Neo-classical physics
  • Home
  • Algebras
  • Analysis
  • Topology
  • Geometry
  • Spacetime structure
  • Theoretical mechanics
  • Electromagnetism
  • Wave theory
  • Thermodynamics
  • General system Theory


                                                                       Algebras

_____________________________________________________________________________________________________

                                                            PERSONAL RESEARCH
_____________________________________________________________________________________________________

D. H. Delphenich, "The representation of physical motions by various types of quaternions," arXiv:1205.4440.

_____________________________________________________________________________________________________

                                                              TRANSLATIONS
_____________________________________________________________________________________________________

E. Study, "On systems of complex numbers and their application to the theory of transformation groups," Monatsber. f. Math. u. Phys. 1 (1890), 283-354.

G. Combebiac, "Calculus of tri-quaternions," Gauthier-Villars, Paris, 1902.

G. Frobenius, “Theory of hypercomplex quantities, I” Sitz. Kön. Preuss. Akad. Wiss. (1903), 504-537;  Gesammelte Abhandlungen, art. 70, 284-317.

G. Frobenius, "Theory of hypercomplex numbers, II," Sitz. Kon. Preuss. Akad. Wiss. (1903), 634-645.

E. v. Weber, "Complex motions," Ber. sachs. Ges. der Wiss (1903), 384-408.

J. Grunwald, "On dual numbers and their application in geometry," Monatsh. f. Math. u. Phys. 17 (1906), 81-136.


E. Cartan, "The principle of duality and the theory of simple and semi-simple groups," Bull. des Sciences math. 49 (1925), 361-374.

J. A. Schouten, "On the hypercomplex numbers that are employed in the wave equation," Proc. Kon. Akad. Wet. Amst. 32 (1929), 105-108.​

E. Noether, "The relationship of hypercomplex numbers systems to commutative algebra and number theory," Verhandl. Int. Math. Kongress Zurich 1 (1932), 189-194.


A. Einstein and W. Mayer, "Semi-vectors and spinors," Proc. Roy. Acad. Amst. 36 (1933), 522-550.

W. Scherrer, "Quaternions and Semi-vectors," Comm. Math. Helv. 7 (1935), 141-149.

J. Blaton, “Quaternions, semi-vectors, and spinors,” Zeit. Phys. 95 (1935), 337-354.

B. L. van der Waerden, Groups of Linear Transformations, Springer, Berlin, 1935; reprinted by Chelsea, N. Y., 1948.

M. Markic, "Transformants: A new mathematical vehicle.  A synthesis of Combebiac's tri-quaternions and Grassmann's geometric system.  The calculus of quadri-quaternions," Ann. fac. sci. Toulouse (3) 28 (1936), 103-148.

W. Blaschke, “Applications of dual quaternions to kinematics,” Annales Academiae Scientiarum Fennicae, (1958), 1-13; Gesammelte Werke, v. 2.

W. Blaschke, "Kinematics and quaternions," VEB, Deutscher Verlag der Wissenschaften, Berlin, 1960.


_______________________________________________________________________________________________________________________________________________________
Web Hosting by iPage