal surfaces, normal systems.  The density of the ray system at 
a point P of a ray is defined thus: One lays a plane through P that is perpendicular to s 
and draws a small closed curve around P in it whose area is f.  By means of the spherical 
map of the system, it will then correspond to a curve on the unit sphere with an area of ϕ .  
The density is then: 

                                                
 (9) J. f. Math, 57 (1860).  
 (10) One finds a concise presentation of Kummer’s theory in Bianchi, Vorl. über Differentialgeom. 
(transl. Lukat), chap. X. 
 (11) The definition of this and a concept that follows from it will be given in no. 5.  
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lim 
f

ϕ
. 

 
The concept of the angle of rotation between neighboring rays s and s1 is peculiar to 
Kummer : If one drops two perpendiculars from two points A, B of s1 onto s then the 
angle between them is called the angle of rotation of the segment AB relative to s.  The 
examination of the angle of rotation culminates in the following elegant theorem: If one 
draws the normals to neighboring points of a surface and gives then the lengths at which 
their angles of rotation will be a right angle then they will be equal to the radii of 
curvature of the normal sections of the surface that is determined by the two neighboring 
points. 
 Kummer ’s theory was represented by Gorton (12) with the use of the theory of 
quaternions and completed by Hensel (13), who freed the two differential forms of mixed 
terms simultaneously.  An arbitrary surface F whose properties do not depend upon the 
congruence at all is introduced in that theory.  One can avoid that when one gives the 
rectangular, homogeneous line coordinates of the rays of the system as functions of two 
independent parameters: 
(5)      qi = qi (u, v)    (i = 1, …, 6). 
Zindler  has pursued that path (14). 
 Ever since Plücker’s Neue Geometrie des Raumes gegründet auf die Betrachtung der 
geraden Linie als Raumelement (1868-69), the work that was done on line geometry piled 
up so much that the details of its chronology would be inconvenient for the further 
discussion. 
 
 
 3.  Directions in line space.  If one determines a line by any four mutually-
independent coordinates u1, …, u4 then the increments du1, …, du4 (whose ratios alone 
are relevant) will determine a direction that starts from one of those lines.  Naturally, the 
concept of direction carries over to the case of the superfluous coordinates that are 
ordinarily employed in line geometry, as Klein  (15) did, who also defined the angle 
between two direction by analogy to the cosine formula in point space (16).  A ray, 
together with a neighboring ray, determines a Chasles correlation (no. 1).  The theory of 
directions is then closely related to the theory of correlations of a line and was treated by 
Koenigs (17) in that way.  If two correlations are involutory then one says that the 
corresponding directions in line space are perpendicular to each other.  In fact, e.g., the 
following analogy exists: All directions that start from a line of the complex and are 
contained in the complex are in involution with a direction that is not contained in the 
complex itself (18) (analogue of the surface normal in point space).  The analogue of the 
triply-orthogonal system of surfaces in point space also exists in line space and is called a 

                                                
 (12) Am. J. of Math. X.  
 (13) J. f. Math. 102 (1888).  
 (14) Liniengeom., v. II, sect. II (1906).  
 (15) “Über Liniengeometrie u. metr. Geom.,” Math. Ann. V, § 3.  
 (16) Loc. cit., pp. 271, note. 
 (17) Thèse, Part I (1882). 
 (18) Klein , loc. cit., pp. 272.  
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system of complexes in involution (19).  Koenigs (20) has also given a “multiply-
orthogonal decomposition,” but not generally in a real manner. 
 Two ruled surfaces determine the same correlation on a common ray when they have 
the same distribution parameter, central point, and central plane there.  They then also 
contact along an entire generator, and that is the geometric content of the concept of a 
direction.  For that reason, the quantities: 

z, α, P 
 
that were introduced in no. 1 can prove to be the most geometrically-intuitive direction 
coordinates in the neighborhood of a well-defined ray, and as such, will be useful for the 
examination of the restrictions that the directions that are contained in a complex or a 
congruence are subjected to.  Namely, analogously to the way that ∞2 directions emanate 
from a point in space, but only ∞1 from a point of a surface, ∞3 directions will emanate 
from a point of unrestricted line space, but only ∞2 from a point of a complex, and ∞1 
from a point of a congruence.  Therefore, two relations must exist between the three 
direction coordinates z, α, P for the directions that are contained in a congruence (no. 5), 
but only one for the directions of a complex (no. 14). 
 Among the directions, one can distinguish the intersecting ones, whose representative 
neighboring rays cut the starting ray s, or − speaking more precisely – whose ruled 
surfaces have a cuspidal generator at s or whose correlations are singular or whose 
distribution parameter P vanishes.  The analytical way of characterizing this is the 
vanishing of a quadratic differential form in the duν (

21).  If one then interprets the duν as 
homogeneous coordinates of a three-dimensional point space then any direction in the 
neighborhood of a certain ray will be mapped to a point and intersecting directions will 
get mapped to a second-order surface F.   In that way, the “linear pencils of directions,” 
which get mapped to sequences of points on a line, will play a special role (22), and two 
orthogonal directions will be mapped to points that are conjugate relative to F (23). 
 
 
 4.  Ruled surfaces.  The differential geometry of ruled surfaces has mostly been 
developed using the methods of the theory of surfaces.  That does not belong to the scope 
of this report, and we shall remark only that Antomari  (24) wrote a comprehensive 
monograph on ruled surfaces. 
 We have only to enumerate the results that were obtained by line-geometric methods: 
A 5−n-dimensional linear region in a linear complex that contains a ruled surface is 
determined by n neighboring generators (n = 2, …, 5) of that ruled surface.  If one passes 
to the limit by letting the generators converge to one e then one will obtain all linear 
complexes that contact the ruled surface to order n – 1 at e.  One finds its analytical 

                                                
 (19) Ibidem.  
 (20) Thèse, pp. 74.  
 (21) Koenigs, Thèse, pp. 18. 
 (22) Ibid., pp. 23, et seq.  It makes no essential difference that Koenigs dually mapped a direction to a 
plane.  
 (23) Ibidem.  
 (24) Thèse, Paris, 1894, at Nony. 



Zindler – The development and present state of line geometry. 7 

representation in Koeinigs (25).  The common rays of all these complexes define the 
osculating ruled family for n = 3.  The limiting positions of the transversals of four 
neighboring generators are called osculating rays (26). 
 One finds the condition for the developability of a ruled surface, which is given by 
three equations in line coordinates, in Koenigs (27), in which he also examined the order 
to which the moment of two lines would vanish when one of them g belongs to a ruled 
surface, while the other one is conjugate to g in a linear complex that contacts the ruled 
surface at a neighboring generator to g to some well-defined order.  Koenigs developed 
the moment of two neighboring generators of a ruled surface as a power series in the 
parameter (28).  From a more detailed discussion of the construction of this formula, one 
can infer (29) that the distance between two neighboring generators will always vanish to 
odd order when one takes the element of arc length of the spherical image as an 
independent variable.  Klein  (30) published the condition of developability for a ruled 
surface whose line coordinates are given as functions of a parameter. 
 Voss (31) has investigated skew surface of orders two to four by line-geometric 
methods, as well as in regard to their differential geometry, and likewise the principal 
tangents to ruled surfaces (32). 
 
 
 5.  The neighborhood of a ray in a congruence.  Analogous to the way that all 
curves that start from a point on a surface in point space have only ∞1 directions there, all 
ruled surfaces that start from a ray in a congruence have only ∞1 directions, as well.  As 
was mentioned already in no. 3, two relations must then exist between the three direction 
coordinates z, α, P.  One of them is Hamilton’s equation (1), which gives z as a function 
of α.  The other one, which gives P as a function of α, first appeared in Mannheim (33), 
although Cesàro (34) referred to both equations (6) as Hamilton’s formulas (35).  For a 
suitable choice of starting element of the direction coordinates, the aforementioned 
relations can be written thus (36): 
 

z = c sin 2α, P = P0 + c cos 2α, 

                                                
 (25) Géom. reglées, chap. IV. 
 (26) Voss, Math. Ann. VIII and Koenigs, Thèse, pp. 97, et seq.  
 (27) Thèse, pp. 30, 
 (28) Géom. reglées, pp. 63 (1895).  This book is a reprinting of treatises that were published in the Ann. 
de la Fac. Toulouse 3, 6, 7 (1889-93). 
 (29) Zindler , Liniengeom., Bd. II, § 3, 4.  The fact that the distance will vanish to at least third order 
when it vanishes to higher than first order is a theorem that has been known for some time, and which 
Koenigs (Géom. reglées, pp. 63) attributed to Bouquet. 
 (30) Math. Ann. V, pp. 293.  
 (31) Loc. cit., pp. 26.  
 (32) Math. Ann., Bd. 12.  
 (33) Liouv. J. (2) 17 (1872), pp. 126 or Géom. Ciném., pp. 284 (1894). 
 (34) Natürl. Geom. (transl. Kowalewski), § 211.  
 (35) Admittedly, one finds a formula for P (which is dp / ds, in the reference) as a function of an 
independent parameter t in Kummer , J. f. Math., Bd. 57, pp. 200.  However, t no longer has the direct 
meaning of an azimuth for the ray in question, and for that reason, the formula admits no simple geometric 
interpretation, so it will not be discussed any further, either. 
 (36) Cesàro, loc. cit., § 212.  
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in which P0 and c are constants, or also (after rotating the starting plane through 45o): 
 
 z = 1

2 (A – B) sin 2α, 

(6) 
 P = A sin2α + B cos2α, 
 
in which A and B are constant.  If one eliminates α then one will obtain (37): 
 
(7) (P – A) (P – B) + z2 = 0. 
 
 It follows from equations (6) that: The central points of all ruled surfaces that start 
from a regular ray s of a congruence fill up a finite segment of length A – B on s, in which 
A and B are the extreme values that the distribution parameter can assume.  The endpoints 
of that limiting segment are called limit points.  Two values of α and two values of z 
belong to P = 0.  They determine the cuspidal planes and the cuspidal points of the ruled 
surfaces of the congruence that have a cuspidal generator at s.  The cuspidal points are 
called focal points of the ray s and the cuspidal planes are called focal planes.  The 
midpoint of the segment between the focal points, which is called the focal segment, also 
bisects the limiting segment and is called the midpoint of the ray.  The extreme positions 
of the central points that belong to two mutually-perpendicular planes as central planes (α 
= ± π / 4) are called the principal planes.  All of these concepts were presented by the 
authors that were named in nos. 1 and 2.  The planes α = 0, π / 2 might be called 
curvature planes.  The central planes, in fact, attain P for them, so the curvature at the 
central point of the associated ruled surface also attains an extreme (38).  In fact, the 
determination of the invariants A and B from the representation (5) and the general 
position of the ray relative to the coordinate system is completely analogous to the 
calculation of the principal radius of curvature at a point of a surface (39).  The curvature 
planes are the bisecting planes, just as the wedge (Keil) of the focal planes is also the 
wedge of the principal planes.  The plane that is perpendicular to the midpoint on s is 
called the middle plane, the planes that are perpendicular to s at the limit points are called 
limit planes.  If ϕ is the angle between the focal planes then the focal segment will have 
the length (A – B) sin ϕ. 
 If one seeks all rays in the neighborhood of a ray that define the same angle with s 
then one will obtain a “ruled surface of constant inclination,” and if one seeks all of them 
that have the same distance from s then one will obtain a “ruled surface of constant 
distance.”  The former has order four (40), while the latter has order eight (41). 
 For A = B, P will be constant, and the limiting points will coincide; such a ray is 
called isotropic.  For A = − B, the limit points will coincide with the focal points, and the 
focal plane with coincide with the principal planes, as well as being perpendicular to each 

                                                
 (37)  Cesàro, Natürl. Geom. § 211.  One will also find this equation in geometric form in Mannheim, 
Géom. cinema., pp. 281, Theorem 8′. 
 (38) The value of this curvature is, in fact, − 1 / P2;  cf., e.g., Zindler , Liniengeom., Bd. II, § 3. 
 (39) Ibidem, § 22. 
 (40) Hensel, J. f. Math., Bd. 102.  
 (41) Zindler , Liniengeom., Bd. II, § 23. 
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other; such a ray is called a normal ray.  The midpoints, the limit points, the principal 
planes, and the curvature planes are always real.  One calls the ray hyperbolic, elliptic, or 
parabolic according to whether the focal points and focal planes are real, not real, or 
coincide, respectively.  The first case will occur when A and B have unequal signs, the 
second, when they have equal signs, and the third, when A or B is zero.  The elliptic rays 
split into two groups depending upon the signs of A and B, namely, the “right-wound” 
and “left-wound” neighborhoods. 
 There are singular rays, for which the foregoing theorems are not true.  They have 
still been studied only a little, but one can find a discussion of “p-fold” rays, from which 
2p intersecting directions will emanate, in Koenigs (42) and Weiler (43).  A simple case of 
special rays are the cylindrical ones (44), for which the limit points are at infinity. 
 
 
 6.  The surfaces that are linked with a congruence.  The geometric locus of the 
midpoints of all rays of a congruence is called the middle surface of the congruence, the 
locus of focal points is called the focal surface, and the locus of limit points is the limit 
surface; the envelope of the middle planes is called the middle envelope, and that of the 
limit planes is called the limit envelope.  The focal surface consists of two sheets, which 
can define the same surface analytically, and similarly for the limit surface and the limit 
envelop.  The middle surface, limit surface, and focal surface were defined by Kummer  
(45), and the middle envelope, by Ribacour (46). 
 
 a) The limit surfaces.  The first limit surface of a ray system that was actually found 
and investigated is that of the axis congruence of order three and class two of a linear 
two-dimensional manifold of linear complexes.  It is, at the same time, the congruence of 
shortest distances between any two rays of a second-order ruled family.  Waelsch (47) has 
found that the focal surface of that congruence is identical with the limit surface, 
although it is not a normal congruence, since a limit point of any ray will, at the same 
time, be a focal point of another ray.  The surface is of order six and class four, and was 
also investigated further by Joly (48) and especially by Study (49) (the latter appealed to 
the use of elliptic functions). 
 The limit surfaces of a ray net (the definition of that word is in no. 7) are of order ten 
(50) and reduce to order six in special cases, namely, in the case of nets of revolution, 
rectangular nets, and parabolic ones.  A model of the last case appears in the publication 
of Schilling. 

                                                
 (42) Thèse, pp. 50, et seq.  
 (43) Zeit. f. Math. u. Phys., Bd. 31.  
 (44) Zindler , Liniengeom., Bd. II, § 34.  
 (45) J. f. Math., Bd. 57, pp. 203.  
 (46) “Étude des Élassoïdes ou surf. à courbure moyenne null,” Mém. cour. et des sav. étr. Acad. Belg. 44 
(1882),  § 2.  The author employed the method of “perimorphism” that is employed in Darboux’s method 
of moving trihedra, as well as the methods of “natural geometry” that were employed by later authors, 
namely, Cesàro. 
 (47) Wiener. Sitz. 95 (1887) or Nova acta der Leop. Acad. Halle 52 (1888).  
 (48) Trans. of the Irish Acad. 30 (1895).  
 (49) Geom. d. Dynamen, pp. 479, et seq.  
 (50) Zindler , Liniengeom., Bd. II, § 26. 
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 b) The focal surfaces.  One or both sheets of the focal surface can reduce to curves.  
That case was investigated by Sturm and classified in terms of the general theory (51).  If 
one overlooks that case then one will have the following: One can arrange their rays in 
the neighborhood of a congruence in which the focal points are real into a family of ∞1 
developable surfaces in two ways.  The ridge lines (Gratlinien) of each family fill up 
each sheet of the focal surface, and both sheets will contact each ray of the congruence at 
the two focal points.  Each focal plane contacts the one sheet at a focal point and is the 
osculating plane to the ridge line that lies in the other sheet at the other focal point.  The 
focal surface is then also the envelope of the focal planes.  On each sheet, the ridge lines 
of the one family of developable surfaces will be conjugate to the curves at which the 
developables of the other family contact that sheet (52).  Voss (53) represented the focal 
surface in symbolic form for a congruence that is given as the intersection of two 
complexes.  Far-reaching investigations have been made of the singularities in the focal 
surfaces, although more along an enumerative-algebraic direction (54). 
 Waelsch has determined the inflection tangents of the focal surface (55).  If Q1, Q2 are 
the focal points of a ray s, E1, E2, the associated focal planes, etc., such that E1 is the 
osculating plane of the ridge line that contacts s at Q1 then E1 will contact the focal 
surface at Q2, and E2 will contact it at Q1.  Now, Waelsch (loc. cit.) referred to the lines 
of the pencils (Q1, E1) and (Q2, E2) as central rays of s and showed that when one moves 
Q1 on the focal surface, the central rays of all neighboring points will lie in a linear 
complex, namely, the auxiliary complex of the point Q1 .  The other focal point Q2 also 
has an auxiliary complex.  These two complexes (like any two linear complexes with the 
same two singular rays of the pencil) determine a double ratio δ that is also called the 
“double ratio of the ray s.”  For the normal congruences of Weingarten surfaces, one has 

                                                
 (51) Mitteil. der Hamburger math. Ges. 2 (1890) or Liniengeom., Bd. II, pp. 12, et seq..  Cf., also Weiler 
in (43).  
 (52) Most of this is in Kummer , J. f. Math., Bd. 57, pp. 205, et seq.  
 (53) Gött. Nachricht, 1873.  
 (54) Math. Ann., Bd. 9.  
 (55) “Zur Infinitesimalgeom. der Strahlenkongruenzen,” Wiener Sitz. 109, II (1891).  This treatise was 
based upon the following representation of congruence: Let: 
 

∑ ak xk = (ax) = 0 
 

be the equation of a line, where x, as the Kleinian coordinates, will satisfy the relation (xx) = 0, and 
analogously for the a.  If the a depend upon two parameters u, v then a ray congruence will be defined, and 
if one denotes: 

∑ ak xk = a (u, v, x) 
then one will have the equation: 
 

0 = a + b du + c dv + 1
2 (e du2 + 2f du dv + g dv2) + … 

 
in the neighborhood of a ray a.  In this, b, …, g are derivatives of a with respect to u, v, and thus linear in 
the x.  Therefore, b = 0, …, g = 0, … will be the equations of linear complexes.  The differential-geometric 
properties in the neighborhood of a, and especially the projectively-invariant properties, will be expressed 
systematically by them. 
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δ = 1, and for second-order surfaces, one has δ = 9.  If d is the length of the limit segment 
and r1, r2, 1r ′ , 2r ′  are the radii of curvature of the two sheets of the focal surface then (56): 

 

δ = 1 2 1 2
4

r r r r

d

′ ′
. 

 
Demoulin has found a relation between δ, the angle between the focal planes, and the 
torsions of the two ridge lines (57). 
 
 c) The remaining surfaces have not been investigated very much for general 
congruences (cf., also no. 10, a).  According to Waelsch (58) and Study (59), the middle 
surface of the axis congruence that was mentioned under a) is a (fourth-order) Steiner 
surface, and at the same time, the basepoint surface relative to the midpoints of the entire 
figure.  The middle envelopes of the hyperbolic and elliptic ray nets are equilateral, 
hyperbolic paraboloids (60). 
 
 
 7.  The contacting ray net.  The intersection of two linear complexes is a ray system 
of order and class one, and (according to Sturm) is briefly called a ray net.  The regular 
ray nets also consist of the totality of lines of intersection of two rays – namely, the focal 
lines – and are called hyperbolic, elliptic, or parabolic according to whether the focal 
lines are real and distinct (i.e., skew), complex-conjugate (of the second kind), or 
coincident, respectively.  Among the hyperbolic nets, the “rectangular” ones, whose focal 
lines cross at right angles, are distinguished, while among the elliptic ones, one has the 
nets of revolution, whose focal lines meet the infinitely-distant spherical circle.  The 
elliptic nets have two real, isotropic rays (in analogy with the focal points of an ellipse) 
(61).  The singular ray nets are the rays of a bundle or a field. 
 The ray nets (or “nets) are the simplest ray congruences, and one can aspire to 
represent the neighborhood of an arbitrary congruence approximately in such a way that 
one replaces it with a suitable-chosen ray net (62) (which is the analog of the contact plane 
in surface theory).  To that end, we define: Two ray congruences contact each other at a 
common ray s when they have in common all directions in line space that start at s and 
are contained in them.  One then addresses the problem of exhibiting the contacting net 
for a ray s of a congruence.  Ordinarily, one formulates that problem less precisely as: 
Suppose that one is given two lines that are intersected by all rays of the congruence in a 
neighborhood of s.  Such lines are called focal lines (63) of the neighborhood of s, or, 
more briefly, of the ray s itself.  Monge and Sturm already found (no. 1) a pair of focal 

                                                
 (56) Loc. cit., pp. 203.  
 (57) Comptes R. 130 (1900), 1701.  
 (58) Wiener Sitz. 95, II (1887).  
 (59) Geom. d. Dynamen, pp. 475.  
 (60) Sturm, Liniengeom. I, pp. 167.  
 (61) Zindler , Liniengeom., Bd. II, § 24.  
 (62) Klein , Math. Ann. V, pp. 289.  
 (63) The term “focal lines” was also employed for the ridge lines of developables [Bianchi, Ann. di. Mat. 
(2) XV]. 
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lines for normal systems, which they assumed to be perpendicular to s.  Kummer (64) 
investigated cross sections of the surrounding infinitely-thin bundle of rays for general 
rays systems and found that they reduced to straight lines at the focal points.  Since he 
considered only cross sections of the bundle, he also obtained only focal lines b1, b2 that 
were perpendicular to s, and some of the authors that followed him were of the opinion 
that this would be an essential property of any useful focal lines.  However, one can, in 
fact, consider any line of the pencils (s, b1) and (s, b1) to be as good as a focal line, as 
Klein  (65), Weingarten (66), and Matthiessen (67) made clear.  One can express this 
precisely as: One can choose any ray in the pencils (Q1, E2) and (Q2, E1) arbitrarily, 
except for s.  Both of those rays, as focal lines, determine a ray net that contacts the 
congruence, and one will get all contacting nets in that way, so there will be ∞2 of them 
then (68).  Those two pencils are then called focal pencils (69); their rays are nothing but 
focal lines.  The contacting net whose focal lines are perpendicular to s might be called 
the principal net of the ray s.  For the investigation of the neighborhood of s, it is most 
convenient if it is not distinguished among the contacting nets, as long as one is dealing 
with “first-order properties” (70).  The principal net of an isotropic ray s is a net of 
revolution.  Thus, the rays in the neighborhood of s can be arranged approximately into 
coaxial hyperboloids of rotation. 
 For the principal net, the ray s considered is, at the same time, the principal ray 
(which cuts the focal lines perpendicularly).  Since the line at infinity belongs to the 
location in the principal net that is perpendicular to s, any two planes of that location will 
cut the net into affine fields.  Möbius (71) derived the most essential results of Kummer  
by starting with that.  He was followed by Frischauf (72) and Zech (73), who pursued the 
constructive aspect of the theory, and later, by Bobek (74).  Since two affine fields are 
determined by three pairs of corresponding points, in order to determine an “infinitely-
thin ray bundle” (Zech, loc. cit.), it suffices to give two neighboring rays, in addition to 
the starting ray; i.e., the entire manifold of directions of a congruence is determined by 
two directions, which should be self-explanatory from the analytical conception of a 
direction.  Mannheim has also given a constructive theory of infinitely-thin ray bundles 
(75). 
 If one goes on to the higher-order properties then one can find distinguished 
contacting nets, or, what amounts to the same thing, distinguished focal lines.  The 
tangents to the focal surfaces that are conjugate to s are such lines.  If one lays 
intersecting planes through them then the cross section of the bundle will vanish to order 

                                                
 (64) Loc. cit., pp. 222.  
 (65) Math. Ann. V, pp. 289.  
 (66) J. f. Math., Bd. 98.  
 (67) Schlömilch’s Zeit. f. Math., Bd. 29, Suppl. and Acta math. IV.  
 (68) Klein , loc. cit.  
 (69) Waelsch, Wiener Sitz., Bd. 100, II  
 (70) With Koenigs, we might say “nth-order properties” to mean ones that depend upon the derivatives up 
to order n, inclusive, of the coordinates with respect to the independent variables. 
 (71) “Geom. Entwicklung der Eigenschaften unendlich dünner Strahlenbündel,” Ber. d. sächs Ges. 14 
(1862), or Ges. Werke, IV. 
 (72)  Schlömilch’s Zeit. f. Math., Bd. 16. 
 (73) Ibidem, Bd. 17.  
 (74) Wiener Sitz. 83, II (1881).  
 (75) Géom. ciném., pp. 279, et seq. 
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three (76).  The two auxiliary complexes (no. 6, b) have a ray net in common whose focal 
lines are distinguished “principal lines” (77).  We mention some results of Koenigs (78): If 
one considers all ruled surfaces in a congruence that have a well-defined direction and go 
through a ray s then their osculating ruled families for s will fill up a ray net – viz., the 
osculating net of the direction in question.  The osculating nets of all directions of s 
define a quadratic complex.  Any linear complex that contains a contacting ray net of a 
congruence is called a contacting linear complex.  If one chooses a line g of the 
congruence, a neighboring line s, and a linear complex C that contacts s then the moment 
of g relative to its conjugates in C will vanish to order four, in general. 
 
 
 8.  Applications to geometrical optics.  Some of the studies that were mentioned 
already in no. 7 (viz., Mathiessen, Ahrendt ) were of interest to optics.  If a refracting 
surface and an infinitely-thin ray bundle are given then the important problem for optics 
is to find the refracted bundle.  One can call this problem “the Sturm problem,” for the 
sake of brevity, although Sturm (no. 1) considered only the normal bundle.  It was solved 
by C. Neumann (79) in such a form that the incident bundle is given by the principal ray 
and the two focal lines that are normal to it, and one seeks the analogous elements in the 
refracted bundle.  A geometric solution goes back to Mannheim (80).  The case of the 
sphere as the refracting surface was examined thoroughly by Reusch (81), Lippich  (82), 
Neumann (83). 
 We have already mentioned the Malus-Dupin theorem in no. 1.  In more recent 
times, Ribacour (84), Jamet (85), Gorton (86), and Bianchi (87) have given proofs of it.  
Demoulin has extended it to the case of infinitely-many refracting surfaces (88); i.e., to 
continuously-curved light paths.  Levi-Civita  has shown (89): The property of being a 
normal system is the only property that is invariant under refraction.  Two congruences 
that are either both normal or both not normal are always derivable from each other by a 
finite number of refractions.  One refraction will suffice for normal congruences, while 
two will suffice for the other ones, in general; in the latter case, two ruled surfaces of 
congruences can be associated with each other arbitrarily, ray-wise. 
 
 

                                                
 (76) Ahrendt , Schlömilch’s Zeit., Bd. 36.  
 (77) Waelsch, Wiener Sitz., Bd. 100, II, pps. 164 and 169.  
 (78) Thèse, pp. 100, et seq.  
 (79) Ber. d. sächs. Ges., Bd. 32, 1880.  
 (80) Atti della Acc. dei Lincei, 1885-86 or Géom. ciném., pp. 550, et seq. 
 (81) Pogg. Ann. d. Phys. u. Chemie 130 (1867). 
 (82) Wiener Denkschr. 38 (1877).  
 (83)  Cf., footnote 79. 
 (84) J. de Math. (4) 7, pp. 103.  
 (85) Ann. d. la fac. de sc. Marseille, 1900.  
 (86) Am. J. of Math., XIII.  
 (87) Vorl. üb. Differentialgeom., § 143.  Cf., also Bruns, “Das Eikonal,” Abh. d. sächs. Ges. XXI (1895). 
 (88) Comptes R., t. 129.  
 (89) Atti della Acc. dei Lincei (5) 9 (1900).  
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 9.  The ruled surfaces in a congruence.  The contact planes of four ruled surfaces of 
a congruence through the same ray have the same double ratio for all points of the ray 
(90). 
 
 a) If one always seeks the directions in a congruence for which P = 0 then one will 
obtain the developable of the congruence (cf., no. 6, b).  Klein  (91) has exhibited its 
differential equation for the case in which the congruence is given as the intersection of 
two complexes. 
 
 b) If one always seeks the directions in a congruence for which z is an extreme then 
one will get the principal surfaces (92).  They are then the surfaces whose central point is 
always a limit point; i.e., whose line of striction lies in the limit surface (93). 
 
 c) If one always seeks the directions in which P is an extreme then one will obtain 
ruled surfaces that might be called curvature surfaces, since they are analogous to the 
lines of curvature in the theory of surfaces.  They are, at the same time, the ones whose 
lines of striction lie in the middle surface, and were first introduced, as such (“rigate 
medie”), and almost simultaneously, by Burgatti  (94) and Cifarelli  (95). 
 One finds the differential equation of all three kinds of surfaces for the parametric 
representation (5) of congruence in Zindler  (96). 
 
 d) The contacting principal nets depend upon two constants (apart from their 
positions in space), one of which determines merely the form of the net (for hyperbolic 
nets, it is the angle between the focal lines), while the other one determines the 
magnitude (for hyperbolic nets, it is the distance between the focal lines).  One can then 
distinguish between ruled surfaces of constant neighboring magnitude and constant 
neighboring form in a congruence (97).  The former are, at the same time, the ones for 
which the congruence has the same density at all of its central points (98). 
 
 e) One understands the moment of two lines to mean the product of their shortest 
distance and the sine of their angle.  If the line coordinates of a line are given as functions 
of a parameter t – say, the arc length of the spherical image – then one can express the 
moment M of two neighboring lines of the ruled surface as functions of t and ∆t.  It 
vanishes to order two.  If one then defines: 
 

                                                
 (90) The analogous theorem for general congruences of curves is in Darboux, Th. des surf. II, pp. 3.  
 (91) Math. Ann. V, pp. 292.  
 (92) Deviating from customary usage, Ribacour understood “surfaces principales” to mean developables 
[in the paper that was cited in (46)].  
 (93) For example, Bianchi, Vorl. über Differentialgeoem., § 139.  
 (94) Atti della Acc. dei Lincei (5) 8 (1899).  
 (95) Ann. di. Mat. (3) 2 (1899).  
 (96) Liniengeom., Bd. II, §§ 27, 28.  
 (97) Zindler , loc. cit., § 31.  
 (98) The surfaces of equal density that Kummer  introduced (loc. cit., pp. 214) consist of all points in 
space at which the ray system has equal density.  Thus, the line of striction of any ruled surface of constant 
neighboring magnitude will lie on a surface of equal density.  
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J = M∫ ⋅⋅⋅⋅ dt 

 
for two rays of the ruled surface then one will obtain a finite value, in general.  If two 
rays of a congruence are given then one can pose the problem of linking them with the 
ruled surface of the congruence for which J has a minimum.  Following Koenigs (99), in 
analogy to what one does in the theory of surfaces, one calls any ruled surface in the 
congruence for which the first variation of J vanishes a geodetic ruled surface. 
 That concept can be extended analogously to complexes and all of line space; e.g., the 
usual screw surfaces are geodetic ruled surfaces in line space (100). 
 
 f) The ruled surfaces of a linear congruence and their principal tangent curves were 
examined by Pittarelli  (101). 
 
 
 10.  Special congruences. 
 
 a) Isotropic congruences.  A congruence that consists of nothing but isotropic rays 
(no. 5) is called isotropic.  For such a congruence, both sheets of the limit surface 
coincide with the middle surface, in which the lines of striction of all it its ruled surfaces 
also lie (102).  The principal surfaces and the curvature surfaces will be undetermined.  
The focal surfaces go through the spherical circle at infinity.  The middle envelope of an 
isotropic congruence is a minimal surface (103).  Conversely, ∞3 isotropic congruences 
belong to a minimal surface (104).  If one knows an orthogonal, isometric curve net on a 
sphere then one derive an isotropic congruence from it by a simple construction (105).  
Such a thing is determined already by one of its ruled surfaces (106).  There are also 
isotropic congruences of revolution and screw congruences (107). 
 
 b) Normal congruences.  A congruence that consists of nothing but normal rays (no. 
5) is called a normal congruence, since it is the normal system of ∞1 (parallel) surfaces F.  
It focal surface (which coincides with the limit surface) is the central surface or evolute 
surface (viz., the locus of both principal curvature midpoints) of each surface F (108).  The 
ridge lines of the developables are geodetic lines on the focal surface, since it follows 
immediately from no. 6 that their osculating planes are perpendicular to the focal surface 
(109).  Monge already treated (110) the problem of finding a normal congruence on one 

                                                
 (99) Thèse, pp. 86, et seq. 
 (100) Ibidem, pp. 89. 
 (101) Rend. dell’ Acc. dei Lincei (5) 3 (1894).  
 (102) Ribacour in the paper that was cited in (46).  
 (103) Loc. cit., § 26 [also Cosserat, Mém. de l’Ac. Toulouse (9) 4 (1892)].  
 (104) Ribacour, loc. cit., § 34.  
 (105) Loc. cit., § 27.  
 (106) Loc. cit.,  § 35.  In this paper, one finds numerous theorems about the connection between isotropic 
congruences and minimal surfaces; cf., also his treatise in J. de Math. (4) 7 (1891). 
 (107) Zindler , Liniengeom., Bd. II, § 29. 
 (108) Kummer , loc. cit., § 9. 
 (109) Monge already knew this theorem from Kummer  (loc. cit., pp. 229).  The converse goes back to 
Beltrami  (“Ricerche di Anal. applic.,” Giorn. di Mat., v. 2 and 3).  
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sheet of the focal surface when one is given the other sheet, and considered the special 
case in which the given sheet is a developable surface.  Saussure (111) and Study (112) 
investigated the normal congruences of developable surfaces.  The middle envelope of a 
normal congruence is also called the evolute middle surface of any orthogonal surfaces F 
that belongs to the congruence. 
 Normal congruences, as well as general congruences, were examined many times in 
connection with and using the methods of the theory of surface, especially in connection 
with the problem of the bending of surfaces.  That exceeds the scope of this report; let it 
only be remarked in regard to that subject that one finds a dense overview of all the 
essentials of the aforementioned theory in Bianchi’s Vorlesungen über 
Differentialgeometrie (113). 
 
 c) Parabolic congruences.  There are congruences whose rays are all parabolic (no. 
5), so both sheets of their focal surfaces will coincide (114).  They are called “special” or 
parabolic and consist of one system of principal tangents to the focal surface (115).  The 

limit segment is 1 / K−  if K is the curvature of the focal surface (116).  Fano has 

investigated the third-order parabolic congruences (117). 
 
 d) Bianchi (118) examined the congruences for which the limit segment, as well as 
the focal segment, are constant (the former = a) and found that the focal surfaces have 
constant curvature – 1 / a2.  For that reason, he called them pseudo-spherical congruences 
and determined the ones that are contained in a linear complex. 
 
 e) Ribacour (119) called a triply-orthogonal system for which the trajectories of the 
one family of surfaces are circles a cyclic system.  A congruence that is defined by the 
axes of such circles of called cyclic.  Bianchi (120), Cosserat (121), and Tzitzeica (122) 
studied those congruences. 
 
 f) Guichard concerned himself with congruences whose middle surfaces were 
planes (123) and with ones whose developables cut out conjugate curves from the middle 
surface, as well as the middle envelopes.  If these two surfaces coincide in one surface 

                                                                                                                                            
 (110) In the version of it for which the one sheet is the central surface of a given surface [Journ. de l’Éc. 
polyt., 6 (cah. 13) (1806)]; he arrived at a first-order partial differential equation. 
 (111) Am. J. of Math., v. 18.  
 (112) Geom. d. Dynamen., pp. 306.  
 (113) Chap. IX-XIII.  
 (114) Kummer , loc. cit., § 8, conclusion.  
 (115) Klein , Math. Ann. V, pp. 290.  A degenerate case of these congruences in is Zindler , loc. cit., prob. 
36.  
 (116) Bianchi, Vorl. über Differentialgeom., pp. 267.  
 (117) Atti della Acc. Torino, 37.  
 (118) Ann. di Mat (2) 15 (1887).  
 (119) J. de Math. (4) 7, pp. 229.  
 (120) Ann. di. Mat. (2) 18, 19, also Vorl. über Differentialgeom., chap. XIII. 
 (121) Ann. de la fac. de sc. Toulouse, VII.  
 (122) Ann. de l’Éc. norm. (3) 16 (1899). 
 (123) Comptes R., 114, pp. 729.  
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then it will be a minimal surface, and the congruences will consist of its normals (124).  
He also studied the congruences whose developables determined lines of curvature on the 
focal surfaces (125).  Thybaut (126) and Bianchi (127) investigated congruences whose 
focal surfaces were minimal surfaces. 
 
 
 11.  Congruences that are linked with one or more surfaces. 
 
 a) The axis of a cylinder of rotation that goes through the indicatrix of a point on a 
surface is called the optical axis of that point.  The optical axes of all points of a surface 
define a congruence that was exhibited by Cosserat (128).  If it is a normal congruence 
then the given surface will have constant curvature. 
 
 b) Let the rays of a congruence be associated with the points of a surface in a one-to-
one way, and let every ray have a fixed position in regard to the contact plane to the point 
that is associated with it.  A bending of the surface will correspond to such a congruence, 
and one can ask when a normal congruence goes to another such congruence in that way 
(129).  That will happen, above all, when any ray goes through the point that corresponds 
to it (130) (Beltrami ’s theorem) or lies in the contact plane (Ribacour’s theorem).  In 
addition, it is possible only when the surface can be developed into a surface of rotation 
whose line element can be brought into a certain form.  When a fixed line is chosen in the 
contact plane to any point of the surface, Bianchi answered the question (131): “When can 
the congruence remain the normal congruence of a minimal surface or a surface of 
constant curvature under the bending of the surface? 
 
 c) ∞2 ray congruences are given by any surface in such a way that a ray shall go 
through every point of the surface that defines the same angles with the axes of the 
distinguished trihedron everywhere (132).  If one directs one’s attention to a particular 
point of the surface then any line through it will determined one such congruence of rays.  
The limit points of these various congruences on the rays of the bundle define a fourth-
order surface, while the focal points define one of order three. 
 
 d) If one couples each point of a surface with the pole of its contact plane relative to 
a second-order surface then one will obtain the ray system of projective normals (133); 
one calls its focal surface the “projective central surface.” 
                                                
 (124) Ibidem, 112 (1891) pp. 1424; also Petot, ibidem, 113, pp. 841. 
 (125) Ann. de l’Éc. norm. (3), 6.  
 (126) Ann. de l’Éc. norm. (3) 14, and also Thèse, 1897. 
 (127) Ann. di Mat. (3) 10 (1904).  
 (128) Ann. de la fac. de sc. Toulouse 8 (1894). 
 (129) Dall’Aqua , Atti de Ist. Ven. 60 (1901).  
 (130) See also Cifarelli , Giorn. di Mat. 36.  
 (131) Rend. dell’ Acc. dei Lincei (5) 91; cf., also Pseborski, Samml. der Mitt. der math. Ges. in Charkow 
(2) 7 (1902). 
 (132) Lilienthal , Math. Ann., Bd. 31, in which the tangents to the congruences that are defined by lines 
of curvature were examined in particular.  Zeeman treated the question of when a congruence, thus-
defined, is a normal congruence [Nieuw Arch. voor wiskunde (2), 4] 
 (133) Voss, Abh. d. Münchner Akad. 16 (1887).  



Zindler – The development and present state of line geometry. 18 

 e) A congruence can be given as the tangent congruence to a surface.  Zeeman (134) 
and Waelsch took that starting point, which determines the second focal point of the ray, 
in particular, and considers the Liouville surfaces to be starting surfaces (135). 
 
 f) If two surfaces are related to each other (in single-valued or multi-valued way) 
then a congruence will be defined by the connecting lines of corresponding points, and 
Voss (136) investigated its focal surfaces. 
 
 g) Wilczynski considered the congruence of all osculating ruled families of a ruled 
surface (137). 
 
 
 12.  The equations of Cesàro and others.  It is known that three relations exist 
between the six fundamental quantities of order one and two in the theory of surfaces, 
which are ordinarily referred to as the Codazzi equations.  Analogously, four relations 
exist between Kummer ’s fundamental quantities that appear in the differential forms (4) 
in no. 2, or the equivalent constructs in other representations, which were first derived by 
Cesàro (138), and then later by Fibbi  (139), Cifarelli  (140), and Burgatti  (141).  The last one 
showed that a single congruence will belong to given fundamental quantities when these 
relations are fulfilled (up to its position in space); the direction cosines of its rays will be 
found by Riccati equations. 
 One can pose the problems of finding a congruence from the given spherical images 
of: 
 α)  The developable surfaces, 
 β) The principal surfaces, 
 γ) The curvature surfaces. 
 
 The first problem was treated by Guichard (142) and Cosserat (143), the second, by 
Bianchi (144), the third by Burgatti  (145) and all three by Eisenhardt (146).  The problem 
of finding all surfaces on which the developables of a given congruence cut out a 

                                                
 (134) Nieuw Archief vor wiskunde (2) 4 (1900).  
 (135) Wiener Sitz. 102, II (1893); cf., also Pell, Am. J. of Math. 20 (1898). 
 (136) Math. Ann., Bd. 30; cf., also Panelli, Mem della Acc. dei Lincei (4) 6 (1890).  
 (137) Trans. of the Amer. Math. Soc. 4.  
 (138) Rend. dell’ Acc. Napoli (2) 8 (1894) or Geom. intrinseca (§ 215 in the German translation); 
moreover, it is included implicitly in the more general equations that Lilienthal  found almost 
simultaneously for the congruences of curves.  (Grundl. einer Krümmungslehre der Kurvenscharen, 
Leipzig, 1986). 
 (139) And two more general ones for congruences in a space of constant curvature, Ann. della Sc. norm. 
di Pisa, VII.  
 (140) Ann. di Mat. (3) 2.  
 (141) Atti della Acc. die Lincei (5) 8.  
 (142) Ann. de l’Éc. norm. (3) 6.  
 (143) Ann. de la fac. de sc. Toulouse, VII.  
 (144) Vorl. über Differentialgeom., § 146.   
 (145) Cf. 133.  
 (146) Trans. of the Am. Math. Soc. 3.  
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conjugate system was solved by Darboux (147), along with the inverse problem and some 
related ones. 
 The theory of ray congruences is more general than the entire theory of surfaces 
(since a special ray system is coupled with any surface, namely, the normal system), but 
on the other hand, it is included in the more general theory of congruences of curves that 
was developed by Darboux (148), Lilienthal  (149), Levi-Civita  (150), Dall’Aqua  (151), and 
Eisenhardt (152) (but admittedly not to the same level of detail as the theory of ray 
congruences). 
 
 
 13.  Types of complex rays.  Singularity surfaces.  For the differential-geometric 
investigation of line complexes, one must employ the following representations: An 
equation between homogenous (tetrahedral or rectangular) Plücker line coordinates: 
 
(8)      F(p1, …, p6) = 0 
with the condition: 

(8a)     
3

3
1

i i
i

p p+
=
∑  = 0, 

or between Klein coordinates: 
(9)      F(x1, …, x6) = 0 
with the condition: 

(9a)     
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2
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i

i

x
=
∑  = 0, 

 
or between any four mutually-independent coordinates: 
 
(10)     f (u1, …, u4) = 0: 
or the “parametric representation”: 
(11)     pλ = pλ (u, v, w)   (λ = 1, …, 6), 
 
in which u, v, w are independent variables, and the functions pλ must satisfy the relation 
(8a) identically.  In (8) and (9), the functions F are assumed to be homogeneous (and 
irreducible; let the degree be n), in (11), the p can be assumed to be tetrahedral 
coordinates for projective properties, while for metric properties, it is preferable to 
assume that they are rectangular, homogeneous, Plücker coordinates.  The representations 
will be more general, as long as one regards them directly as also being transcendental 
line complexes. 
 If a ray p of a complex, with coordinates pi, fulfills the relation: 
 

                                                
 (147) Théorie des surf. II, chap. I; cf., also Cosserat, loc. cit.  
 (148) Théorie des surf. II. 
 (149) Grundlagen einer Krümmungenslehre der Kurvenscharen, Leipzig, 1896. 
 (150) Atti della Ac. dei Lincei (5) VIII.  
 (151) Ann. di Mat. (3) 6.  
 (152) Trans. of the Amer. Math. Soc. 4.  
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(12)     
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1
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ν

+
=
∑ = 0, 

as with (8), or the relation: 

(13)     
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1

Fν
ν =
∑ = 0, 

 
as with (9), then the ray p will be called singular, and otherwise regular.  The complex 
cone of a point P on a complex ray p has a contact plane β along p.  If one moves P to p 
then that plane will rotate around p through a regular ray β, and the pencil of planes β 
will be projective for such a point sequence, so it will define a correlation of p with it 
(153). 
 If s ≡ (si) is a singular ray then one sets (154): 
 

F = qi+3 
 
then the qv can also be regarded as coordinates of a ray q by means of (12).  Depending 
upon whether q is or is not identical with s, s will be called a higher or ordinary singular 
ray, resp.  Among the former, the double rays are the simplest, while among the latter 
case, s and q will intersect at a point S, so they will also determine a plane σ – viz., the 
singular plane that belongs to s – while S is called the singular point that belongs to s.  A 
higher singular ray is a double ray (ray of regression, multiple ray) of all points of the 
complex cone, while an ordinary singular ray is one for only the complex cone of S; 
dually, an ordinary singular ray is a double tangent only for the complex curve of σ.  For 
all planes of the pencil β (with the exception of σ), S will be associated with s as the 
contact point of its complex curves (and an analogous dual statement). 
 The singular rays of a complex define a complex [which is the intersection of (8) and 
(12)] when not all rays are singular (155), namely, the singularity congruence.  The 
surface that is enveloped by singular planes is identical with the locus of singular points 
(156) and is called the singularity surface.  It was represented by Clebsch (157) using 
symbolic methods, and is one sheet of the focal surface of the singular congruence; the 
other sheet is called the accessory surface.  The two points at which an ordinary singular 
ray s contacts the focal surface are separated harmonically from the two points at which 
the complex curve is contacted by the associated plane σ of s as its double tangent (158).  
The singularity surface of a quadratic complex is, in general, a Kummer  surface (of 

                                                
 (153) For quadratic complexes, by Plücker, Neue Geom., art. 228 (1868), and more generally, by Pasch 
(Habilitationsschrift, Giessen, 1870), and for the representation (10), by Koenigs, Thése, art. 29.  
 (154) Pasch, J. f. Math., Bd. 76.  
 (155) This case occurs only when the complex consists of the tangents to a surface or the secants to a 
curve; Cayley (Coll. Papers, vol. IV, nos. 284 and 294 or Quart. J., t. III) and Klein  (Math. Ann. V) have 
given the analytical way of characterizing them.  Koenigs address the fundamental form (expression for the 
moment of two neighboring rays) of singular complexes, Comptes R., t. 100, pp. 847. 
 (156)  For quadratic complexes, by Plücker, Neue Geom., art. 320, and more generally, by Pasch, Habil-
schrift, and J. f. Math., Bd. 76. 
 (157) Gött. Nachr. 1872 and Math. Ann. V.  
 (158) Pasch, J. f. Math., Bd. 76, pp. 164. 
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degree four) with 16 nodes, and it was studied by Plücker (159), Klein  (160), Rohn (161), 
Reye (162).  Weiler (163) gave its many degenerate cases for the 48 types of quadratic 
complexes. 
 
 
 14.  The neighborhood of a ray in a complex.  Contacting linear complexes.  
Since only ∞2 directions emanate from a ray in a complex (no. 3), one relation must exist 
between the three direction coordinates z, α, P.  It was first found by Koenigs (164) and 
can be written: 
(14)     P = z tan α – m   (m = const.) 
 
for a suitable choice of coordinate system.  One can obtain an intuitive picture of the 
distribution of complex rays in the neighborhood of a regular or ordinary singular (m = 0) 
ray from this equation (165).  The neighborhoods of all complex rays for which m has the 
same sign are similar to each other in the same sense that one speaks of for the conformal 
map of similarity into the smallest components.  One finds the calculation of the 
“neighboring magnitude” m in Zindler  (166). 
 Any complex that includes the directions of advance that start from p, as well as the 
given one, is called contacting.  A ray has ∞1 contacting linear complexes that define a 
pencil of complexes (167).  The associated ray net will be parabolic for a regular ray (i.e., 
it has coincident focal lines), while for an ordinary singular ray, all of the contacting 
linear complexes will be singular, and their axes define a pencil of rays (S, σ) (168). 
 Zindler  (169) examined the neighborhood of a regular ray for the representative form 
(11) with the help of an illustrative pencil of conic sections that gives the distribution 
parameter P as the quotient of two ternary, quadratic differential forms in the 
representation.  Any complex of the pencil B is osculating for ∞1 directions of the 

complex; i.e., it contains the osculating hyperboloids of all ruled surfaces of the complex 
that start from such a direction of p (170). 
 
 
 15.  Distinguished directions in a complex.  Among the directions that start from a 
ray in a complex, there are distinguished ones, such as the three mutually-perpendicular 
principal directions, for which the pencil B′ of contacting complexes that correspond to 

                                                
 (159) Neue. Geom., pp. 307, et seq.  
 (160) Math. Ann. II, pp. 213, et seq.; V, pp. 293, et seq.; Gött. Nachr. 1871.  
 (161) Math. Ann., Bd. 15 and 18.  
 (162) J. f. Math., Bd. 97.  
 (163) Math. Ann., Bd. 7; cf., also Segre, Math., Bd. 23.  
 (164) Thése, art. 47.  
 (165) Zindler , Verh. des III intern. Mathematiker-Kongr., 1904 or Liniengeom., Bd. II, § 41. 
 (166) Liniengeom., Bd. II, § 42. 
 (167) Plücker, Neue Geom., art. 300.  
 (168)  Plücker, loc. cit.; Klein, Math. Ann. V, pp. 285, et seq. 
 (169)  Liniengeom., Bd. II, § 48; there is also a method for examining the neighborhood of a double ray 
there in § 57. 
 (170) Koenigs, Thése, art. 91. 
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the neighboring rays of such a direction, have a complex in common with B , namely, 

the principal complex (171).  If one always follows a principal direction then one will 
arrive at a principal surface of the complex.  There are four points on a complex ray p for 
whose complex cone p will be a ray of inflection (172).  By following the corresponding 
inflection directions, one will arrive at some distinguished developable surfaces of the 
complex, namely, the inflection surfaces (173).  Zindler  (174) gave some other 
distinguished directions and linear pencils of directions (no. 3), and among them, one 
finds the pencil of isotropic directions, whose directions lie in the same way that they do 
in the neighborhood of an isotropic ray of the congruence. 
 
 
 16.  Differential equations of a complex.  Distinguished decompositions.  Lie (175) 
called a homogeneous differential equation in x′, y′, z′: 
 
(15)     Ω (x, y, z; x′, y′, z′) = 0, 
 
in which x, y, z are thought of as functions of an independent variable t, and the prime 
means the derivative with respect to t, a Monge equation.  In particular, if Ω is linear in 
x′, y′, z′ then (after multiplying by dt) we will get a total differential equation that is also 
called a Pfaff equation.  If a triple of functions x, y, z satisfies equation (15) then the 
corresponding curve will be called an integral curve of the Monge equation.  It will 
determine an elementary cone for any point of space – i.e., cone of directions of advance 
that are defined by the integral curves that go through that point itself. 
 A Monge equation belongs to any line complex.  Let: 
 

F (p1, …, p6) = 0 
 
be the equation of an algebraic complex in rectangular, homogeneous, Plücker 
coordinates, namely: 
 p1 = x2 – x1, p2 = y2 – y1, p3 = z2 – z1, 
 p4 = y1 x2 – y2 x1, … 
 
The associated Monge equation will then read: 
 
(16)     F (x′, y′, z′, yz′ − zy′, …) = 0. 
 
However, conversely, a complex belongs to a Monge equation only when ∞3 lines occur 
amongst its integral curves.  The condition for that is just the one that the Monge 
equation can be put into the form (16), in which F must be a homogeneous function (176).  

                                                
 (171) Klein , Math. Ann. V, pp. 271; Koenigs, Thèse, art. 92, et seq.  
 (172) Voss, Math. Ann. IX.  
 (173) Koenigs, Thèse, art. 92. 
 (174) Liniengeom., Bd. II, § 48.  
 (175) Geom. d. Berührungstransf., pp. 178.  
 (176)  Lie, loc. cit., pp. 252, et seq. 
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The theory of line complexes also has a close connection with the theory of first-order 
partial differential equations; confer Lie (177) or Jessop (178) on this. 
 Klein  (179) addressed the search for the parabolic congruences of a complex.  The 
question of the normal congruences of a complex was already raised by Malus (in a 
somewhat different form) (180) and once more by Transon (181).  The question of 
isotropic congruences of a complex was treated by Cosserat (182), and led back to the 
question of whether two certain partial differential equations have a common solution.  
For the representation (11), the same problem leads to a total differential equation (183) 
whose integrability likewise resolves the possibility of decomposing the complex into ∞1 
isotropic congruences.  The ray thread contains no isotropic congruence; Picard (184) 
found its normal congruences. 
 
 
 17.  Ruled surfaces and curves in a complex.  A curve whose tangents all belong to 
a complex is called a curve of the complex.  The tangents themselves define a 
developable surface in the complex.  All complex curves with a common line element 
have the contact plane of the complex cone of that element as their common osculating 
plane (185), while all curves of a null system (i.e., ray thread) that go through the same 
point have the same torsion (186).  For complexes of higher degree, Demoulin considered 
complex curves with a common line element (187) and found that a linear relation exists 
between their curvature and torsion at the points of that element. 
 One can require that an integral curve of a Monge equation (16) should have a 
smaller curvature at each of its points then all other integral curves that contain it.  One 
calls such a curve a straightest line of the Monge equation (188).  The problem of finding 
the shortest integral curve between two points for a given Monge equation does not 
always lead to a shortest line; there will then be ∞4 shortest lines, but only ∞3 straightest 
lines.  The difference between them will become clearest in the case of line complexes, 
where the lines are, at the same time, the straightest ones.  Liebmann (189) examined the 
shortest lines of the ray thread.  This example is interesting in the context of the calculus 

                                                
 (177) Loc. cit., sect. II, chap. 7 and sect. III.  
 (178) A Treatise on the Line Complex, Cambridge, 1903, chap. 18.  
 (179) Math. Ann., Bd. V, pp. 290; one will also find Lie’s contribution to that problem in the remarks 
there.  For the parabolic congruences of the ray thread, cf., Lie, Christ. Vidensk. Forh., 1882; Peter, diss. 
Leipzig 1895) (or Archiv for Math. og Naturv. 17) and Lagally, diss. München 1903. 
 (180)  Cf., no. 1. 
 (181) J. de l’Éc. polyt., 22 (1861), cah. 38.  
 (182) Toulouse, Mém. (9) 4 (1892).  
 (183) Zindler , Liniengeom., Bd. II, pp. 303.  
 (184) Thèse, art. 21 (1877).  
 (185) Lie, Christ. Vidensk. Vorh. 1883 or Geom. d. Berührungstransf., pp. 303. 
 (186) Lie, Christ. Vidensk. Vorh. 1883 or Geom. d. Berührungstransf., pp. 231.  Mehmke employed this 
theorem for the investigation of the torsion of third-order space curves (Mitt. d. math.-naturw. Vereins in 
Württemberg, IV, 1891). 
 (187) Comptes R. 124 (May 1897), pp. 1077; the corresponding theorem on pp. 308 of Geom. d. 
Berührungstrans. is incorrect.  
 (188) Voss (Math. Ann., Bd. 23) has developed the differential geometry of the Pfaff equations (viz., the 
“point-plane system”). 
 (189) Math. Ann., 52 (1899).  
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of variations, where it represents the simplest intuitive case in which an auxiliary 
condition appears in the form of a non-integrable total differential equation. 
 Picard (190) investigated the ruled surfaces (together with their principal lines) and 
curves in a ray thread: He found, among other things, that the oscillation points of such a 
curve are at the same time inflection points (191) and determined all of the ruled surfaces 
with algebraic principal tangent points (192) that are contained in a thread.  Steinmetz 
(193) also treated the algebraic curves in a null system.  Lie (194) determined the curves in 
a tetrahedral complex. 
 
 
 18.  Lie’s transformation (195).  If one lets the equation of a line be: 
 

r z = x – ρ, s z = y – σ, 
and that of a sphere be: 

(x – x′)2 + (y – y′)2 + (z – z′)2 = R2 
 

then one can consider r, s, ρ, σ to be the coordinates of a line, and x′, y′, z′, R to be the 
coordinates of the sphere.  When one sets the quantities in the one quadruple equal to any 
functions of the other ones, one will obtain a map of the sphere manifold to the line 
space.  In order to obtain a distinguished map, Lie (196) set: 
 

x′ = ρ + s, i y′ = ρ – s, z′ = σ – r, ± R = σ + r; 
thus: 
 

ρ = 1
2 (x′ + i y′), s = 1

2 (x′ − i y′), σ = 1
2 (z′ ± R),  r = − 1

2 (z′ ∓  R). 

 
Any line corresponds to a sphere, while any sphere corresponds to a line.  The lines of a 
pencil of rays correspond to spheres that contact at a point (197), so a surface element will 
again correspond to another one.  A surface f corresponds to another one F, and the 
principal tangents to f will correspond to those of the corresponding surface element that 
contacts the spheres that have the principal radii of curvature as their radii (viz., the 
“principal spheres”) (198).  A ruled surface corresponds to a spherical envelope (viz., a 
tubular surface), and in particular, a principal tangent curve of f and the associated 
developable surface of such a tubular surface that contacts F along a line of curvature.  
One can then say that the principal tangent curves get mapped to the lines of curvature. 

                                                
 (190) Thèse, 1877; cf., also Voss, Math. Ann., Bd. 12 and Lie, ibid., Bd. 5, pp. 179.  
 (191) Loc. cit., pp. 7.  
 (192) Loc. cit., pp. 30.  
 (193) Am. J. of Math. 14 (1892).  
 (194) Geom. d. Berührungstrans., pp. 326.  
 (195) Cf., also Klein, Vorl. über höhere Geom.; Lie and Scheffers, Geom. d. Berührungstrans., chap. 10; 
Jessop, Line Complex, chap. XIII. 
 (196) Math. Ann. V, pp. 171.  
 (197) Loc. cit., pp. 172.  
 (198) Loc. cit., pp. 177.  
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 This transformation was applied to the investigation of principal tangent curves of the 
Kummer surface (199), and for the investigation of surfaces with spherical lines of 
curvature (200).  It was generalized by Duporcq (201) and Bricard  (202).  One can, in fact, 
associate the lines with second-order surfaces that circumscribe such a fixed surface 
(instead of the spherical circle at infinity).  Lie’s transformation is a contact 
transformation; Goursat (203) found another one for which normal congruences go to 
other ones. 

 
 

___________ 
 

                                                
 (199) Lie, loc. cit., pp. 178; Klein , Gött. Nachr., 1871.  
 (200) Lagally, Diss. München, 1903.  
 (201) Bull. de la Soc. math. de France, t. 27.  
 (202) Nuov. Ann. (4) 5 (1905).  
 (203) Comptes R., t. 129.  


