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1. Older investigations. Certain sections dflalus’s optics {) can be regarded as
the oldest investigation of differential line geomesmnyd line geometry at alf He
expressed the equations of a line as:

m(z - 2)=o((x-X), nz-2)=o(y-y)

in whichm, n, o are arbitrary functions of, y', Z, and thus associated every pdthE
(X, ¥, Z) of space with a ling that went through it, and thus defined a line compleg. H
then sought the neighboring point®fvhose line intersectegland found a second-order
cone of directions. He then restricted himself tedinof the complex that emanated from
the points of a surface:

F(X,y,Z)=0,

and thus, to a general line congruence, and found that suety congruence can be
regarded as the locus of the intersections of two sgstémbevelopable surfaces. He also
found the focal surfaces, determined the two focal planesthe angle between them,
presented the condition for the two families of developalirfaces to intersect
perpendicularly everywhei@r as we now say, for the ray system to be a nosysiem)
and asked which surfacés= 0 one must associate with a given complex in ordethi®
system to be a normal system. He obtained a nonliirstorder partial differential
equation.

One refers to the theorem that a normal systehaibys go to another such system
after arbitrarily many reflections and refractions s#paration surfaces between
homogeneous media as ttleeorem of Malus and DupinMalus himself proved that
theorem only for a single refraction (or reflectiori)ays that started from a point, and
even expressed the opinidod. cit, pp. 103) that the theorem would no longer be true
for several refractions. The error was correcte®byin andCauchy ().

At the same, from his interest in optidsamilton () was led to investigate ray
systems. He represented them analytically by givingditextion cosines of a ray as
functions of the position in space. However, the fioms a, S5, y of X, y, z must be
arranged such that they will not change when one replageth x + pa. They must
then fulfill the differential equations that one ob&a{) when one sets thgin:

agtPoy+yg.=0

() “Optique,” Journ. de I'Ec. polyt., t. VII (cah. 14) 1808; ppid.and 84-129.

() Generally,Monge had previously (1796) investigated the normal system afface in connection
with the theory of surfaces, and in fact remarked thedtild be decomposed intgd developable surfaces
in two different ways (Journ. de I'Ec. polyt., cah. 2). ldoer, it was inMalus that line manifolds
appeared for the first time independently. For the olalgstigations of line geometry, cf., alsie and
Scheffers Geom. d. Beriihrungstrangip. 268t seq.

() For the discovery of the Malus-Dupin theorem, Barboux, Théorie des surf. Jlpp. 280, note.

() “Theory of systems of rays,” Transact. of the fishl Ac. 15 (1828); “First supplement to an essay
on the theory of systems of ray#id. 16 (1830).

(°) Cf., alsoCauchy, Proc. of the Lond. Math. So8.(1877) or Coll. Papers IX, no. 625 and Mess. of
Math. (2)17 (1887) or Coll. Papers Xll, no. 876, and furtherm@ettrand, “Mém. sur la Théorie des
surf.,” J. de Math9 (1844).
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equal toa, B, y in turn. Moreover, one obtains equations from diffitiating> o” = 1
that yield:

B-y=ka, k-a:=kB K-B=ky
in which:

k=2 a(B-K).

Fork = 0, Xa [x will be the complete differential of a functidh That is the case for
normal systems, and = const. will then be the equation for the familyasthogonal
surfaces. Hamilton found the most important results ifalus once more and, in fact,
added the equation that is named for him, which we woulddikkstuss in more detail:

If one considers a fixed rapof a congruence and a variable neighboringstastiong
with the shortest distan@between them and the foltof the latter ors, and one lets
go to s then the limiting position of the plans, @) will be determined by the angle
between it and a fixed starting plane throwgland the limiting position oN will be
determined by the distanefrom a fixed point tos. Now, for a suitable choice of
starting planez anda will be related by:

(1) Z=27 08 a+2sif a (z1, » const.)

for all ruled surfaces of the congruence, and that @niliton’s equation.”Hamilton (°)

has also already compared the various cross sectimmeatnd the same bundle that was
defined by the neighborhood of a ray, and thus came vesg tdKummer’s measure of
density. He already found tloglindroid in the first treatise as the locus of the shortest
distances from a ray to its neighboring rays.

The discovery of the null system and the ray tthdeaGiorgini (1827) andvidbius
(1833), as important as it also is, was not concerndu differential line geometry, so
we shall not discuss it here. By contrast, the ephof the distribution parametBrfor a
ray of a ruled surface is important for differentiabgeetry: Ifs is a neighboring ragy is
the shortest distance between the two, and the angle between them then one will
have:

) P=lim <.

One can thankChaslesfor that concept, as well as the discovery of theratation
between the points of a ray of a ruled surface and aélssbciated contact planék (

Sturm, in his treatise on the theory of visiof) €onsidered an “infinitely-thin ray
bundle”; i.e., the neighborhood of a repf a normal congruence. Such a neighborhood
will be determined completely when one knows the twocjpad curvatures of a normal
surface of the bundle at its point of intersectiorhwiand the orientation of the planes of
the associated principal section throwgviz., its azimuth). Now, if a refracting surface

() Loc. cit, (rem. 4), vol. XVI, pp. 59.

() “Sur les surf. engendrées par une ligne droite, &@ortesp. math. et phys., ed. Quetelet (3) Il
(Tome XI), 1839.

() Comptes R. XX, pp. 554, 761, and 1238 (1845), transl. in Pogg. Afthyd. u. Chemie, Bd. 65
(I, Reihe 5), pp. 116-134 and 374-395.
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is present then the rag/will be refracted into anothes whose neighborhood can be
defined by the three analogous elements, $tadm solved the problem of determining
those elements. In that way, he provedMasge knew already) that the normals to a
surface in the neighborhood of a poiatcould be regarded approximately as the
intersections of two lines — viz., thecal lines— and saidl¢c. cit,, pp. 376) that the focal
lines cut the normal at the poift perpendicularly. However, that is not the only
possible way of looking at things, and that is why seveialimaderstandings will arise
later in regard to this subject (ng.

2. Kummer's theory of ray systems. The papers dflalus andHamilton seem to
have been almost forgotten, sink@mmer, in his treatise “Allgemeine Theorie der
geradlinigen Strahlensystemé”) proved most of the theorems on ray systems thas wer
known at the time in a newer and simpler way and eegithem at some pointS)( Its
starting point was the following: One intersects thg cangruence with an arbitrary
surfacefF:

X (u, v), y (u, V), z(u, v).

A ray s of the congruence is then determined when its pointtefdectiorP, with F and
its direction cosineX, Y, Z are known as functions af v. If one denotes:

Y X2=E, 2 XuX=F, > X’=G,
(3)
2Xex=e ZXx =t ZXx=f, LXx=g

(these quantities might be called Kummer's “fundamenqtantities”) then the two
formulas:

Y dX2=E dif + 2F du dv+ G dV,
(4)
Y dxdX=edf + (f +f') du dv+g dV

will play a role here that is analogous to the twodgatc differential forms of the theory
of surfaces: The first one represents the line elerasnthe spherical image of the
congruence. The topics thEummer then treated were: The shortest distance to the
neighboring rays, limit point'f), principal planes, Hamilton's equation, focal points,
focal planes, midpoints, focal surfaces, normal systeihedensityof the ray system at

a pointP of a ray is defined thus: One lays a plane throRdhat is perpendicular te

and draws a small closed curve aro&hih it whose area i By means of the spherical
map of the system, it will then correspond to a curvéhe unit sphere with an areag@f

The density is then:

() J.f. Math557 (1860).

(*° One finds a concise presentation of Kummer’s théoer@ianchi, Vorl. iiber Differentialgeom.
(transl. Lukat), chap. X.

(Y The definition of this and a concept that follows friawill be given in no5.
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The concept of the angle of rotation between neighfgorayss ands; is peculiar to
Kummer: If one drops two perpendiculars from two poidsB of s; onto s then the
angle between them is called ttwegle of rotation of the segment AB relative toThe
examination of the angle of rotation culminates ia finllowing elegant theorem: If one
draws the normals to neighboring points of a surfacegares then the lengths at which
their angles of rotation will be a right angle theeythwill be equal to the radii of
curvature of the normal sections of the surface thaetermined by the two neighboring
points.

Kummer’s theory was represented Iorton (*3 with the use of the theory of
quaternions and completed Bignsel(**), who freed the two differential forms of mixed
terms simultaneously. An arbitrary surfd€avhose properties do not depend upon the
congruence at all is introduced in that theory. Oneasand that when one gives the
rectangular, homogeneous line coordinates of the ragsedafystem as functions of two
independent parameters:

(5) g=qg (Vv i=1,...,6).
Zindler has pursued that path)(

Ever sincePliicker's Neue Geometrie des Raumes gegriundet auf die Betrachtung der
geraden Linie als RaumelemgtaB68-69), the work that was done on line geometry piled
up so much that the details of its chronology would b@nmenient for the further
discussion.

3. Directions in line space. If one determines a line by any four mutually-
independent coordinates, ..., us then the incrementdu, ..., du, (whose ratios alone
are relevant) will determine a direction that starvsf one of those lines. Naturally, the
concept of direction carries over to the case of shuperfluous coordinates that are
ordinarily employed in line geometry, &dein (*°) did, who also defined the angle
between two direction by analogy to the cosine foamul point space’{). A ray,
together with a neighboring ray, determineSteaaslescorrelation (nol). The theory of
directions is then closely related to the theorgatelations of a line and was treated by
Koenigs (*") in that way. If two correlations are involutory thene says that the
corresponding directions in line space pegpendicularto each other. In fact, e.g., the
following analogy exists: All directions that starbin a line of the complex and are
contained in the complex are in involution with a di@t that is not contained in the
complex itself %) (analogue of the surface normal in point space). afadogue of the
triply-orthogonal system of surfaces in point space aissts in line space and is called a

(3 Am. J. of Math. X.

¥ J. f. Math.102(1888).

() Liniengeom v. I, sect. Il (1906).

(*®) “Uber Liniengeometrie u. metr. Geom.,” Math. Ann.8/3.
(

(

(

%) Loc. cit, pp. 271, note.
17

) These, Part | (1882).
18
)

Klein, loc. cit, pp. 272.
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system of complexes in involutiqlf). Koenigs (*®) has also given a “multiply-
orthogonal decomposition,” but not generally in a reahner.

Two ruled surfaces determine the same correlation on enoamay when they have
the same distribution parameter, central point, andraleplane there. They then also
contact along an entire generator, and that is the ggeicncontent of the concept of a
direction. For that reason, the quantities:

zaP

that were introduced in nd. can prove to be the most geometrically-intuitireection
coordinatesin the neighborhood of a well-defined ray, and as sudhperiuseful for the
examination of the restrictions that the directionat tare contained in a complex or a
congruence are subjected to. Namely, analogously to th¢hato? directions emanate
from a point in space, but ondy* from a point of a surfacee® directions will emanate
from a point of unrestricted line space, but orf/from a point of a complex, and*
from a point of a congruence. Therefore, two relationsst exist between the three
direction coordinateg a, P for the directions that are contained in a congruences,
but only one for the directions of a complex (fhd).

Among the directions, one can distinguishititersectingones, whose representative
neighboring rays cut the starting ray or — speaking more precisely — whose ruled
surfaces have a cuspidal generators @r whose correlations are singular or whose
distribution parameteP vanishes. The analytical way of characterizing tkighe
vanishing of a quadratic differential form in tte, (). If one then interprets thi, as
homogeneous coordinates of a three-dimensional point $paneany direction in the
neighborhood of a certain ray will be mapped to a pantt intersecting directions will
get mapped to a second-order surfgce In that way, the “linear pencils of directions,”
which get mapped to sequences of points on a line, vl alspecial role’), and two
orthogonal directions will be mapped to points that@mjugate relative 6 (-3).

4. Ruled surfaces. The differential geometry of ruled surfaces has mosélen
developed using the methods of the theory of surfaceat dies not belong to the scope
of this report, and we shall remark only thmttomari (**) wrote a comprehensive
monograph on ruled surfaces.

We have only to enumerate the results that wererauatdiy line-geometric methods:
A 5-n-dimensional linear region in a linear complex thahtams a ruled surface is
determined by neighboring generatora € 2, ..., 5) of that ruled surface. If one passes
to the limit by letting the generators converge to erteen one will obtain all linear
complexes that contact the ruled surface to orderl ate. One finds its analytical

(*°) Ibidem.

(*% Thése, pp. 74.

(*) Koenigs Thése, pp. 18.

(*® Ibid., pp. 23,et seq. It makes no essential difference tKatenigs dually mapped a direction to a
plane.

*® Ibidem.

(*") Thése, Paris, 1894, at Nony.
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representation irKoeinigs (). The common rays of all these complexes define the
osculating ruled familyffor n = 3. The limiting positions of the transversals ofirfo
neighboring generators are callestulating ray<~°).

One finds the condition for théevelopabilityof a ruled surface, which is given by
three equations in line coordinatesKioenigs (*'), in which he also examined the order
to which the moment of two lines would vanish when ohthemg belongs to a ruled
surface, while the other one is conjugatgtio a linear complex that contacts the ruled
surface at a neighboring generatogtto some well-defined orderKoenigs developed
the moment of two neighboring generators of a ruled seirésca power series in the
parameter®). From a more detailed discussion of the construatfais formula, one
can infer £%) that the distance between two neighboring generatitiralways vanish to
odd order when one takes the element of arc length ofspherical image as an
independent variableKlein (*% published the condition of developability for a ruled
surface whose line coordinates are given as functioagpafameter.

Voss (*) has investigated skew surface of orders two to four mg-dieometric
methods, as well as in regard to their differentialngeiny, and likewise the principal
tangents to ruled surfaced)(

5. The neighborhood of a ray in a congruence.Analogous to the way that all
curves that start from a point on a surface in pointespage onlyo® directions there, all
ruled surfaces that start from a ray in a congruence dalyeo’ directions, as well. As
was mentioned already in n8.two relations must then exist between the threscton
coordinateg, a, P. One of them is Hamilton’s equation (1), which gizess a function
of a. The other one, which givésas a function ofy, first appeared iMannheim (*3),
althoughCesaro (**) referred to both equations (6) as Hamilton’s formufds (For a
suitable choice of starting element of the directi@mordinates, the aforementioned
relations can be written thu®y

z=csin2a, P=Py+ccos 2,

(*® Géom. regléeschap. IV.

(*®) Voss Math. Ann. VIIl andKoenigs Thése, pp. 9%t seq.

() Thése, pp. 30,

(*®®) Géom. regléesp. 63 (1895). This book is a reprinting of treatises tleae wublished in the Ann.
de la Fac. Toulousg 6, 7 (1889-93).

(*® Zindler, Liniengeom. Bd. II, § 3, 4. The fact that the distance will \&nio at least third order
when it vanishes to higher than first order is a taeothat has been known for some time, and which
Koenigs (Géom. regléepp. 63) attributed tBouquet

(% Math. Ann. V, pp. 293.

(Y Loc. cit, pp. 26.

(* Math. Ann., Bd. 12.

(% Liouv. J. (2)17(1872), pp. 126 oBéom. Cinémpp. 284 (1894).

(% Natiirl. Geom. (transl. Kowalewski), § 211.

(*®) Admittedly, one finds a formula foP (which isdp / ds in the reference) as a function of an
independent parametélin Kummer, J. f. Math., Bd. 57, pp. 200. Howevémo longer has the direct
meaning of an azimuth for the ray in question, and forréegon, the formula admits no simple geometric
interpretation, so it will not be discussed any furtle@gher.

(*®) Cesarq loc. cit, § 212.
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in which Py andc are constants, or also (after rotating the startiagepthrough 43:

z=3(A-Bsin 2,

(6)
P=Asirfa + B co<a,

in whichA andB are constant. If one eliminateghen one will obtain®():
(7) P-AP-B+Z=0.

It follows from equations (6) that: The central poinfsall ruled surfaces that start
from a regular rag of a congruence fill up a finite segment of length Bons, in which
A andB are the extreme values that the distribution paransateassume. The endpoints
of that limiting segmentare calledimit points. Two values ofa and two values ot
belong toP = 0. They determine the cuspidal planes and the cuspidabpdithe ruled
surfaces of the congruence that have a cuspidal genettss. The cuspidal points are
called focal pointsof the rays and the cuspidal planes are calfedal planes. The
midpoint of the segment between the focal points, wisictalled thdocal segmentalso
bisects the limiting segment and is calledriiidpointof the ray. The extreme positions
of the central points that belong to two mutually-perpardr planes as central planes (
=+ 7/ 4) are called therincipal planes. All of these concepts were presented by the
authors that were named in ndsand2. The planesy = 0, 7/ 2 might be called
curvature planes The central planes, in fact, attdnfor them, so the curvature at the
central point of the associated ruled surface alsainattan extreme®)). In fact, the
determination of the invariant& and B from the representation (5) and the general
position of the ray relative to the coordinate systentompletely analogous to the
calculation of the principal radius of curvature at anpof a surface}). The curvature
planes are the bisecting planes, just as the welkig® ©f the focal planes is also the
wedge of the principal planes. The plane that is perpeladito the midpoint oS is
called themiddle planethe planes that are perpendiculas & the limit points are called
limit planes. If ¢ is the angle between the focal planes then thd fsgament will have
the length A — B sin ¢.

If one seeks all rays in the neighborhood of a ray diefihe the same angle with
then one will obtain a “ruled surfacé constant inclinatiofi and if one seeks all of them
that have the same distance frenthen one will obtain a “ruled surfac# constant
distance” The former has order fouf, while the latter has order eigfit)(

For A = B, P will be constant, and the limiting points will coineidsuch a ray is
calledisotropic. ForA = - B, the limit points will coincide with the focal pointand the
focal plane with coincide with the principal planes weell as being perpendicular to each

(") Cesarq Natiirl. Geom. § 211. One will also find this equatiomy@ometric form ifMannheim,
Géom. cinemapp. 281, Theorer@d'.

(¥ The value of this curvature is, in faetl /P% cf., e.g.Zindler, Liniengeom.Bd. II, § 3.

(% Ibidem § 22.

(*% Hensel J. f. Math., Bd. 102.

(* Zindler, Liniengeom.Bd. II, § 23.
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other; such a ray is calledrermal ray The midpoints, the limit points, the principal
planes, and the curvature planes are always real.c&sethe rayhyperbolic elliptic, or
parabolic according to whether the focal points and focal Hasae real, not real, or
coincide, respectively. The first case will occur wideandB have unequal signs, the
second, when they have equal signs, and the third, wiloeB is zero. The elliptic rays
split into two groups depending upon the sign®and B, namely, the “right-wound”
and “left-wound” neighborhoods.

There aresingular rays, for which the foregoing theorems are not truéeyThave
still been studied only a little, but one can find a disiousef “p-fold” rays, from which
2p intersecting directions will emanate,Koenigs (*>) andWeiler (**). A simple case of
special rays are theylindrical ones t%, for which the limit points are at infinity.

6. The surfaces that are linked with a congruence.The geometric locus of the
midpoints of all rays of a congruence is calledrthddle surfaceof the congruence, the
locus of focal points is called tlecal surface and the locus of limit points is thienit
surface;the envelope of the middle planes is calledrtiedle envelopeand that of the
limit planes is called themit envelope. The focal surface consists of two sheets, which
can define the same surface analytically, and simifarlyhe limit surface and the limit
envelop. The middle surface, limit surface, and foudlse were defined bgummer
(*°), and the middle envelope, Bjbacour (*9).

a) The limit surfaces.The first limit surface of a ray system that watually found
and investigated is that of the axis congruence of ordee tand class two of a linear
two-dimensional manifold of linear complexes. It istlt®e same time, the congruence of
shortest distances between any two rays of a secondrateléfamily. Waelsch(*) has
found that the focal surface of that congruence is icnwith the limit surface,
although it is not a normal congruence, since a limittpofrany ray will, at the same
time, be a focal point of another ray. The surfacefiorder six and class four, and was
also investigated further hioly (*®) and especially bgtudy (*°) (the latter appealed to
the use of elliptic functions).

The limit surfaces of a ray net (the definition lo&t word is in no7) are of order ten
(% and reduce to order six in special cases, namely,eircake of nets of revolution,
rectangular nets, and parabolic ones. A model of g8tectse appears in the publication
of Schilling.

(*) Thése, pp. 5@t seq.
(**) Zeit. f. Math. u. Phys., Bd. 31.
(*Y Zindler, Liniengeom.Bd. II, § 34.

(*3 J. f. Math., Bd. 57, pp. 203.

(*°) “Etude des Elassoides ou surf. & courbure moyenne null,”. Kgm. et des sav. étr. Acad. Beld.
(1882), § 2. The author employed the method of “perimorphibat’is employed iarboux’s method
of moving trihedra, as well as the methods of “naturaingry” that were employed by later authors,
namely,Cesara

(*) Wiener. Sitz95(1887) or Nova acta der Leop. Acad. H&2(1888).

(*®) Trans. of the Irish Aca®0 (1895).

(*°) Geom. d. Dynamemp. 479¢t seq.

% Zindler, Liniengeom.Bd. II, § 26.
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b) The focal surfacesOne or both sheets of the focal surface can reducarves.
That case was investigated Burm and classified in terms of the general thedty. (If
one overlooks that case then one will have thevoilg: One can arrange their rays in
the neighborhood of a congruence in which the focal poietsea into a family ofo’
developable surfaces in two ways. The ridge lif@saflinien) of each family fill up
each sheet of the focal surface, and both sheetsamthct each ray of the congruence at
the two focal points. Each focal plane contactsathe sheet at a focal point and is the
osculating plane to the ridge line that lies in the ofieret at the other focal point. The
focal surface is then also the envelope of the folealgs. On each sheet, the ridge lines
of the one family of developable surfaces will be conjugatéhe curves at which the
developables of the other family contact that sh&gt {oss (*°) represented the focall
surface in symbolic form for a congruence that is giventte intersection of two
complexes. Far-reaching investigations have been wiathe singularities in the focal
surfaces, although more along an enumerative-algetiiraiction ¢4).

Waelschhas determined the inflection tangents of the focdhsarf®). If Q;, Q. are
the focal points of a ray, E;, E;, the associated focal planes, etc., such Baas the
osculating plane of the ridge line that contastat Q; then E; will contact the focal
surface af),, andE; will contact it atQ:. Now, Waelsch(loc. cit) referred to the lines
of the pencilsQ1, E;) and Q-, E») ascentral raysof s and showed that when one moves
Q: on the focal surface, the central rays of all neagimg points will lie in a linear
complex, namely, thauxiliary complexof the pointQ; . The other focal poin®, also
has an auxiliary complex. These two complexes @ikg two linear complexes with the
same two singular rays of the pencil) determine a doalbie O that is also called the
“double ratio of the rag.” For the normal congruences of Weingarten surfages has

(‘T? Mitteil. der Hamburger math. Ge&(1890) orLiniengeom.Bd. Il, pp. 12gt seq. Cf., alsoWeiler
in (™).

(*3 Most of this is irkummer, J. f. Math., Bd. 57, pp. 208t seq.

(*® Gétt. Nachricht, 1873.

(% Math. Ann., Bd. 9.

(*® “Zur Infinitesimalgeom. der Strahlenkongruenzen,” WieS#z. 109, 11 (1891). This treatise was
based upon the following representation of congruence: Let:

Tax=@)=0

be the equation of a line, wheke as the Kleinian coordinates, will satisfy the tiela (xx) = 0, and
analogously for tha. If thea depend upon two parametexs/ then a ray congruence will be defined, and
if one denotes:

Za=aVv,x)
then one will have the equation:

0=a+b du+cdv+ (e df + 2 du dv+g dv) + ...

in the neighborhood of a ray In this,b, ..., g are derivatives ad with respect ta, v, and thus linear in
thex. Thereforep=0, ...,g=0, ... will be the equations of linear complexes. Thiedihtial-geometric
properties in the neighborhood afand especially the projectively-invariant propertigsl be expressed
systematically by them.
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0= 1, and for second-order surfaces, onedma®. Ifdis the length of the limit segment
andry, ry, 1, 1, are the radii of curvature of the two sheets of thalfearface therr{):

rrrr’
o= 1 (2141 2.
Demoulin has found a relation betweenthe angle between the focal planes, and the
torsions of the two ridge lines?.

c¢) The remaining surfacetiave not been investigated very much for general
congruences (cf., also nd0, a). According towWaelsch (*®) andStudy (°%), the middle
surface of the axis congruence that was mentioned w)dera (fourth-order) Steiner
surface, and at the same time, the basepoint surfiatwedo the midpoints of the entire
figure. The middle envelopes of the hyperbolic and ellipiiz nets are equilateral,
hyperbolic paraboloid<9).

7. The contacting ray net. The intersection of two linear complexes is aggstem
of order and class one, and (accordingtorm) is briefly called aay net. The regular
ray nets also consist of the totality of lines oénsection of two rays — namely, tfezal
lines — and are called hyperbolic, elliptic, or parabolicaading to whether the focal
lines are real and distinct (i.e., skew), complex-agaje (of the second kind), or
coincident, respectively. Among the hyperbolic nets, thetangular’ ones, whose focal
lines cross at right angles, are distinguished, whilernthe elliptic ones, one has the
nets of revolutionwhose focal lines meet the infinitely-distant sptedricircle. The
elliptic nets have two real, isotropic rays (in analegth the focal points of an ellipse)
(®Y. The singular ray nets are the rays of a bundiefaid.

The ray nets (or “nets) are the simplest ray congre® and one can aspire to
represent the neighborhood of an arbitrary congruencexapmtely in such a way that
one replaces it with a suitable-chosen ray Pfet\{hich is the analog of the contact plane
in surface theory). To that end, we define: Two ray assiggcescontacteach other at a
common rays when they have in common all directions in line spacedtaat ats and
are contained in them. One then addresses the problexhibitiag the contacting net
for a rays of a congruence. Ordinarily, one formulates thablemm less precisely as:
Suppose that one is given two lines that are interségtadl rays of the congruence in a
neighborhood o6. Such lines are callefbcal lines(®) of the neighborhood o, or,
more briefly, of the rag itself. Monge andSturm already found (nol) a pair of focal

(5
()
9 Wiener Sitz95, I (1887).
)

Loc. cit, pp. 203.
Comptes R130(1900), 1701.

(* Sturm, Liniengeom. Ipp. 167.
(*Y Zindler, Liniengeom., Bd. JI§ 24.
(*3 Klein, Math. Ann. V, pp. 289.

(*® The term “focal lines” was also employed for thagg lines of developableBignchi, Ann. di. Mat.

(2) XV].

9
7

(52 Geom. d. Dynamempp. 475.
1
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lines for normal systems, which they assumed to be paipéar tos. Kummer (°%

investigated cross sections of the surrounding infiniteily-bundle of rays for general
rays systems and found that they reduced to straigds &t the focal points. Since he
considered only cross sections of the bundle, headitained only focal lineb;, b, that
were perpendicular ts, and some of the authors that followed him were efdpinion
that this would be an essential property of any useftalflines. However, one can, in
fact, consider any line of the pencils Ip;) and €, b;) to be as good as a focal line, as
Klein (®®), Weingarten (°®), and Matthiessen (°) made clear. One can express this
precisely as: One can choose any ray in the pemilsE;) and Q-, Ei) arbitrarily,
except fors. Both of those rays, as focal lines, determine angtythat contacts the
congruence, and one will get all contacting nets ihwy, so there will beo? of them
then €%. Those two pencils are then calledal pencils(®®); their rays are nothing but
focal lines. The contacting net whose focal lines @@rpendicular te might be called
the principal netof the rays. For the investigation of the neighborhoodsoit is most
convenient if it is not distinguished among the contaatietg, as long as one is dealing
with “first-order properties” ). The principal net of an isotropic rayis a net of
revolution. Thus, the rays in the neighborhood o&in be arranged approximately into
coaxial hyperboloids of rotation.

For the principal net, the ray considered is, at the same time, the principal ray
(which cuts the focal lines perpendicularly). Since lihe at infinity belongs to the
location in the principal net that is perpendiculas,tany two planes of that location will
cut the net into affine fieldsMébius (") derived the most essential resultKofmmer
by starting with that. He was followed Byischauf (") andZech ("), who pursued the
constructive aspect of the theory, and laterBopek ("%). Since two affine fields are
determined by three pairs of corresponding points, in daleletermine an “infinitely-
thin ray bundle” Zech, loc. cit), it suffices to give two neighboring rays, in addition
the starting ray; i.e., the entire manifold of dirent of a congruence is determined by
two directions, which should be self-explanatory frtime analytical conception of a
d7i%ection. Mannheim has also given a constructive theory of infinitely-trag bundles
).

If one goes on to the higher-order properties then ome ficel distinguished
contacting nets, or, what amounts to the same thingnglsshed focal lines. The
tangents to the focal surfaces that are conjugate &we such lines. If one lays
intersecting planes through them then the crossoseafithe bundle will vanish to order

(% Loc. cit, pp. 222.

(*® Math. Ann. V, pp. 289.

(*® J. f. Math., Bd. 98.

(") Schilémilch’s Zeit. f. Math., Bd. 29, Suppl. and Acta méh.

(*® Klein, loc. cit.

(*%) Waelsch Wiener Sitz., Bd. 100, II

(" With Koenigs we might sayti"-order properties” to mean ones that depend upon the desivap
to ordern, inclusive, of the coordinates with respect to the independgiables.

(") “Geom. Entwicklung der Eigenschaften unendlich diinner Bmafindel,” Ber. d. sachs Gek4
(1862), or Ges. Werke, V.

("> Schlémilch’s Zeit. f. Math., Bd. 16.

(”®) Ibidem Bd. 17.

(") Wiener Sitz83, Il (1881).

("®) Géom. cinémpp. 279¢t seq.
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three (°). The two auxiliary complexes (n6, b) have a ray net in common whose focal
lines are distinguished “principal lines™. We mention some results Kbenigs (®): If
one considers all ruled surfaces in a congruence thateharedl-defined direction and go
through a rays then their osculating ruled families fewill fill up a ray net — viz., the
osculating netof the direction in question. The osculating nets Ibfimections ofs
define a quadratic complex. Any linear complex that dosta contacting ray net of a
congruence is called eontacting linear complex. If one chooses a ling of the
congruence, a neighboring liseand a linear comple& that contacts then the moment
of g relative to its conjugates @ will vanish to order four, in general.

8. Applications to geometrical optics. Some of the studies that were mentioned
already in no.7 (viz., Mathiessen Ahrendt) were of interest to optics. If a refracting
surface and an infinitely-thin ray bundle are given thenitfiportant problem for optics
is to find the refracted bundle. One can call this gobfthe Sturm problem,” for the
sake of brevity, althoug&turm (no.1) considered only the normal bundle. It was solved
by C. Neumann("®) in such a form that the incident bundle is given by thecjpal ray
and the two focal lines that are normal to it, and eeeks the analogous elements in the
refracted bundle. A geometric solution goes backl&mnheim (¢%. The case of the
sphere as the refracting surface was examined thoroughRetsgch (3Y), Lippich (%9,
Neumann (*3).

We have already mentioned tMalus-Dupin theorem in nol. In more recent
times, Ribacour (*%), Jamet (%), Gorton (*%), andBianchi (") have given proofs of it.
Demoulin has extended it to the case of infinitely-many wfrey surfaces®}); i.e., to
continuously-curved light pathsLevi-Civita has shown®}): The property of being a
normal system is the only property that is invariant umdéaction. Two congruences
that are either both normal or both not normal anegd derivable from each other by a
finite number of refractions. One refraction will sodf for normal congruences, while
two will suffice for the other ones, in general; iretlatter case, two ruled surfaces of
congruences can be associated with each other arlgjtrasitwise.

(") Waelsch Wiener Sitz., Bd. 100, II, pps. 164 and 169.
(78
("®) Ber. d. séchs. Ges., Bd. 32, 1880.
(% Atti della Acc. dei Lincei, 1885-86 @é&om. cinémpp. 550et seq.
b)
)

("®) Ahrendt, Schlémilch’s Zeit., Bd. 36.
)
)

Thése, pp. 10&t seq.

(Y Pogg. Ann. d. Phys. u. Chendi80(1867).

(®) Wiener Denkschi38 (1877).

(% cf., footnote 79.

(% J. de Math. (47, pp. 103.

(% Ann. d. la fac. de sc. Marseille, 1900.

% Am. J. of Math., XIlI.

(") Vorl. tib. Differentialgeom.§ 143. Cf., als@runs, “Das Eikonal,” Abh. d. séchs. Ges. XXI| (1895).
(®® Comptes R., t. 129.

(®% Atti della Acc. dei Lincei (59 (1900).
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9. The ruled surfaces in a congruenceThe contact planes of four ruled surfaces of
a congruence through the same ray have the same doubléoradill points of the ray

).

a) If one always seeks the directions in a congrueoc&hichP = 0 then one will
obtain thedevelopableof the congruence (cf., n®, b). Klein (**) has exhibited its
differential equation for the case in which the congruesagven as the intersection of
two complexes.

b) If one always seeks the directions in a congrudmcevhichz is an extreme then
one will get theprincipal surfaceg®). They are then the surfaces whose central point is
always a limit point; i.e., whose line of strictided in the limit surface™).

c) If one always seeks the directions in whiglis an extreme then one will obtain
ruled surfaces that might be calledrvature surfacessince they are analogous to the
lines of curvature in the theory of surfaces. They aréhe same time, the ones whose
lines of striction lie in the middle surface, and weirst fintroduced, as such (“rigate
medie”), and almost simultaneously, Byrgatti (**) andCifarelli (*°).

One finds the differential equation of all three kimafssurfaces for the parametric
representation (5) of congruencezindler (*9).

d) The contacting principal nets depend upon two const@part from their
positions in space), one of which determines merelydha bf the net (for hyperbolic
nets, it is the angle between the focal lines), while other one determines the
magnitude (for hyperbolic nets, it is the distance betwihe focal lines). One can then
distinguish between ruled surfaces ainstant neighboring magnitudend constant
neighboring formin a congruence®(). The former are, at the same time, the ones for
which the congruence has the same density at all céitsal points ).

€) One understands thmoment of two lineso mean the product of their shortest
distance and the sine of their angle. If the line coatds of a line are given as functions
of a parametet — say, the arc length of the spherical image — thencaneexpress the
momentM of two neighboring lines of the ruled surface as fumsgioft andAt. It
vanishes to order two. If one then defines:

(* The analogous theorem for general congruences of asriveBarboux, Th. des surf. [Ipp. 3.

(Y Math. Ann. V, pp. 292.

(*) Deviating from customary usagRibacour understood “surfaces principales” to mean developables
[in the paper that was cited iff)].

(*® For exampleBianchi, Vorl. iber Differentialgeoem§ 139.

(*%) Atti della Acc. dei Lincei (58 (1899).

(*® Ann. di. Mat. (3)2 (1899).

(*®) Liniengeom.Bd. Il, §§ 27, 28.

(") Zindler, loc. cit, § 31.

(*® The surfaces of equal density th@immer introduced lpc. cit, pp. 214) consist of all points in
space at which the ray system has equal density. Tfeikne of striction of any ruled surface of constant
neighboring magnitude will lie on a surface of equal density
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J= [ M ot

for two rays of the ruled surface then one will obtaifinite value, in general. If two
rays of a congruence are given then one can pose themprof linking them with the
ruled surface of the congruence for whithas a minimum. Followingoenigs (*%), in
analogy to what one does in the theory of surfaces,aatis any ruled surface in the
congruence for which the first variation b¥anishes g@eodetic ruled surface

That concept can be extended analogously to compleglesllant line space; e.qg., the
usual screw surfaces are geodetic ruled surfaces in line &%

f) The ruled surfaces of a linear congruence and theiripaintangent curves were
examined bypittarelli (*°%.

10. Special congruences.

a) Isotropic congruencesA congruence that consists of nothing but isotropis ray
(no. 5) is calledisotropic  For such a congruence, both sheets of the limitaserf
coincide with the middle surface, in which the linestotson of all it its ruled surfaces
also lie ¢°). The principal surfaces and the curvature surfacesbeilindetermined.
The focal surfaces go through the spherical circle atitmf The middle envelope of an
isotropic congruence is a minimal surfac®®)( Converselye® isotropic congruences
belong to a minimal surfaceé®). If one knows an orthogonal, isometric curve oeta
sphere then one derive an isotropic congruence from it &iynple construction'{?).
Such a thing is determined already by one of its ruled ®sfd®). There are also
isotropic congruences of revolution and screw congruefnt@s (

b) Normal congruencesA congruence that consists of nothing but normal (ags
5) is called anormal congruengesince it is the normal systemet (parallel) surfaces.
It focal surface (which coincides with the limit suddas the central surface or evolute
surface (viz., the locus of both principal curvature midgiaf each surfacé (:°%). The
ridge lines of the developables are geodetic lines on e Swrface, since it follows
immediately from no6 that their osculating planes are perpendicular tdat& surface
(*%9. Monge already treated"{) the problem of finding a normal congruence on one

(% Thése, pp. 86t seq.
(*°) Ibidem pp. 89.
(*°) Rend. dell' Acc. dei Lincei (53 (1894).
(*°) Ribacour in the paper that was cited {tf)(
(**) Loc. cit, § 26 [alsdCosserat Mém. de I'’Ac. Toulouse (% (1892)].
(*°) Ribacour, loc. cit, § 34.
(*° Loc. cit, § 27.
(*° Loc. cit, § 35. In this paper, one finds numerous theoremst &he connection between isotropic
congruences and minimal surfaces; cf., also his sesatiJ. de Math. (4) (1891).
(*°) Zindler, Liniengeom.Bd. II, § 29.
(*°® Kummer, loc. cit, § 9.
(*%) Monge already knew this theorem frokummer (loc. cit, pp. 229). The converse goes back to
Beltrami (“Ricerche di Anal. applic.,” Giorn. di Mat., v. 2 agjl
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sheet of the focal surface when one is given the aifveet, and considered the special
case in which the given sheet is a developable surf8eeissure(*'?) and Study (**3
investigated the normal congruences of developable surfades middle envelope of a
normal congruence is also called thelute middle surfacef any orthogonal surfacés
that belongs to the congruence.

Normal congruences, as well as general congruences,exangned many times in
connection with and using the methods of the theomsudiace, especially in connection
with the problem of the bending of surfaces. That ede¢lee scope of this report; let it
only be remarked in regard to that subject that one finderse overview of all the
essentials of the aforementioned theory iBianchi's Vorlesungen Uber
Differentialgeometrig**3).

¢) Parabolic congruencesThere are congruences whose rays are all parabolic (
5), so both sheets of their focal surfaces will coin¢idd. They are called “special” or
parabolic and consist of one system of principal tangents tdatel surface . The

limit segment is 1 /,/-K if K is the curvature of the focal surface®. Fano has
investigated the third-order parabolic congruent&s (

d) Bianchi (**¥ examined the congruences for which the limit segnasyell as
the focal segment, are constant (the formex) and found that the focal surfaces have
constant curvature — laf. For that reason, he called thpseudo-sphericatongruences
and determined the ones that are contained in a lioagplex.

e) Ribacour (**) called a triply-orthogonal system for which the ecapries of the
one family of surfaces are circlecyclic system. A congruence that is defined by the
axes of such circles of calleyclic. Bianchi (**%, Cosserat(*?}), and Tzitzeica (**)
studied those congruences.

f) Guichard concerned himself with congruences whose middle surfacee
planes ¥?% and with ones whose developables cut out conjugate cunmstfie middle
surface, as well as the middle envelopes. If thesestwifaces coincide ione surface

(9 In the version of it for which the one sheettis tentral surface of a given surface [Journ. de I'Ec.
polyt., 6 (cah. 13) (1806)]; he arrived at a first-order partial d#ffitial equation.
**) Am. J. of Math., v. 18.
(**) Geom. d. Dynamerpp. 306.
(**% Chap. IX-XIII.
(*** Kummer, loc. cit, § 8, conclusion.
(**9 Klein, Math. Ann. V, pp. 290. A degenerate case of these congsignisZindler, loc. cit, prob.
36.
(**9 Bianchi, Vorl. iiber Differentialgeompp. 267.
(**) Atti della Acc. Torino, 37.
% Ann. di Mat (2)15 (1887).
(**9 J. de Math. (47, pp. 229.
(9 Ann. di. Mat. (2)18, 19, alsoVorl. {iber Differentialgeomchap. XII.
(**) Ann. de la fac. de sc. Toulouse, VII.
(**) Ann. de I'Ec. norm. (316 (1899).
(**> Comptes R.114 pp. 729.
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then it will be a minimal surface, and the congrueneiisconsist of its normals*¢%).

He also studied the congruences whose developables determegsedflcurvature on the
focal surfaces'@®). Thybaut (** and Bianchi (**%) investigated congruences whose
focal surfaces were minimal surfaces.

11. Congruences that are linked with one or more surfaces.

a) The axis of a cylinder of rotation that goes throuwh indicatrix of a point on a
surface is called theptical axisof that point. The optical axes of all points cdlaface
define a congruence that was exhibited@msserat(*?%. If it is a normal congruence
then the given surface will have constant curvature.

b) Let the rays of a congruence be associated with tinéspaf a surface in a one-to-
one way, and let every ray have a fixed position in regatide contact plane to the point
that is associated with it. A bending of the surfadecarrespond to such a congruence,
and one can ask when a normal congruence goes to asatiecongruence in that way
(**%. That will happen, above all, when any ray goestuifincthe point that corresponds
to it (**% (Beltrami’s theorem) or lies in the contact plarRifacour's theorem). In
addition, it is possible only when the surface can beldped into a surface of rotation
whose line element can be brought into a certain foWhen a fixed line is chosen in the
contact plane to any point of the surfaB&nchi answered the questiol*}): “When can
the congruence remain the normal congruence of a mirsordhce or a surface of
constant curvature under the bending of the surface?

c) ? ray congruences are given by any surface in such a waw ttay shall go
through every point of the surface that defines the sangdes with the axes of the
distinguished trihedron everywher®4. If one directs one’s attention to a particular
point of the surface then any line through it will detiewed one such congruence of rays.
The limit points of these various congruences on the odyhe bundle define a fourth-
order surface, while the focal points define one of otfitere.

d) If one couples each point of a surface with the pbless@ontact plane relative to
a second-order surface then one will obtain the ragesy ofprojective normalg**¥;
one calls its focal surface the “projective centrafece.”

124 |bidem 112(1891) pp. 1424; als®etot, ibidem 113 pp. 841.
125 Ann. de I'Ec. norm. (3.
126 Ann. de I'Ec. norm. (314, and also Thése, 1897.
12 Ann. di Mat. (3)10 (1904).
128 Ann. de la fac. de sc. Toulou8¢1894).
129 Dall’Aqua, Atti de Ist. Ven60 (1901).
130 See alscifarelli, Giorn. di Mat.36.
13 Rend. dell’ Acc. dei Lincei (31; cf., alsoPseborski Samml. der Mitt. der math. Ges. in Charkow
7 (1902).
133 Lilienthal , Math. Ann., Bd. 31, in which the tangents to the congre®ithat are defined by lines
of curvature were examined in particulaZeeman treated the question of when a congruence, thus-
defined, is a normal congruence [Nieuw Arch. voor wisleufi},4]
(**¥ Voss Abh. d. Miinchner Akadl6 (1887).

2
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e) A congruence can be given as the tangent congruercsudace.Zeeman (**%
andWaelschtook that starting point, which determines the secondl foeint of the ray,
in particular, and considers the Liouville surfacesaatarting surfaces™®).

f) If two surfaces are related to each other (in singleed or multi-valued way)
then a congruence will be defined by the connecting lines roésmonding points, and
Voss(**9 investigated its focal surfaces.

g) Wilczynski considered the congruence of all osculating ruled fanvolfess ruled
surface 9.

12. The equations of Cesaro and otherslt is known that three relations exist
between the six fundamental quantities of order onetaodn the theory of surfaces,
which are ordinarily referred to as tlkdazzi equations. Analogously, four relations
exist betweetKummer’s fundamental quantities that appear in the differefiahs (4)
in no. 2, or the equivalent constructs in other representatwhsh were first derived by
Cesaro(**®, and then later biibbi (**%, Cifarelli (**), andBurgatti (**). The last one
showed that a single congruence will belong to giveddurental quantities when these
relations are fulfilled (up to its position in spacdje direction cosines of its rays will be
found by Riccati equations.

One can pose the problems of finding a congruence fromitk@ spherical images
of:

@) The developable surfaces,

£ The principal surfaces,

)) The curvature surfaces.

The first problem was treated Buichard (**) and Cosserat(**?), the second, by
Bianchi (**), the third byBurgatti (**) and all three b¥isenhardt (**. The problem
of finding all surfaces on which the developables of amgigengruence cut out a

(*** Nieuw Archief vor wiskunde (23 (1900).

(**3 Wiener Sitz102, 11 (1893); cf., alsd®ell, Am. J. of Math20 (1898).

(** Math. Ann., Bd30; cf., alsoPanelli Mem della Acc. dei Lincei (4 (1890).

(**) Trans. of the Amer. Math. Soé.

(**® Rend. dell Acc. Napoli (28 (1894) orGeom. intrinseca§ 215 in the German translation);
moreover, it is included implicitly in the more generajuations thatLilienthal found almost
simultaneously for the congruences of curvesGrufdl. einer Krimmungslehre der Kurvenscharen
Leipzig, 1986).

(**% And two more general ones for congruences in a sgammetant curvature, Ann. della Sc. norm.
di Pisa, VII.

*9 Ann. di Mat. (3)2.

(**) Atti della Acc. die Lincei (58.

(**) Ann. de I'Ec. norm. (3.

(**3 Ann. de la fac. de sc. Toulouse, VII.

(**% Vorl. Giber Differentialgeom§ 146.

(**9 Cf. 133

(**% Trans. of the Am. Math. So8.
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conjugate system was solved Dgrboux (**9

related ones.

The theory of ray congruences is more general tharemhiee theory of surfaces
(since aspecialray system is coupled with any surface, namely, thenabsystem), but
on the other hand, it is included in the more general thefocgngruences of curves that
was developed bparboux (**9), Lilienthal (**9), Levi-Civita (**°), Dal’Aqua (**%), and
Eisenhardt (**) (but admittedly not to the same level of detailths theory of ray
congruences).

, along with the inverse problem and some

13. Types of complex rays. Singularity surfacesFor the differential-geometric
investigation of line complexes, one must employ théovieng representations: An
equation between homogenous (tetrahedral or rectangliener line coordinates:

(8) F(ps, ...,ps) =0
with the condition:
3
(8a) > pR.s =0,
i=1
or between Klein coordinates:
(9) F(x1, ..., %) =0
with the condition:
6
(9a) Y% =0,

or between any four mutually-independent coordinates:

(20) f(ug, ...,u) =0:
or the “parametric representation”:
(11) p/1 = p/l (U, Vv, W) (A = 1! reey 6)1

in whichu, v, w are independent variables, and the functmnsust satisfy the relation
(8a) identically. In (8) and (9), the functioRsare assumed to be homogeneous (and
irreducible; let the degree be), in (11), thep can be assumed to be tetrahedral
coordinates for projective properties, while for metriogarties, it is preferable to
assume that they are rectangular, homogeneous, Plinckelirates. The representations
will be more general, as long as one regards them lyirastalso being transcendental
line complexes.

If a rayp of a complex, with coordinatey fulfills the relation:

147 Théorie des surf. Jichap. I; cf., als€osserat loc. cit.

(
(**® Théorie des surf. Il

(**9 Grundlagen einer Krimmungenslehre der Kurvenschdreipzig, 1896.
(**9 Atti della Ac. dei Lincei (5) VIII.

**) Ann. di Mat. (3)6.

(**) Trans. of the Amer. Math. Soé.



Zindler — The development and present state of line gggm 20

3

(12) z Fv Fv+3 = 01
v=1

as with (8), or the relation:
6

(13) 2. F'=0,

v=1

as with (9), then the ray will be calledsingular, and otherwis@egular. The complex
cone of a poinP on a complex rap has a contact plangalongp. If one moved to p
then that plane will rotate aroumqthrough a regular rag, and the pencil of plane8
vﬂ)ll be projective for such a point sequence, so it ddfine a correlation gb with it
(

If s=(s) is a singular ray then one set¥)¢
F =0+

then theg, can also be regarded as coordinates of @ tay means of (12). Depending
upon whetheq is or is not identical witls, s will be called ahigheror ordinary singular
ray, resp. Among the former, tid®uble raysare the simplest, while among the latter
case,s andq will intersect at a poing, so they will also determine a plage- viz., the
singular planethat belongs tes — while Sis called thesingular pointthat belongs ts. A
higher singular ray is a double ray (ray of regressioriipiel ray) of all points of the
complex cone, while an ordinary singular ray is onednly the complex cone d3,
dually, an ordinary singular ray is a double tangent onlyhfercomplex curve of. For

all planes of the penc (with the exception ob), S will be associated witls as the
contact point of its complex curves (and an analogoulsstit@ment).

The singular rays of a complex define a complex [wisdhe intersection of (8) and
(12)] when not all rays are singulal”j, namely, thesingularity congruence The
surface that is enveloped by singular planes is identithalthe locus of singular points
(**® and is called theingularity surface. It was represented bglebsch (**") using
symbolic methods, and is one sheet of the focal sudéatlee singular congruence; the
other sheet is called tlaEcessorysurface. The two points at which an ordinary singular
ray s contacts the focal surface are separated harmonfeaitythe two points at which
the complex curve is contacted by the associated mfaries as its double tangent®).
The singularity surface of a quadratic complex is, in ganerKummer surface (of

(**¥ For quadratic complexes, I®iicker, Neue Geomart. 228 (1868), and more generally, Bgsch
(Habilitationsschrift, Giessen, 1870), and for the remrttion (10), bKoenigs Thése, art. 29.

(**% Pasch J. f. Math., Bd. 76.

(**¥ This case occurs only when the complex consisthetangents to a surface or the secants to a
curve; Cayley (Coll. Papers, vol. IV, nos. 284 and 294 or Quart. Jl)tand Klein (Math. Ann. V) have
given the analytical way of characterizing thekoenigsaddress the fundamental form (expression for the
moment of two neighboring rays) of singular complexesnftes R., t. 100, pp. 847.

(**9 For quadratic complexes, Byiicker, Neue Geomart. 320, and more generally, Bgsch Habil-
schrift, and J. f. Math., Bd. 76.

(**") Goétt. Nachr. 1872 and Math. Ann. V.

**® Pasch J. f. Math., Bd. 76, pp. 164.



Zindler — The development and present state of line gggm 21

degree four) with 16 nodes, and it was studiedhigker (**%), Klein (**%, Rohn (**Y),
Reye (**). Weiler (**} gave its many degenerate cases for the 48 types of goadrat
complexes.

14. The neighborhood of a ray in a complex. Contacting linearomplexes.
Since onlyw? directions emanate from a ray in a complex @)pone relation must exist
between the three direction coordinazes, P. It was first found byoenigs (**%) and
can be written:

(14) P=ztana—-m (m=const.)

for a suitable choice of coordinate system. Oneafatain an intuitive picture of the
distribution of complex rays in the neighborhood of a l&gaor ordinary singulami = 0)
ray from this equation'{). The neighborhoods of all complex rays for whicthas the
same sign are similar to each other in the samedbasone speaks of for the conformal
map of similarity into the smallest components. Jdimels the calculation of the
“neighboring magnitudetn in Zindler (*°9).

Any complex that includes the directions of advarmag start fronp, as well as the
given one, is calledontacting A ray haso' contacting linear complexes that define a
pencil of complexes'{’). The associated ray net will be parabolic forgutar ray (i.e.,
it has coincident focal lines), while for an ordinarpgailar ray, all of the contacting
linear complexes will be singular, and their axes defipencil of rays$ o) (*°®).

Zindler (**) examined the neighborhood of a regular ray for theessmtative form
(11) with the help of an illustrative pencil of conic sens that gives the distribution
parameterP as the quotient of two ternary, quadratic differenfiatms in the
representation. Any complex of the pen®fl is osculating foreo! directions of the

complex; i.e., it contains the osculating hyperboloidalbfuled surfaces of the complex
that start from such a direction p{*"9).

15. Distinguished directions in a complex.Among the directions that start from a
ray in a complex, there are distinguished ones, sutheatree mutually-perpendicular
principal directions for which the pencif8’ of contacting complexes that correspond to

15

(**9 Neue. Geompp. 307gt seq.
(**9 Math. Ann. Il, pp. 213et seq. V, pp. 293¢t seq. Gétt. Nachr. 1871.
(**) Math. Ann., Bd. 15 and 18.
(*%) J.f. Math., Bd. 97.
(**® Math. Ann., Bd. 7; cf., alsBegre Math., Bd. 23.
(**%) Thése, art. 47.
(**9 Zindler, Verh. des Ill intern. Mathematiker-Kongr., 1904.atiengeom.Bd. II, § 41.
(16‘;) Liniengeom.Bd. II, § 42.
(**) Pliicker, Neue Geomart. 300.
(**® Pliicker, loc. cit; Klein, Math. Ann. V, pp. 285t seq.
(**9) Liniengeom.Bd. Il, § 48; there is also a method for examining thighborhood of a double ray
there in § 57.
("9 Koenigs Thése, art. 91.
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the neighboring rays of such a direction, have a compleommon with® , namely,

the principal complex(*’Y). If one always follows a principal direction theneowill
arrive at gorincipal surfaceof the complex. There are four points on a compdgpp for
whose complex cong will be a ray of inflection’9. By following the corresponding
inflection directions one will arrive at some distinguished developable sesfauf the
complex, namely, thenflection surfaces(*’®. Zindler (**% gave some other
distinguished directions and linear pencils of directioms. 3), and among them, one
finds the pencil of isotropic directions, whose diredidia in the same way that they do
in the neighborhood of an isotropic ray of the congcee

16. Differential equations of a complex. Distinguishedetompositions. Lie (*9)
called a homogeneous differential equatior jiy’, Z:

(15) QXxy,zX,y,Z)=0,

in which x, y, z are thought of as functions of an independent variglded the prime
means the derivative with respectti@ Monge equation. In particular, ® is linear in
X, Y, Z then (after multiplying bylt) we will get a total differential equation that isals
called aPfaff equation. If a triple of functions, y, z satisfies equation (15) then the
corresponding curve will be called amegral curveof the Monge equation. It will
determine an elementary cone for any point of space,-€ape of directions of advance
that are defined by the integral curves that go througlpthat itself.

A Monge equation belongs to any line complex. Let:

F (pl, ...,pe) =0

be the equation of an algebraic complex in rectangutmogeneous, Plicker
coordinates, namely:

P1 = X2 —Xq, P2=Y2—Y1, P3=2—1,

Pa =Y1 X2 —Y2 Xy,

The associated Monge equation will then read:
(16) FX,Y,Z,yZ -zy, ...)=0.
However, conversely, a complex belongs to a Mongetiuanly whenwo? lines occur

amongst its integral curves. The condition for tlagust the one that the Monge
equation can be put into the form (16), in whitmust be a homogeneous functioff)(

(") Klein, Math. Ann. V, pp. 271Koenigs Thése, art. 92t seq.
(") Voss Math. Ann. IX.

(*"® Koenigs Thése, art. 92.

("% Liniengeom.Bd. II, § 48.

("9 Geom. d. Beriihrungstranspp. 178.

("9 Lie, loc. cit, pp. 252t seq.
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The theory of line complexes also has a close coimeutith the theory of first-order
partial differential equations; confere (*') or Jessop(*’®) on this.

Klein (*") addressed the search for the parabolic congruencesahplex. The
guestion of the normal congruences of a complex waadyr raised byalus (in a
somewhat different form)*{® and once more byrranson (**%). The question of
isotropic congruences of a complex was treatecoyserat (**), and led back to the
guestion of whether two certain partial differential equret have a common solution.
For the representation (11), the same problem leadsdtaladifferential equation'{?)
whose integrability likewise resolves the possibilitydetomposing the complex into'
isotropic congruences. The ray thread contains no EotepngruencePicard (‘9
found its normal congruences.

17. Ruled surfaces and curves in a compleXA curve whose tangents all belong to
a complex is called aurve of the complex. The tangents themselves define a
developable surface in the complex. All complex cuwéh a common line element
have the contact plane of the complex cone of tleahent as their common osculating
plane %), while all curves of a null system (i.e., ray thtpshat go through the same
point have the same torsiof. For complexes of higher degré&emoulin considered
complex curves with a common line elemefif)(and found that a linear relation exists
between their curvature and torsion at the pointsaifeélement.

One can require that an integral curve of a Monge equdfi6) should have a
smaller curvature at each of its points then all othigral curves that contain it. One
calls such a curve straightestline of the Monge equation®f). The problem of finding
the shortest integral curve between two points fajiven Monge equation does not
always lead to a shortest line; there will therrdfeshortest lines, but onky® straightest
lines. The difference between them will become elstan the case of line complexes,
where the lines are, at the same time, the straigbtes. Liebmann (**%) examined the
shortest lines of the ray thread. This example sr@sting in the context of the calculus

("% Loc. cit, sect. Il, chap. 7 and sect. L.

(*"® A Treatise on the Line Compleambridge, 1903, chap. 18.

("9 Math. Ann., Bd. V, pp. 290; one will also firlde’s contribution to that problem in the remarks
there. For the parabolic congruences of the ray thifadlie, Christ. Vidensk. Forh., 188Peter, diss.
Leipzig 1895) (or Archiv for Math. og Naturv. 17) ahdgally, diss. Miinchen 1903.

!9 cf., no.1

(*®) J. de I'Ec. polyt.22(1861), cah. 38.

(**) Toulouse, Mém. (93 (1892).

(**) Zindler, Liniengeom.Bd. II, pp. 303.

(**) Thése, art. 21 (1877).

(** Lie, Christ. Vidensk. Vorh. 1883 @eom. d. Beriihrungstranspp. 303.

(**9 Lie, Christ. Vidensk. Vorh. 1883 @eom. d. Beriihrungstranspp. 231. Mehmke employed this
theorem for the investigation of the torsion of dharder space curves (Mitt. d. math.-naturw. Vereins in
Wirttemberg, 1V, 1891).

(**") Comptes R.124 (May 1897), pp. 1077; the corresponding theorem on pp. 308eofn. d.
Beruihrungstransis incorrect.

(**® Voss(Math. Ann., Bd. 23) has developed the differential geonttiie Pfaff equations (viz., the
“point-plane system”).

(**9) Math. Ann.,52(1899).



Zindler — The development and present state of line gggm 24

of variations, where it represents the simplestitivei case in which an auxiliary
condition appears in the form of a non-integrable witédrential equation.

Picard (**9 investigated the ruled surfaces (together with theingial lines) and
curves in a ray thread: He found, among other thingsthbkadscillation points of such a
curve are at the same time inflection poirts) @nd determined all of the ruled surfaces
with algebraic principal tangent point§’§ that are contained in a threadbteinmetz
(**) also treated the algebraic curves in a null systei@.(***) determined the curves in
a tetrahedral complex.

18. Lie’s transformation (**3). If one lets the equation of a line be:

rz=x-p, Sz=y-g,
and that of a sphere be:

X=X+ Y-y’ +@2-2*=R

then one can considers, p, gto be the coordinates of a line, axidy’, Z, Rto be the
coordinates of the sphere. When one sets the quantities one quadruple equal to any
functions of the other ones, one will obtain a méghe sphere manifold to the line
space. In order to obtain a distinguished nhagp (*°°) set:

X =p+s, ily=p-s§ Z=0-1, tR=0+r;
thus:

p=3(X +iy), s=1(x -iy), o=1(Z £R), r=-3( ¥ R).

Any line corresponds to a sphere, while any sphere camdsgdo a line. The lines of a
pencil of rays correspond to spheres that contact aina(pd), so a surface element will
again correspond to another one. A surfa@®rresponds to another oke and the
principal tangents tdwill correspond to those of the corresponding surfagmeit that
contacts the spheres that have the principal radiuofature as their radii (viz., the
“principal spheres”) ®. A ruled surface corresponds to a spherical envelope &viz
tubular surfacg, and in particular, a principal tangent curvefodnd the associated
developable surface of such a tubular surface that ceraabng a line of curvature.
One can then say that the principal tangent curves ggped to the lines of curvature.

(9 Thése, 1877; cf., alddoss Math. Ann., Bd. 12 and Liébid., Bd. 5, pp. 179.
**) Loc. cit, pp. 7.
*°) Loc. cit, pp. 30.
(**¥ Am. J. of Math14 (1892).
(19% Geom. d. Beriihrungstrangp. 326.
(*°9 Cf., alsoKlein, Vorl. tiber hohere Geonlie andScheffers Geom. d. Beriihrungstranshap. 10;
Jessop Line Complexchap. XIlI.
(*°9 Math. Ann. V, pp. 171.
*°) Loc. cit, pp. 172.
**® Loc. cit, pp. 177.
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This transformation was applied to the investigatioprofcipal tangent curves of the
Kummer surface %, and for the investigation of surfaces with sphérigaes of
curvature {%9. It was generalized bpuporcq (?°) andBricard (*°). One can, in fact,
associate the lines with second-order surfaces thainegcribe such a fixed surface
(instead of the spherical circle at infinity). Lie’s transformation is a contact
transformation:Goursat (*°®) found another one for which normal congruences go to
other ones.

*°9 Lie, loc. cit, pp. 178Klein, Gétt. Nachr., 1871.
(*®9 Lagally, Diss. Miinchen, 1903.

(*®) Bull. de la Soc. math. de France, t. 27.

(*®) Nuov. Ann. (4)5 (1905).

(*® Comptes R., . 129.



